AUTHOR. For any group G, we define an equivalence relation \sim as below:

\[\forall g, h \in G \ g \sim h \iff |g| = |h| \]

the set of sizes of equivalence classes with respect to this relation is called the same-order type of G and denote by $\alpha(G)$. In this paper, we give a partial answer to a conjecture raised by Shen. In fact, we show that if G is a nilpotent group, then $|\pi(G)| \leq |\alpha(G)|$, where $\pi(G)$ is the set of prime divisors of order of G. Also we investigate the groups all of whose proper subgroups, say H have $|\alpha(H)| \leq 2$.

1. Introduction

Let G be a group, define an equivalence relation \sim as below:

\[\forall g, h \in G \ g \sim h \iff |g| = |h| \]

the set of sizes of equivalence classes with respect to this relation is called the same-order type of G. For instance, the same-order type of the quaternion group Q_8 is $\{1, 6\}$. The only groups of type $\{1\}$ are $1, \mathbb{Z}_2$. In [3], Shen showed that a group of same-order type $\{1, n\}(\{1, m, n\})$ is nilpotent (solvable, respectively). Furthermore he gave the structure of these groups. In this paper, we give a partial answer to a conjecture raised by Shen in [3] and we prove that if G is a nilpotent group, then $|\pi(G)| \leq |\alpha(G)|$.

Given a class of groups \mathcal{X}, we say that a group G is a minimal non-\mathcal{X}-group, or an \mathcal{X}-critical group, if $G \not\in \mathcal{X}$, but all proper subgroups of G belong to \mathcal{X}. It is clear that detailed knowledge of the structure of minimal non-\mathcal{X}-groups can provide insight into what makes a group belong to \mathcal{X}. For

Keywords: Nilpotent groups, Same-order type, Schmidt group.
Received: 9 June 2015, Accepted: 29 August 2015.
*Corresponding author.
instance, minimal non-nilpotent groups were analysed by Schmidt [2] and proved that such groups are solvable (see also [5]). Suppose that \(t \) be a positive integer and \(\mathcal{Y}_t \) be the class of all groups in which \(\alpha(G) \leq t \). Here, we determine the structure of minimal non-\(\mathcal{Y}_2 \)-group.

Denote by \(\phi \) and \(S_n^G \) the Euler’s function and the number of elements of order \(n \) in a group \(G \) respectively. \(X_n \) is the set of all elements of order \(n \) in a group \(G \). We use symbols \(\pi_e(G) \) for the set of element orders.

2. Shen’s conjecture

In [3], Shen posed a conjecture as follows:

Let \(G \) be a group with same-order type \(\{1, n_2, \ldots, n_r\} \). Then \(|\pi(G)| \leq r \).

Here we give a partial answer to this conjecture. Note that by [4, Lemma 3], we can assume that \(G \) is finite. To prove Shen’s conjecture we need the following interesting lemmas.

Lemma 2.1. Suppose that \(G \) is a nilpotent group, \(m, n \in \pi_e(G) \) and \((m, n) = 1 \). Then

\[
S_{mn}^G = S_m^G S_n^G.
\]

Proof. Let \(g \in X_{mn} \). As \((m, n) = 1 \), so there exist \(y, z \in G \), such that \(o(y) = m \), \(o(z) = n \) and \(g = yz \).

So \(g \in X_m X_n \) and \(X_{mn} \subseteq X_m X_n \). On the other hand, if \(y \in X_m \) and \(z \in X_n \), then, as \(G \) is nilpotent, we can obtain that \(yz = zy \) and so \(o(yz) = o(z) = o(z) o(y) = mn \). It follows that \(X_m X_n \subseteq X_{mn} \) and so \(X_{mn} = X_m X_n \).

Corollary 2.2. Let \(G \) be a nilpotent group, \(m \in \pi_e(G) \) and \(m = p_1^{h_1} p_2^{h_2} \cdots p_t^{h_t} \). Then

\[
S_m^G = S_{p_1^{h_1}}^G S_{p_2^{h_2}}^G \cdots S_{p_t^{h_t}}^G.
\]

Theorem 2.3. Let \(G \) be a nilpotent group. Then

1. If \(|\pi(G)| \leq 2 \), then \(|\pi(G)| \leq |\alpha(G)| \).
2. If \(|\pi(G)| \geq 3 \), then \(|\pi(G)| \leq |\alpha(G)| - 1 \).

Proof. (1). If \(|\pi(G)| = 1 \), then \(G \) is a \(p \)-group and obviously \(|\pi(G)| \leq |\alpha(G)| \). Let \(\pi(G) = \{p, q\} \). Since \(G \) is nilpotent, \(G = P \times Q \), where \(|P| = p^a \) and \(|Q| = q^m \) are \(p \)-Sylow and \(q \)-Sylow subgroups of \(G \), respectively. If \(p = 2 \) and \(n = 1 \), then \(G \cong \mathbb{Z}_2 \times Q \). Clearly \(\alpha(G) = \alpha(Q) \). Now if \(exp(Q) = q \), then \(s_q^G = q^m - 1 \). So \(|\alpha(G)| = |\alpha(Q)| = |\pi(G)| = 2 \). Otherwise if \(exp(Q) \neq q \), then there exists \(x \in Q \) such that \(o(x) = q^2 \) and since \(S_q \neq S_{q^2} \), so \(|\alpha(Q)| \geq 3 \) and \(|\alpha(Q)| \geq 3 > |\pi(G)| \). In other values of \(p \) and \(n \), in view of Lemma 2.1, the conclusion is trivial.

(2). By the hypothesis that \(G \) is nilpotent, we have \(G = P_1 \times \cdots \times P_n \), where \(P_i \)'s are \(p_i \)-Sylow subgroups of \(G \) and \(p_1 < p_2 < \cdots < p_n \). We prove by induction on \(n \). If \(n = 3 \), the \(\alpha(P_1) \cup \alpha(P_2) \cup \alpha(P_3) \supseteq \{r, t\} \), for distinct numbers \(r \) and \(t \), so \(\alpha(G) \supseteq \{1, r, t, rt\} \), as desired.

Now assume the conclusion is true for \(G_{n-1} = P_1 \times \cdots \times P_{n-1} \). Let for any \(1 \leq i \leq n - 1 \), \(\alpha(P_i) = \{1, n_1^i, \ldots, n_r^i\} \) and \(S_{p_i^{n_i^i}} \) for \(1 \leq i \leq n - 1 \) be the maximum number of the set \(\alpha(P_i) \). Now
for any \(l \in \pi_e(G_{n-1}) \), assume that \(l = p_1^{\beta_1} \cdots p_r^{\beta_r} \), where \(1 \leq r \leq n - 1 \). By the maximality of \(S_{p_i} \)'s, we have

\[
S_l = S_{p_1^{\beta_1} \cdots p_r^{\beta_r}} = S_{p_1^{\beta_1}} \cdots S_{p_r^{\beta_r}} \leq S_{p_1^{h_1}} \cdots S_{p_r^{h_r} p_{n-1}^{h_{n-1}}}.
\]

Besides, \(S_{p_n}^G \neq 0 \) and since \(\phi(p_n) = p_n - 1 \mid S_{p_n} \), so \(S_{p_n} \neq 1 \). Hence we have

\[
S_l \leq S_{p_1^{h_1}} \cdots S_{p_{n-1}^{h_{n-1}}} S_{p_n} \leq S_{p_1^{h_1}} \cdots S_{p_{n-1}^{h_{n-1}}} S_{p_n} = S_{p_1^{h_1} \cdots p_{n-1}^{h_{n-1}} p_n}.
\]

It follows that \(S_{p_1^{h_1} \cdots p_{n-1}^{h_{n-1}} p_n} \in \alpha(G_n) \setminus \alpha(G_{n-1}) \). Therefore

\[
|\alpha(G_n)| - |\alpha(G)| \geq |\alpha(G_{n-1})| + 1
\]

and so by induction hypothesis;

\[
|\pi(G)| = n = n - 1 + 1 < |\alpha(G_{n-1})| + 1 \leq |\alpha(G_n)| = |\alpha(G)|.
\]

and the conclusion is proved. \(\square \)

3. On the same-order type of subgroups of a group

In this section, we determine the structure of minimal non-\(\mathcal{Y}_2 \)-group, as follows.

Theorem 3.1. Let \(G \) be minimal non-\(\mathcal{Y}_2 \)-group. Then \(G \) is a Frobenius or 2-Frobenius group.

Proof. Let \(H \) be a non-trivial proper subgroup of \(G \) and \(p \in \pi(H) \). Suppose, on the contrary, that \(q \in \pi(G) \) and \(q \neq p \). Since \(p \mid 1 + s_p^H \) and \(q \mid 1 + s_q^H \), so \(s_p^H, s_q^H \neq \{0, 1\} \), hence \(s_p^H = s_q^H = n_H \). Now as \(H \) is nilpotent, according to Lemma 2.1, we have \(s_p^H = s_q^H = n_H^2 \), a contradiction. Thus \(H \) is a \(p \)-group. On the other hand, since

\[
p \mid 1 + s_p^H + s_q^H,
\]

so \(s_p^H \neq \{1, n_H\} \), since otherwise \(p \mid 1 \), a contradiction. Hence \(s_p^H = 0 \). It follows that every proper subgroup of \(G \) is \(p \)-group of exponent \(p \). If \(p, q \in \pi(G) \), then \(G \) has no element of order \(pq \). If \(G \) is nilpotent, then \(G \) is a \(p \)-group of exponent \(p \) and it is easy to see that such groups are in \(\mathcal{Y}_2 \), a contradiction. If \(G \) is non-nilpotent, then, as proper subgroup of \(G \) has the same-order type \(\{1, n\} \), Theorem 2.1 of Shen follows that \(G \) is a Schmidt group and so \(|\pi(G)| = 2 \). Now, as \(G \) has no element of order \(pq \), of [1, Theorem A], completes the proof. \(\square \)
REFERENCES

Leyli Jafari Taghvasani
Department of Mathematics, University of Kurdistan, P.O. Box: 416 Sanandaj, Iran
Email: L.jafari@sci.uok.ac.ir

Mohammad Zarrin
Department of Mathematics, University of Kurdistan, P.O. Box: 416 Sanandaj, Iran
Email: zarrin@ipm.ir