A characterization of soluble groups in which normality is a transitive relation

Document Type: Research Paper

Author

University of Salerno

Abstract

A subgroup $X$ of‎ ‎a group $G$ is said to be an H-‎subgroup if‎ ‎NG(X) ∩ Xg  ≤ X for each element $g$ belonging to $G$‎. ‎In [M‎. ‎Bianchi and e.a.‎, ‎On finite soluble groups in which normality is a transitive relation‎, J‎. ‎Group Theory, ‎ 3 (2000) 147--156.] the authors showed that finite groups in which every subgroup has the H‎-‎property are exactly soluble groups in which normality is a transitive relation‎. ‎Here we extend this characterization to groups without simple sections‎.

Keywords

Main Subjects


[1] A. Ballester-Bolinches and R. Esteban-Romero, On finite T-groups, J. Austral. Math. Soc. Ser. A75 (2003) 1–11.

[2] M. Bianchi, A. Gillio Berta Mauri, M. Herzog and L. Verardi, On finite solvable groups in which normality is a transitive relation, J. Group Theory3 (2000) 147–156.

[3] R. Esteban-Romero and G. Vincenzi, On generalized FC-groups in which normality is a transitive relation, J.Austral. Math. Soc. (2)100 (2016) 192–198.

[4] W. Gaschütz, Gruppen, in denen das Normalteilersein transitiv ist, J. Reine Angew. Math., 198 (1957) 87–92.

[5] F. de Giovanni and G. Vincenzi, Pronormality in infinite groups, Math. Proc. R. Ir. Acad. Ser. A100 (2000)189–203.

[6] F. de Giovanni and G. Vincenzi, Some topics in the theory of pronormal subgroups of groups, Topics in infinite groups, 8, Quad. Mat., Dept. Math., Seconda Univ. Napoli, Caserta, 2001 175–202.

[7] F. de Giovanni and G. Vincenzi, Pseudonormal subgroups of groups, Ricerche Mat.52 (2003) 91–101.

[8] G. Kaplan, On finite T-groups and the Wielandt subgroup, J. Group Theory14 (2011) 855–863.

[9] G. Kaplan, On T-groups, supersolvable groups and maximal subgroups, Arch. Math. (Basel)96 (2011) 19–25.

[10] G. Kaplan and G. Vincenzi, On the Wielandt subgroup of generalized FC-groups, Internat. J. Algebra Comput.24 (2014) 1031–1042.

[11] E. I. Khukhro and V. D. Mazurov, The Kourovka Notebook16, Novosibirsk, Russian Academy of Sciences, 2006.

[12] L. G. Kovács, B. H. Neumann and H. de Vries, Some Sylow subgroups, Proc. Roy. Soc. Ser. A260 (1961) 304–316.

[13] N. F. Kuzennyi and I. Y. Subbotin, Groups with pronormal primary subgroups, Ukrainian. Math. J.41 (1989) 286–289.

[14] T. A. Peng, Finite groups with pro-normal subgroups, Proc. Amer. Math. Soc.20 (1969) 232–234.

[15] D. J. S. Robinson, Groups in which normality is a transitive relation, Proc. Cambridge Philos. Soc.60 (1964) 21–38.

[16] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, Springer, Berlin, 1972.

[17] D. J. S. Robinson, A. Russo and G. Vincenzi, On groups which contain no HNN-extensions, Internat. J. Algebra Comput.17 (2007) 1377–1387.

[18] E. Romano and G. Vincenzi, Pronormality in generalized FC-groups, Bull. Aust. Math. Soc.83 (2011) 220–230.

[19] E. Romano and G. Vincenzi, Groups in which normality is a weakly transitive relation, J. Algebra Appl.14 (2015) 12 pp.

[20] J. S. Rose, Finite soluble groups with pronormal system normalizers, Proc. London Math. Soc. (3)17 (1967) 447–469.

[21] A. Russo, On Groups in which normality is a transitive relation, Comm. Algebra40 (2012) 3950–3954.

[22] G. Vincenzi, Groups satisfying the maximal condition on non-pronormal subgroups, Algebra Colloq.2 (1998) 121–134.

[23] G. Zacher, Caratterizzazione dei t-gruppi finiti risolubili, Ricerche Mat.1 (1952) 287–294.