Torsion units for some projected special linear groups

Document Type: Research Paper

Author

Senior Lecturer in Mathematics, Department of Mathematics

Abstract

In this paper, we investigate the Zassenhaus conjecture for $PSL(4,3)$ and $PSL(5,2)$. Consequently,
we prove that the Prime graph question is true for both groups.

Keywords

Main Subjects


[1] V. Artamonov and A. Bovdi, Integral group rings: groups of invertible elements and classical K-theory, (Algebra. Topology. Geometry, 27 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 1989 3–43.), (Russian) Translated in J. Soviet Math.57 (1991) 2931–2958.

[2] A. Bachle and L. Margolisv, Rational conjugacy of torsion units in integral group rings of non-solvable groups, arXiv:1305.7419.

[3] V. Bovdi, A. Grishkov and A. Konovalov, Kimmerle conjecture for the Held and O’Nan sporadic simple groups, Sci. Math. Jpn.69 (2009) 353–361.

[4] V. Bovdi and M. Hertweck, Zassenhaus conjecture for central extensions of S5, J. Group Theory11 (2008) 63–74.

[5] V. Bovdi, C. Höfert and W. Kimmerle, On the first Zassenhaus conjecture for integral group rings, Publ. Math. Debrecen65 (2004) 291–303.

[6] V. Bovdi, E. Jespers and A. Konovalov, Torsion units in integral group rings of Janko simple groups, Math. Comp.80 (2011) 593–615.

[7] V. Bovdi and A. Konovalov, Integral group ring of the first Mathieu simple group, Groups St. Andrews 2005., London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 1 (2007) 237–245.

[8] V. Bovdi, A. Konovalov, Integral group ring of the Mathieu simple group M23, Comm. Algebra36 no. 7 (2008) 2670–2680.

[9] V. Bovdi, A. Konovalov, Integral group ring of Rudvalis simple group (English, with English and Ukrainian summaries, Ukra¨ ın. Mat. Zh., 61(1), 2009, 3–13), Ukrainian Math. J.61 no. 1 (2009) 1–13.

[10] V. Bovdi, A. Konovalov, Torsion units in integral group ring of Higman-Sims simple group, Studia Sci. Math. Hungar.47 no. 1 (2010) 1–11.

[11] V. Bovdi, A. Konovalov, Integral group ring of the McLaughlin simple group, Algebra Discrete Math.2 (2007) 43–53.

[12] V. Bovdi, A. Konovalov, Integral group ring of the Mathieu simple group M24J. Algebra Appl.1 (2012) 10 pages.

[13] V. Bovdi, A. Konovalov. S. Linton, Torsion units in integral group ring of the Mathieu simple group M22LMS J. Comput. Math.11 (2008) 28–39.

[14] V. Bovdi, A. Konovalov. S. Linton, Torsion units in integral group rings of Conway simple groups M22Internat. J. Algebra Comput.21 no. 4 (2011) 615–634.

[15] V. Bovdi, A. Konovalov. E. Marcos, Integral group ring of the Suzuki sporadic simple group, Publ. Math. Debrecen72 no. 3-4 (2008) 487–503.

[16] V. Bovdi, A. Konovalov. S. Siciliano, Integral group ring of the Mathieu simple group M12Rend. Circ. Mat. Palermo (2)56 no. 1 (2007) 125–136.

[17] J. Cohn, D. Livingstone, On the structure of group algebras. I, Canad. J. Math.17 (1965) 583–593.

[18] M. Caicedo, L. Margolis,Á. del R´ ıo, Zassenhaus conjecture for cyclic-by-abelian groups, J. Lond. Math. Soc. (2)88 (2013) 65–78.

[19] J. Gildea, Zassenhaus conjecture for integral group ring of simple linear groups, J. Algebra Appl.12 (2013) 10 pages.

[20] M. Hertweck, On the torsion units of some integral group rings, Algebra Colloq.13 (2006) 329–348.

[21] M. Hertweck, Zassenhaus conjecture for A6Proc. Indian Acad. Sci. Math. Sci.118 (2008) 189–195.

[22] M. Hertweck, Partial augmentations and Brauer character values of torsion units in group rings, 2007, http://arxiv.org/abs/math/0612429.

[23] C. Höfert and W. Kimmerle, On torsion units of integral group rings of groups of small order (Groups, rings and group rings, Chapman & Hall/CRC, Boca Raton, FL), Lect. Notes Pure Appl. Math.248 (2006) 243–252.

[24] The GAP Group, GAP-Groups, Algorithms and Programming, version 4.4, 2006 http:/www.gap-system.org.

[25] W. Kimmerle,On the prime graph of the unit group of integral group rings of finite groups, Groups, rings and algebras, 215–228, Contemp. Math.420Amer. Math. Soc., Providence, RI, 2006.

[26] V. Bovdi, A. Konovalov, R. Rossmanith and C. Schneider, LAGUNA — Lie AlGebras and UNits of group Algebras, Version 3.5.0; 2009, http://www.cs.st-andrews.ac.uk/~alexk/laguna.htm.

[27] I. Luther, I. Passi, Zassenhaus conjecture for A5Proc. Indian Acad. Sci. Math. Sci.99 (1989) 1–5.

[28] I. Luther and P. Trama, Zassenhaus conjecture for S5Comm. Algebra19 no. 8 (1991) 2353–2362.

[29] Z. Marciniak, J. Ritter, S. Sehgal and A. Weiss, Torsion units in integral group rings of some metabelian groups. II, J. Number Theory25 (1987) 340–352.

[30] Mini-Workshop, Arithmetik von Gruppenringen, Oberwolfach Rep. 4 (2007), no. 4, 3209 − 3239, Abstracts from the mini-workshop held November 25 − December 1, 2007, Organized by E. Jespers, Z. Marciniak, G. Nebe and W. Kimmerle, Oberwolfach Reports. Vol. 4, no. 4.

[31] A. Rosa, Torsion units of integral group ring of the simple group S4(4), Miskolc Math. Notes16 (2015) 443–452.

[32] K. Roggenkamp and L. Scott, Isomorphisms of p-adic group rings, Ann. of Math. (2)126 (1987) 593–647.

[33] M. Salim, Torsion units in the integral group ring of the alternating group of degree 6, Comm. Algebra35 (2007) 4198–4204.

[34] M. Salim, Kimmerle’s conjecture for integral group rings of some alternating groups, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 27 (2011) 9–22.

[35] M. Salim, The prime graph conjecture for integral group rings of some alternating groups, Int. J. Group Theory, 2 (2013) 175–185.

[36] A. Weiss, Rigidity of p-adic p-torsion, Ann. of Math. (2)127 (1988) 317–332.

[37] H. Zassenhaus, On the torsion units of finite group rings, Studies in mathematics (in honor of A. Almeida Costa) (Portuguese), Instituto de Alta, Lisbon, 1974, 119–126.