ONE-PRIME POWER HYPOTHESIS FOR CONJUGACY CLASS SIZES

ALAN R. CAMINA AND RACHEL D. CAMINA*

Communicated by Patrizia Longobardi

Abstract. A finite group G satisfies the one-prime power hypothesis for conjugacy class sizes if any two conjugacy class sizes m and n are either equal or have common divisor a prime power. Taeri conjectured that an insoluble group satisfying this condition is isomorphic to $S \times A$ where A is abelian and $S \cong PSL_2(q)$ for $q \in \{4, 8\}$. We confirm this conjecture.

1. Introduction

To determine structural information about a finite group G given the set of conjugacy class sizes of G is an ongoing line of research, see [4] for an overview. How the arithmetic data given by the set of conjugacy class sizes is encoded varies, but one representation is via the bipartite graph $B(X)$. Let X be a set of positive integers and let $X^* = X \setminus \{1\}$ (X may or may not contain the element 1). If $x \in X$ we denote the set of prime divisors of x by $\pi(x)$ and let $\rho(X) = \bigcup_{x \in X} \pi(x)$.

Definition 1.1. [7] The vertex set of $B(X)$ is given by the disjoint union of X^* and $\rho(X)$. There is an edge between $p \in \rho(X)$ and $x \in X^*$ if p divides x, i.e. if $p \in \pi(x)$.

In our context we let X be the set of conjugacy class sizes of a finite group G, and in this case we denote $B(X)$ by $B(G)$. In [14] Taeri investigates the case when $B(G)$ is a cycle, or contains no cycle of length 4. In particular, he proves the following.

Theorem 1.2. [14] Let G be a finite group and $Z(G)$ the centre of G. Suppose $G/Z(G)$ is simple, then $B(G)$ has no cycle of length 4 if and only if $G \cong A \times S$, where A is abelian, and $S \cong PSL_2(q)$ for $q \in \{4, 8\}$.

MSC(2010): Primary: 20E45; Secondary: 20D05, 05C25.

Keywords: Conjugacy classes, finite groups, insoluble groups, bipartite graph.

Received: 14 May 2015, Accepted: 18 December 2015.
*Corresponding author.
Taeri goes on to conjecture that the same conclusion holds if the assumption is just that G is finite and insoluble. In this paper we confirm Taeri’s conjecture.

Main Theorem. If G is a finite insoluble group, then $B(G)$ has no cycle of length 4 if and only if $G \cong A \times S$, where A is abelian and $S \cong PSL_2(q)$ for $q \in \{4, 8\}$.

As Taeri comments, $B(G)$ having no cycle of length 4 is equivalent to G satisfying the **one-prime power hypothesis**, that is, if m and n are distinct non-trivial conjugacy class sizes of G then either m and n are coprime or their greatest common divisor is a prime power. This is similar to the one-prime hypothesis introduced by Lewis to study character degrees [11]. We use this terminology.

Throughout the paper G will be assumed to be a finite group. Most of the notation used will be standard. In particular, $Z(G)$ is the centre of G, the maximal normal soluble subgroup of G is denoted by $S(G)$, the maximal normal p-subgroup of G is denoted $O_p(G)$ and the Fitting and second Fitting subgroups are denoted by $F(G)$ and $F_2(G)$ respectively. The conjugacy class size of an element $x \in G$ will be denoted by $|x^G|$ and shall be called the **index** of $x \in G$. We say an element has *mixed index* if its index is not a prime power. The greatest common divisor of two numbers m and n shall be denoted by (m, n) and p will always be prime.

2. Preliminary Remarks

We begin by making some preliminary remarks.

Lemma 2.1. Suppose N is a normal subgroup of a group G.

(i) Let $x \in N$, then $|x^N|$ divides $|x^G|$.

(ii) Let $\bar{x} \in G/N = \bar{G}$, then $|\bar{x}^\bar{G}|$ divides $|x^G|$.

Let $C_G(x)$ be the centraliser of an element x in G. Then $C_G(x)$ is said to be minimal if $C_G(y) \leq C_G(x)$ for some $y \in G$ implies $C_G(y) = C_G(x)$. The following lemma is well-known.

Lemma 2.2. Suppose x is a p-element with minimal centraliser. Then $C_G(x) = P_0 \times A$, where P_0 is a p-group and A is abelian.

We have the following lemma.

Lemma 2.3. Assume G satisfies the one-prime power hypothesis and there exists $x, y \in G$ with $C_G(x) < C_G(y)$. Then $|y^G|$ is a prime power.

Proof. Let $|x^G| = m$ and $|y^G| = n$, then $(m, n) = n$ and hence n is a prime power, i.e. any non-minimal centraliser has prime power index. \hfill \Box

The following result will prove useful.

Proposition 2.4. [3, Theorem 1] All elements of prime power index in G lie in $F_2(G)$.

Recall, G is called an F-group if whenever x and y are non-central elements of G satisfying $C_G(x) \leq C_G(y)$, then $C_G(x) = C_G(y)$. Rebmann has classified F-groups [13].

Lemma 2.5. (i) Suppose G satisfies the one-prime power hypothesis and $F(G)$, the Fitting subgroup of G, is central. Then G is an F-group.

(ii) [14] Suppose G is an insoluble F-group that satisfies the one-prime power hypothesis. Then $G \cong S \times A$ where $S \cong PSL_2(q)$ for $q \in \{4, 8\}$ and A is abelian.

Proof. (i) As $F(G)$ is central so is $F_2(G)$ and thus G has no elements of prime power index by Proposition 2.4. Applying Lemma 2.3 gives that G is an F-group.

(ii) This is a combination of [14, Lemma 4] and [14, Theorem 1]. \(\Box\)

Consider the following property. Let G be a finite non-abelian group with proper normal subgroup N and suppose all the conjugacy class sizes outside of N have equal sizes. Isaacs proved that in this situation then either G/N is cyclic, or else every non-identity element of G/N has prime order [8]. We combine this result with Proposition 2.4 and a result of Qian to give the following lemma.

Lemma 2.6. Suppose G is a finite group with at most one conjugacy class size that is not a prime power. Then either G is soluble or $G/F_2(G) \cong PSL_2(4)$.

Proof. By Proposition 2.4 all elements outside of $F_2(G)$ have the same conjugacy class size. Applying [8] gives that $G/F_2(G)$ is a non-soluble group with all elements of prime order. The result follows from [12]. \(\Box\)

This lemma leads us to ask the following question. Suppose G is a finite group with at most one conjugacy class that is not a prime power, does it follow that G is soluble?

Groups in which all elements have prime power order are well studied and are called CP-groups. Delgado and Wu have given a full description of locally finite CP-groups, the following considers the special case when the Fitting subgroup is trivial.

Theorem 2.7. [5] Let G be a finite CP-group with trivial Fitting subgroup. Then either G is simple and isomorphic to one of $PSL_2(q)$ where $q \in \{4, 7, 8, 9, 17\}$, $PSL_3(4)$, $Sz(8)$, $Sz(32)$ or G is isomorphic to M_{10}.

The following observation is useful.

Lemma 2.8. Suppose G satisfies the one-prime power hypothesis and that N is a normal subgroup of G. If $\bar{x} \in \bar{G} = G/N$ has mixed index in \bar{G}, then $|\bar{x}^G| = |(xn)^G|$ for all $n \in N$.

Proof. Note that $|\bar{x}^G|$ divides both $|x^G|$ and $|(xn)^G|$. So, by the one-prime power hypothesis, the result follows. \(\Box\)
3. Main Result

The property of satisfying the one-prime power hypothesis does not (clearly) restrict to normal subgroups (however we know of no examples where this is not the case). We do have the following.

Lemma 3.1. Suppose G satisfies the one-prime power hypothesis and r is a prime dividing $|G|$. If N is a normal r-complement in G then N also satisfies the one-prime power hypothesis.

Proof. Suppose not, then there exist $x, y \in N$ with $|x^N| \neq |y^N|$ and distinct primes p and q with pq dividing both $|x^N|$ and $|y^N|$. As G satisfies the one-prime power hypothesis this forces $|x^G| = |y^G|$. However note that $\frac{|x^G|}{|x^N|}$ divides $|G/N|$ and is thus a power of r, and similarly for y, so $|x^G| \neq |y^G|$, a contradiction.

We first consider the case where there is only one mixed index.

Proposition 3.2. Suppose G satisfies the one-prime power hypothesis and all elements of mixed index have index m. Then G is soluble.

Proof. By Lemma 2.6 we can assume $G/F_2(G)$ is isomorphic to $PSL_2(4)$. Furthermore, if there exists a prime power index, say r^a with r not dividing m then G is quasi-Frobenius and hence soluble by [10]. So we can assume otherwise.

Let $\bar{G} = G/F_2(G)$. Since \bar{G} has elements of index 12, 15 and 20 we see that m is divisible by 60. Let $x \in G$ with \bar{x} of order 2. Then $|\bar{x}^G| = 15$. But in G the index of x has to be m, so we see that $F_2(G)$ has to have a non-central 2-subgroup. We can argue similarly to show $F_2(G)$ has to have non-central 3 and 5 subgroups.

Suppose $x, y \in F_2(G)$, that x and y commute and have coprime orders. Suppose further that $|x^G| = p^a$ and $|y^G| = q^b$. If $p \neq q$ then $|(xy)^G|$ is divisible by just two different primes and so cannot equal m, a contradiction.

So assume $x, y \in F_2(G)$ with $|x^G| = p^a$, $|y^G| = q^b$ and $p \neq q$. Given that the indices of x and y are prime powers we can assume that each of x and y have prime power orders. Assume first that the orders of x and y are coprime. $C_G(x)$ contains a Sylow r-subgroup of G for each prime $r \neq p$. If y is not a p-element it, or some conjugate of it, is in $C_G(x)$ which contradicts the above assertion. So y is a p-element and x is q-element. Let r be a prime distinct from p and q and dividing the order $G/F_2(G)$.

Both $C_G(x)$ and $C_G(y)$ can be assumed to contain a Sylow r-subgroup of G. Let u be an r-element of mixed index, there is one because r divides the order of $G/F_2(G)$. Taking conjugates we can assume $x, y \in C_G(u)$. By Lemma 2.2, $C_G(u) = R_0 \times A$ where A is an abelian r'-subgroup which must contain both x and y, a contradiction as x and y do not commute. So if $x, y \in F_2(G)$ with $|x^G| = p^a$ and $|y^G| = q^b$ with $p \neq q$ then x and y are both l'-elements for some prime l. If there is an l'-element of prime power index then we can apply the previous argument. So every l'-element has mixed index. So G satisfies the hypothesis that every l'-element of G has the same index, using [2], we get G is
soluble. We end this paragraph by noting that if the proposition is not true then there is a prime p so that every element, x, of prime power index has $|x^G| = p^a$ for some a.

Note that if M is the subgroup generated by all the elements of prime power index then $M \subseteq F_2(G)$ and every element not in M has index m. As G/M is not soluble it is isomorphic to $PSL_2(4)$ and so $M = F_2(G)$.

Let t be a prime such that $t \neq p$. Any element of prime power index contains a Sylow t-subgroup of G in its centraliser and so centralises $O_t(G)$. Now $O_t(G) \subseteq Z(F_2(G))$. As $F_2(G)$ is metanilpotent if P is the Sylow p-subgroup of $F_2(G)$ then PF is normal in $F_2(G)$. But $PF = PU$ where U is the product of O_t for all $t \neq p$. So U is central in $F_2(G)$ and hence $PF = P \times U$ and P is normal in G.

There exist p-elements of mixed index otherwise all p-elements of G have p-power index and $G = P \times H$ for H some p'-subgroup of G, by [3], but such a group cannot satisfy the conditions of the proposition. Assume that there exists a p-element x of mixed index in $F_2(G)$ so $x \in P$. Then $C_G(x) = P_0 \times A_0$ where P_0 is a p-group and A_0 is an abelian p'-group. Let $m = p^f m_0$ where $(m_0, p) = 1$, then $[G : A_0] = p^f m_0$ for some f. Also A_0 cannot be central in G otherwise there would be no p'-elements of mixed index which is false. Then $A_0 \subseteq C_G(P)$, by an application of Thompson’s Lemma [6, 5.3.4]. As $x \in P$, A_0 is the Hall p'-subgroup of $C_G(P) = Z(P) \times A_0$. So A_0 is a normal abelian p'-subgroup of G. Furthermore, A_0 is central in $F_2(G)$ as it commutes with all elements that generate F_2 and since it is not central it follows that $m = 60$ and thus p is a divisor of 60. So, there exists a p-element, say y, of mixed index not in $F_2(G)$. Then $C_G(y) = P_1 \times A_1$ and, again by [6, 5.3.4], A_1 centralises P but $|A_1| = |A_0|$ as x and y have the same index. This implies that $C_G(A_0) > F_2(G)$ so A_0 is central in G, a contradiction.

The last case to consider is that there are no elements of mixed index in P. That means that all the p-elements of $F_2(G)$ have index a power of p. By [3] it follows that $F_2(G) = P \times A$ where A has order prime to p and A is normal in G and central in $F_2(G)$. As A is not central we see that $p = 5$. Let y be a p-element of mixed index not in $F_2(G)$. Then $C_G(y) = P_1 \times A_1$ and A_1 centralises P by [6, 5.3.4]. As A_1 is a subgroup of A it centralises P and y but P and y generate the Sylow p-subgroup of G and hence A_1 is in the centre of G. Then no p' element can have mixed index which is false as there are both 2 and 3 elements of mixed index.

We are now ready to prove the main theorem.

Theorem 3.3. Suppose G is insoluble and satisfies the one-prime power hypothesis. Then $G \cong PSL_2(q) \times A$ for $q \in \{4, 8\}$ where A is abelian.

Proof. We suppose the result is not true and take G to be a counterexample of minimal order.

(i) Case 1: Suppose $\bar{G} = G/F_2(G)$ has elements of mixed order.

Let such an element be \bar{u}. Then we can assume \bar{u} has order divisible by precisely two primes, p and q say, and further we can assume u similarly has order divisible by two primes p and q. We write $u = x y$ where x and y commute and x has p-power order and y has q-power order. As u is not an element of $F_2(G)$ it follows that u has mixed index, and as \bar{u} has mixed order we also know that both x and y do not lie in $F_2(G)$ and thus also have mixed index. As $C_G(x)$ is minimal it follows from
Lemma 2.2 that $C_G(x) = P_0 \times A$ where P_0 is a p-group and A is abelian. A similar statement holds for $C_G(y)$ and thus we obtain that $C_G(u) = C_G(x) = C_G(y)$ and is abelian. Now there exists z an element of mixed index different to $|u^G|$ otherwise all elements of $G/F_2(G)$ would be of prime power order [8]. If $|z^G|$ is coprime to p then z centralises a Sylow p-subgroup and a conjugate of z lies in $C_G(x)$, but then the index of z divides the index of x, a contradiction. Thus both p and q divide $|z^G|$. So we have shown that there are only two mixed indices of elements of G and these are given by $|x^G|$ and $|z^G|$. Thus, by the one-prime power hypothesis there exist a pair of primes r and s say with r dividing $|x^G|$ and s dividing $|z^G|$ but the product rs does not divide any conjugacy class size in G. Thus, by [9, Prop. 5.1], G has a normal r-complement (say), call this complement N. Then N satisfies the one-prime power hypothesis by Lemma 3.1. If N is soluble so is G, so we can assume N is insoluble. Thus, by induction, $N \cong S \times A$ where A is abelian and S is one of the simple groups $PSL_2(q)$ for q equal to 4 or 8. Note A must be central in G as otherwise G does not satisfy the one-prime power hypothesis. However, if A is central in G all r-elements have r-power index as the outer automorphism groups of these two simple groups have no elements of order r. Thus the Sylow r-subgroup is a direct factor of G by [3, Theorem A]. As G satisfies the one-prime power hypothesis, this forces the Sylow r-subgroup to be central. Thus, $G/Z(G) \cong S$, and all elements of the quotient are of prime power order, a contradiction.

ii) Case 2: Assume all elements of $G/F_2(G)$ have prime power order.

We can assume we have at least one mixed index by Proposition 2.4. If we have precisely one then G is soluble by Proposition 3.2. So we can assume there exist elements of mixed index which are not equal.

Let $\tilde{G} = G/F_2(G)$. Let \tilde{x} be a p-element in \tilde{G}. As $C_G(\tilde{x})$ is a p-group it follows that $|\tilde{G}|/|\tilde{G}|_p$ divides $|\tilde{x}|^G$ where $|\tilde{G}|_p$ denotes the p-part of $|\tilde{G}|$. A similar statement holds for all elements of \tilde{G}.

If $|\tilde{G}|$ were divisible by more that 3 primes this would force all elements outside of $F_2(G)$ to have the same conjugacy class size in G, a contradiction. Thus we can assume $|\tilde{G}|$ is divisible by exactly 3 primes. Assume that p, q, r are the primes that divide the order of $G/F_2(G)$ and there is an element of index divisible by pqr. But every element not in $F_2(G)$ has index divisible by at least two of p, q or r so all elements would have the same index which we are assuming is not the case. So we must have that $|x|^G$ is coprime to p and likewise for other elements.

Now, consider $O_t(G) \neq 1$, there exists an element $x \in G \setminus F_2(G)$ such that $|x^G|$ and t are coprime. This follows from the argument above if t divides the order of $|\tilde{G}|$. If not, note that the indices of any two elements $y, z \in G \setminus F_2(G)$ already have a prime in common that also divides $|\tilde{G}|$. Thus $O_t(G) \leq C_G(x)$. Let $n \in F_2(G)$, then by Lemma 2.8, it follows that $O_t(G) \leq C_G(xn)$ and thus $O_t(G) \leq C_G(n)$. So, $C_G(O_t(G))$ is a normal subgroup of G containing $F_2(G)$. Since $F(G)$ is a direct product of $O_t(G)$ for all t, $F(G)$ is central in $F_2(G)$. It follows that $F(G) = F_2(G) = S(G)$.

As G has trivial Fitting subgroup it follows from Theorem 2.7 that G is a simple group which comes from a known list or is isomorphic to M_{10}. However M_{10} has order 720 and an element with index 90, see [1], which contradicts the discussion above. Thus we can assume that G is simple. Note that $O_t(G)$, for any t, centralises some element not in $S(G)$ so $C_G(O_t(G))$ is a normal subgroup of
G strictly containing $F_2(G)$. But as \bar{G} is simple, $O_2(G)$ is central but then so is $F(G)$. But then, by Lemma 2.5, we have that $G \cong PSL_2(q) \times A$ for $q \in \{4, 8\}$ and A abelian, as required.

Acknowledgments

The authors wish to thank the referee for identifying an error in an earlier version of this paper.

References

Alan R. Camina
School of Mathematics, University of East Anglia, Norwich, UK
Email: a.camina@uea.ac.uk

Rachel D. Camina
Fitzwilliam College, Cambridge, UK
Email: rdc26@dpmms.cam.ac.uk