Let $G $ be a finite group and let $\Gamma(G)$ be the prime graph of G. Assume $2 < q = p^{\alpha} < 100$. We determine finite groups G such that $\Gamma(G) = \Gamma(U_3(q))$ and prove that if $q \neq 3, 5, 9, 17$, then $U_3(q)$ is quasirecognizable by prime graph, i.e. if $G$ is a finite group with the same prime graph as the finite simple group $U_3(q)$, then $G$ has a unique non-Abelian composition factor isomorphic to $U_3(q)$. As a consequence of our results, we prove that the simple groups $U_{3}(8)$ and $U_{3}(11)$ are $4-$recognizable and $2-$recognizable by prime graph, respectively. In fact, the group $U_{3}(8)$ is the first example which is a $4-$recognizable by prime graph.

Z. Akhlaghi, M. Khatami and B. Khosravi (2009). Quasirecogniton by prime graph of the simple group $^{2}F_{4}(q)$. Acta. Math. Hungar.. 122 (4), 387-397

2

M. R. Aleeva (2002). On the composition factors of finite groups having
the same set of element orders as the group $U_{3}(q)$. Siberian. Math. J.. 43, 195-211

3

O. A. Alekseeva and A. S. Kondrat$'$ev (2003). Quasirecognition of one class
of finite simple groups by the set of element orders. Siberian. Math. J.. 44 (2), 195-207

4

A. Babai , B. Khosravi and N. Hasani (2009). Quasirecogniton by prime graph
of $^{2}D_{p}(3)$ where $p = 2^{n} + 1 geq 5$ is a prime. Bull. Malays. Math. Sci. Soc. (2). 32 (2), 343-350

5

J. Conway, R. Curtis, S. Norton, R. Parker and R. Wilson (1985). Atlas of finite groups. Clarendon press, Oxford.

6

M. Foroudi Ghasemabadi and A. Iranmanesh (2011). Quasirecognition by the
prime graph of the group $C_{n}(2)$ where $ n neq 3 $ is odd. Bull. Malays. Math. Sci. Soc. (2). 34 (3), 529-540

7

M. Foroudi Ghasemabadi (2011). Characterization of some finite nonabelian simple groups by prime
graph. Ph.D. Thesis, Department of Mathematics, Faculty of
Mathematical Sciences, Tarbiat Modares University, Tehran, Iran.

8

The GAP Group GAP – Groups, Algorithms, and Programming. Version
4.4.12; 2008, (http://www.gap-system.org).

9

M. Hagie (2003). The prime graph of a sporadic simple group. Comm. Algebra. 31 (9), 4405-4424

10

H. He and W. Shi (2009). Recognition of some finite simple groups of type
$ D_{n}(q) $ by spectrum. Internat. J. Algebra Comput.. 19 (5), 681-698

11

B. Huppert (1967). Endliche Gruppen I. Springer-Verlag, New York.

12

N. Iiyori and H. Yamaki (1993). Prime graph components of the
simple groups of Lie type over the field of even characteristic. Prime graph components of the
simple groups of Lie type over the field of even characteristic. 155, 335-343

13

C. Janson, K. Lux, R. A. Parker and R. A. Wilson (1995). An atlas of Brauer characters. Clarendon
Press, Oxford.

14

B. Khosravi and S. S. Salehi Amiri (2006). On the prime
graph of $L_{2}(q)$ where $q = p^{alpha}<100$. Quasigroups Related Systems. 14, 179-190

15

B. Khosravi, B. Khosravi and B. Khosravi (2007). Groups with the same prime graph
as a textit{CIT} simple group. Houston J. Math.. 33 (4), 967-977

16

A. Khosravi and B. Khosravi (2007). Quasirecognition by prime graph
of the simple group $^{2}G_{2}(q)$. Sibirsk. Mat. Zh.. 48 (3), 570-577

17

B. Khosravi, B. Khosravi and B. Khosravi (2007). On the prime graph of
$ PSL(2, p) $ where $p > 3$ is a prime number. Acta Math. Hungar.. 116 (4), 295-307

18

B. Khosravi and A. Zarea Moghanjoghi (2007). Quasirecognition by prime
graph of some alternating groups. Int. J. Contemp. Math. Sci.. 2 (25-28), 1351-1358

19

A. Khosravi and B. Khosravi (2008). $2-$Recognizability by prime grph of
$ PSL(2,p^{2})$. Siberian Math. J.. 49 (4), 749-757

20

B. Khosravi (2008). $n-$recognition by prime graph of the simple group $ PSL(2,q) $. J. Algebra Appl.. 7, 735-748

21

Behrooz Khosravi, Bahman Khosravi and Behnam Khosravi (2008). A characterization of the
finite simple group $L_{16}(2)$ by its prime graph. Manuscripta Math.. 126 (1), 49-58

22

B. Khosravi (2009). Some characterizations of $L_{9}(2)$, related to its prime
graph. Publ. Math. Debrecen. 75, 375-385

23

B. Khosravi (2009). Quasirecognition by prime graph of $L_{10}(2)$. Siberian
Math. J.. 50, 355-359

24

B. Khosravi and A. Babai (2011). Quasirecogniton by prime graph of
$F_{4}(q)$ where $q = 2^{n} > 2$. Monatsh. Math.. 162 (3), 289-296

25

B. Khosravi and H. Moradi (2011). Quasirecognition by prime graph of
finite simple groups $L_{n}(2)$ and $U_{n}(2)$. Acta
Math. Hungar.. 132 (1-2), 140-153

26

B. Khosravi, Z. Akhlaghi and M. Khatami (2011). Quasirecognition by prime
graph of the simple group $D_{n}(3)$. Publ. Math. Debrecen. 78 (2), 469-484

27

P. Kleidman and M. Liebeck (1990). The subgroup structure of the finite
classical groups. London Mathematical Society Lecture Note Series, 129, Cambridge University Press, Cambridge.

28

A. S. Kondtrat$'$ev (1990). Prime graph components of finite groups. Math. USSR-Sb.. 67 (1), 235-247

29

M. S. Lucido (1999). Prime graph components of finite almost simple groups. Rend. Sem. Mat. Univ. Padova. 102, 1-22

30

M. S. Luchido and A. R. Moghaddamfar (2004). Groups with complete prime graph
connected components. J. Group Theory. 7 (3), 373-384

31

V. D. Mazurov (1998). Recognition of finite groups by a set of orders of their
elements. Algebra and Logic. 37 (6), 371-379

32

V. D. Mazurov (2004). Characterizations of groups by arithmetic properties. Algebra Colloq.. 11 (1), 129-140

33

V. D. Mazurov and A. V. Zavarnitsine (2007). On element orders in coverings
of the simple groups $L_{n}(q)$ and $U_{n}(q)$. Proc. Steklov Inst. Math.. 1, 145-154

34

Z. Momen and B. Khosravi (2012). On $r-$recognition by prime graph of $B_{p}(3)$ where $p$ is an
odd prime. Monatsh. Math.. 166 (2), 239-253

35

D. S. Passman (1968). Permutation Groups. W. A. Benjamin Inc.,
New York.

36

C. E. Praeger and W. Shi (1994). A characterization of some alternating and symmetric groups. Comm. Algebra. 22 (5), 1507-1530

37

D. J. S. Robinson (1982). A course on the theory of groups. Springer-Verlag, New York.

38

A. V. Vasil$'$ev and E. P. Vdovin (2005). An adjacency criterion
for the prime graph of a finite simple group. Algebra Logic. 44 (6), 381-406

39

A. V. Vasil$'$ev and I. B. Gorshkov (2009). On recognition of
finite simple groups with connected prime graph. Siberian Math. J.. 50 (2), 233-238

40

A. V. Vasil$'$ev and E. P. Vdovin (2011). Cocliques of maximal
size in the prime graph of a finite simple group. Algebra Logic. 50 (4), 291-322

41

J. S. Williams (1981). Prime graph components of finite groups. J. Algebra. 69, 487-513

42

A. V. Zavarnitsin (2006). Recognition of finite groups by the prime graph. Algebra Logic. 45 (4), 220-231

43

A. V. Zavarnitsin (2009). Finite simple groups with narrow prime spectrum. Sib. Elektron. Mat. Izv.. 6, 1-12

44

A. V. Zavarnitsine (2010). Uniqueness of the prime graph of $L_{16}(2)$. Sib. Elektron. Mat. Izv.. 7, 119-121