Zeng, G. (2012). Finite simple groups with number of zeros slightly greater than the number of nonlinear irreducible characters. International Journal of Group Theory, 1(4), 25-32.

Guangju Zeng. "Finite simple groups with number of zeros slightly greater than the number of nonlinear irreducible characters". International Journal of Group Theory, 1, 4, 2012, 25-32.

Zeng, G. (2012). 'Finite simple groups with number of zeros slightly greater than the number of nonlinear irreducible characters', International Journal of Group Theory, 1(4), pp. 25-32.

Zeng, G. Finite simple groups with number of zeros slightly greater than the number of nonlinear irreducible characters. International Journal of Group Theory, 2012; 1(4): 25-32.

Finite simple groups with number of zeros slightly greater than the number of nonlinear irreducible characters

The aim of this paper is to classify the finite simple groups with the number of zeros at most seven greater than the number of nonlinear irreducible characters in the character tables. We find that they are exactly A$_{5}$, L$_{2}(7)$ and A$_{6}$.

Y. Berkovich and L. Kazarin (1998). Finite groups in which the zeros of
every nonlinear irreducible character are conjugate modulo its
kernel. Houston J. Math.. 24 (4), 619-630

2

R. T. Curtis, S. P. Norton, R. A. Park and R. A.
Wilson (1985). Atlas of Finite Groups. Oxford Univ. Press (Clarendon), New York.

3

H. W. Deng and W. J. Shi (1997). A simplicity criterion for finite groups. J. Algebra. 191, 371-381

4

X. L. Du and W. J. Shi (2006). Finite groups with conjugacy classes number
one greater than its same order classes number. Comm. Algebra. 34, 1345-1359

5

T. L. Huang and W. J. Shi (1995). Finite groups all of whose element orders
are of prime power except one (in Chinese). J. of the Southwest
China Normal University. 20, 610-617

6

B. Huppert (1982). Finite Groups I. Springer, Heidelberg.

7

B. Huppert and N. Blackburn (1982). Finite Groups III. Springer, Berlin.

8

N. Iiyori and H. Yamaki (1993). Prime graph components of the simple groups
of Lie type over the field of even characteristic. J. Algebra. 155, 335-343

9

I. M. Isaacs (1976). Character Theory of Finite Groups. Academic Press, New York.

10

A. Jafarzadeh and A. Iranmanesh (2007). On simple K$_{n}$-groups for $n=56$. Groups St Andrews 2005 Vol. 2 (Edited by C.M. Campbell, M. R.
Quick, E. F. Robertson and G. C. Smith), London Math. Soc. Lecture Note Ser. Cambridge Univ.. 340, 517-526

11

J. McKay (1979). The non-abelian simple groups $G$, $|G|< 10^{6}$-character
tables. Comm. Algebra. 7, 1407-1445

12

A. Moret$acute{o}$ and J. Sangroniz (2004). On the number of conjugacy classes of
zeros of characters. Israel J. Math.. 142, 163-187

13

M. Suzuki (1962). On a class of doubly transitive groups. Ann. of
Math. (2). 75, 105-145

14

M. Suzuki (1961). Finite groups with nilpotent centralizers. Trans. Amer. Math. Soc.. 99, 425-470

15

A. Veralopez and J. Veralopez (1986). Classification of finite groups
according to the number of conjugacy classes II. Israel J. Math.. 56, 188-221

16

W. Willems (1988). Blocks of defect zero in finite simple groups. J. Algebra. 113, 511-522

17

J. S. Williams (1981). Prime graph components of finite groups. J. Algebra. 69, 487-513

18

J. S. Zhang, T. J. Shi and Z. C. Shen (2010). Finite groups in which every
irreducible character vanishes on at most three conjugacy classes. J. Group Theory. 13, 799-819