CENTRALIZERS IN SIMPLE LOCALLY FINITE GROUPS

MAHMET KUZUCUOĞLU

Communicated by Alireza Abdollahi

Dedicated to the memories of Narain Gupta and James Wiegold

Abstract. This is a survey article on centralizers of finite subgroups in locally finite, simple groups or LFS-groups as we will call them. We mention some of the open problems about centralizers of subgroups in LFS-groups and applications of the known information about the centralizers of subgroups to the structure of the locally finite group. We also prove the following: Let $G$ be a countably infinite non-linear LFS-group with a Kegel sequence $\mathcal{K} = \{(G_i, N_i) \mid i \in \mathbb{N}\}$. If there exists an upper bound for $\{|N_i| \mid i \in \mathbb{N}\}$, then for any finite semisimple subgroup $F$ in $G$ the subgroup $C_G(F)$ has elements of order $p_i$ for infinitely many distinct prime $p_i$. In particular $C_G(F)$ is an infinite group. This answers Hartley’s question provided that there exists a bound on $\{|N_i| \mid i \in \mathbb{N}\}$.

1. Brief History

In 1954 World Mathematical Congress R. Brauer indicated the importance of the centralizers of involutions in the classification of the finite simple groups. He asked whether it is possible to detect the finite simple group from the structure of the centralizers of its involutions. Then it became a program in the classification of the finite simple groups. There were two types of questions:

1) Given the finite simple group $G$, find the structure of $C_G(i)$ for all involutions $i \in G$.

2) Find the structure of the simple group $G$ when the group $H = C_G(i)$ is known for an involution $i \in G$.

MSC(2010): Primary: 20F50; Secondary: 20E32.
Keywords: Centralizer, involution, locally finite simple group.
Received: 20 April 2012, Accepted: 28 July 2012.
One may ask similar questions for the locally finite, simple groups or LFS-groups as we will call
them. One may generalize these questions from the centralizers of involutions to the centralizers of
arbitrary elements or subgroups.

1') Given an infinite LFS-group, find the structure of the centralizers of elements (or subgroups) in
particular, centralizers of involutions.

2') Given the structure of the centralizer of an element in a LFS-group \(G\), find the structure of \(G\).

In order to study the centralizers of elements in LFS-groups one needs to use the information for
the centralizers of elements in finite simple groups. In this case, one of the indispensable tool is to use
the notion of Kegel covers.

2. KEGEL COVERS AND CENTRALIZERS

Recall that a Kegel cover \(K\) of a locally finite group \(G\) is a set \(K = \{(H_i, M_i) \mid i \in I\}\) such that
for all \(i \in I\), the group \(H_i\) is a finite subgroup of \(G\), \(M_i\) is a maximal normal subgroup of \(H_i\) and for
each finite subgroup \(K\) of \(G\), there exists \(i \in I\) such that \(K \leq H_i\) and \(K \cap M_i = 1\). The simple groups
\(H_i/M_i\) are called Kegel factors of \(K\). Kegel proved that every infinite simple locally finite group has
such a Kegel cover [14], [15, Lemma 4.5]. In the case of \(G\) has countably infinite order, we have an
increasing chain of finite subgroups \(G_1 \leq G_2 \leq G_3 \leq \ldots\) such that \(G = \bigcup_{i \in \mathbb{N}} G_i\), and \(G_i \cap M_{i+1} = 1\),
and \(G_i/M_i\) is a finite simple group. In this case \(K = \{(G_i, M_i) \mid i \in \mathbb{N}\}\) is called a Kegel sequence of \(G\).

For the study of centralizers of elements in infinite LFS-groups one of the obstacle is the following:
We know the structure of the centralizers of subgroups or elements \(X\) in the finite simple section
\(H_i/M_i\) and in general \(C_{H_i/M_i}(X)\) is not isomorphic or equal to \(C_{H_i}(X)M_i/M_i\), for this reason the
information about the centralizers in the finite simple group, in general does not transform directly
to the information on \(C_G(X) = \bigcup_{i \in I} C_{H_i}(X)\). For the LFS-groups which have a certain type of Kegel
cover, it is possible to transfer, the structure of centralizers of elements in simple finite groups to the
structure in the centralizers of elements in LFS-groups. One obtains quite nice, similar structures
in infinite LFS-groups as in the case of finite simple groups. One can rediscover the importance of
the Jordan-Hölder theorem for finite groups and the extension of this to the groups which has this
property locally. For this, recall that, the class of all locally finite groups having a series of finite length
in which there are at most \(n\), non-abelian simple factors and the rest are locally soluble is denoted by
\(\mathfrak{F}_n\).

Lemma 2.1. [10, Lemma 2.3] If all finitely generated subgroups of a locally finite group lie in \(\mathfrak{F}_n\),
then the group also lies in \(\mathfrak{F}_n\).

The examples of LFS-groups which do not have a certain kind of Kegel cover may have quite different
types of structures in centralizers of elements. Therefore we need to assume that our LFS-group has
a certain type of Kegel cover which enables us to get the required information for this class of groups.

Let \(\mathcal{L}\) denote the class of all LFS-groups. Let \(\mathcal{L}_1\) denote the class of LFS-groups \(G\) satisfying:
For a finite subgroup $F$ of order $n$ in $G$, there exists a Kegel cover $K = \{(G_i, N_i) | i \in I\}$ of $G$ such that, if $\pi$ is the set of prime divisors of $n$,

(i) $O_\pi'(N_i)$ is soluble.
(ii) $N_i/O_\pi'(N_i)$ is hypercentral in $G_i$.
(iii) $G_i/N_i$ is either an alternating group or a simple group of Lie type over a field of characteristic not in $\pi$.

Let $L_2 = L \setminus L_1$. Then $L = L_1 \cup L_2$.

In the next theorem B. Hartley and the author proved that for a non-linear LFS-group $G$ and an element $x \in G$ of order $n$, such that $G \in L_1$, the structure of centralizers are similar to the case in finite simple groups.

**Theorem 2.2.** [10, Theorem B′] Let $G$ be a non-linear LFS-group, and $x$ be an element of $G$ of order $n$. Suppose that there exists a Kegel Sequence $K = \{(G_i, N_i) | i \in N\}$ of $G$ such that, if $\pi$ is the set of prime divisors of $n$,

(i) $O_\pi'(N_i)$ is soluble.
(ii) $N_i/O_\pi'(N_i)$ is hypercentral in $G_i$.
(iii) $G_i/N_i$ is either an alternating group or a simple group of Lie type over a field of characteristic not in $\pi$.

Then $C_G(x)$ belongs to $\mathfrak{F}_{\pi, n + [\frac{4}{n}]}$ and involves a non-linear simple group.

In the special case in which every finite subset of elements lies in a finite simple group we have the following.

**Theorem 2.3.** (10, Theorem B) Suppose that every finite set of elements of $G$ lies in a finite simple subgroup, and suppose that $G$ is a non-linear LFS-group. Then there exists a prime $p$ with the following property.

Let $n$ be any natural number not divisible by $p$, let $g$ be any element of order $n$ in $G$, and let $r(n) = n + [\frac{4}{n}]$. Then $C_G(g)$ has a series of finite length at most $2r(n) + 1$ in which each factor is either non-abelian simple or soluble. The number of non-abelian simple factors is at most $r(n)$ and at least one of them is non-linear. The derived length of each soluble factor is at most 6, and there are at most $r(n) + 1$ of them.

For simplicity, we will mention the class $L_{1a}$ which denotes the class of LFS-groups in which for a finite subgroup $F$ of order $n$ there exists a Kegel sequence $(G_i, N_i)$ with $N_i = 1$ for all $i \in N$ and when $G_i$ is a simple group of Lie type over a field of characteristic $p$, then $p$ is not in $\pi$, the set of prime divisors of $n$.

Clearly $L_{1a} \subset L_1$. In general there is a standard technique that the results in the class $L_{1a}$ can be transferred to the class $L_1$ see the proof of Theorem [2.2] and [18, Theorem 5]. The class of simple linear locally finite groups is in the class $L_{1a}$ see [15, Theorem 4.6].

Let $V$ be a vector space which has finite or infinite dimension over a field $K$. An invertible linear transformation $g : V \to V$ is called finitary if $\dim(g - 1)V < \infty$. The set of all finitary linear maps
on $V$ generates the finitary linear, general linear group $FGL(V)$ and the subgroups of $FGL(V)$ are called the finitary linear groups. An arbitrary group $G$ is called a finitary linear group, if it has a finitary representation on a vector space $V$ over a field $K$. If the field $K$ is a locally finite field, then the finitary linear groups are locally finite groups. The class of finitary linear LFS-groups is in $L_1$, by the classification of J. I. Hall in [8, Page 165] and [7].

But the involvement in these classes are proper $L \nsubseteq L_1 \nsubseteq L_{1a}$. In particular for the groups in $L_{1a}$ we have $M_i = 1$, for all $i \in I$. Then $G$ has a local system consisting of finite simple subgroups. But not all simple locally finite groups has such a type of Kegel cover see [24], [13] and Theorem 2.4. For the structure of the centralizers of elements in the groups in class $L_1$ and the ones, in class $L_2$ the behavior are quite different. For this, consider the infinite simple groups constructed by Meierfrankenfeld in [21]. In fact, this construction of infinite non-linear LFS-groups answers negatively many conjectures about centralizers of elements in LFS-groups.

**Theorem 2.4.** (Meierfrankenfeld [21]) Let $\Pi$ be a non-empty set of primes. Then there exists a non-linear, locally finite, simple group $G$ such that

(a) The centralizer of every non-trivial $\Pi$-element has a locally soluble $\Pi$-subgroup of finite index.

(b) There exists an element whose centralizer is a locally soluble $\Pi$-group.

Observe that the above groups are defined for any subset of the set of prime numbers. If we choose the set $\Pi$ to contain all primes and only one prime $p$ respectively, then it is a consequence of the above theorem that:

**Corollary 2.5.** [21, Theorem A] (a) There exists a non-linear LFS-group such that the centralizer of every non-trivial element is locally soluble-by-finite.

(b) Let $p$ be a prime. Then there exists a non-linear LFS-group with an element whose centralizer is a $p$-group.

Then by this construction there are non-linear LFS-groups such that the centralizer of every non-trivial element is a locally soluble by finite group i.e. has a locally soluble subgroup of finite index. On the other hand, we proved in Theorem 2.2 that, if a non-linear LFS-group $G \in L_1$, then there are infinitely many elements whose centralizers involve an infinite simple group. Recall that a group $X$ involves an infinite simple group if there exist subgroups $A$ and $B$ of $X$ such that $A \triangleleft B$ and $B/A$ is isomorphic to an infinite simple group. Therefore we may use this information about the centralizers of elements to decide whether such groups are in class $L_1$ or not. For example, the groups in Theorem 2.4 do not belong to $L_1$. This property answers the question of type $2'$, namely whether a group $G$ is in $L_1$ or not, whenever we know the structure of the centralizers of elements or subgroups.

We asked the following question to B. Hartley as mentioned in [8, Question 3.8].

**Question 2.6.** Does there exist a non-linear LFS-group in which the centralizer of every non-trivial element is almost soluble?
Infinite simple locally finite groups are studied in two classes:

(i) Infinite linear LFS-groups.
(ii) Infinite non-linear LFS-groups.

The infinite linear ones are classified in [1], [4], [12], [22], they are the simple groups of Lie type over a locally finite field. A group is called a non-linear group if it does not have a faithful representation on a finite dimensional vector space $V$ over a field $F$. For an infinite set $\Omega$, the group $\text{Alt}(\Omega)$ forms a natural example of a non-linear LFS-group.

The following question is asked by Otto H. Kegel in [20, Question 5.18]. Let $G$ be an infinite locally finite simple group. Is the order $|C_G(g)|$ infinite for every element $g \in G$. An affirmative answer is given in [10].

**Theorem 2.7.** (Hartley - Kuzucuoğlu) In an infinite LFS-group, the centralizer of every element is infinite.

Then a natural generalization of this is the following: Is the centralizer of every finite subgroup in an infinite simple locally finite group infinite?

The answer is no, even for abelian subgroups, as the following easy example shows. One can see that in $\text{PSL}(2, F)$ where $F$ is an algebraically closed, locally finite field of odd characteristic, the subgroup

$$A = \langle \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} Z, \begin{pmatrix} \lambda & 0 \\ 0 & -\lambda \end{pmatrix} Z \mid \lambda^2 = -1 \rangle$$

is an abelian subgroup of order 4 and $C_{\text{PSL}(2, F)}(A) = A$. In fact, it is easy to see that for an infinite simple linear locally finite group $G$ one can always find, finite subgroups with finite centralizer in $G$. Then as was pointed out in [8, Lemma 3.11], for a locally finite group $G$ with $Z(G) = 1$ having a finite subgroup $H$ with $C_G(H)$ finite is equivalent to having a finite subgroup $F \geq H$ such that $C_G(F) = 1$.

For simple non-linear LFS-groups the question of whether centralizers of finite subgroups are infinite or not is still open, namely:

**Question 2.8.** (Hartley) Is the centralizer of every finite subgroup in a simple non-linear locally finite group infinite?

Stronger question:

**Question 2.9.** Does the centralizer of every element in non-linear LFS-groups contain infinite abelian subgroups which has elements of order $p_i$ for infinitely many distinct prime $p_i$.

The answer to this question in this generality is negative by Theorem 2.4. The question of whether the centralizer of every involution in an infinite LFS-group involves an infinite simple group is answered negatively also by Theorem 2.4. On the other hand if we assume that the non-linear LFS-group belongs to class $\mathcal{L}_1$, then the answer to the above question for the involutions is affirmative. This can be extracted from [3, Theorem]. In fact we proved in [17, Theorem 1] that, centralizer of every
element of odd order in a non-linear LFS-group involves a non-linear LFS-group provided that every element lies in a finite simple group.

On the other hand the structure of centralizers of elements in simple locally finite groups gives information about the structure of proper subgroups and internal structure of subgroup lattice of the group. We have applied our results also for minimal non-$\varphi$-groups. Let $\varphi$ be a group theoretical property. A group $G$ is called a minimal non-$\varphi$ group if $G$ does not have the property $\varphi$ but every proper subgroup has the property $\varphi$. For minimal non-$\varphi$ groups one needs to understand whether such a group could be a simple group or not, or one needs to classify those locally finite simple minimal non-$\varphi$ groups. For these type of questions, if the centralizers of elements do not have the property $\varphi$, then we may conclude that such a group cannot be a minimal non-$\varphi$ group. This technique is used to show that there exists no simple locally finite minimal non-$\text{FC}$-group \[19\] and there exists no simple locally finite barely transitive group. Recall that a group $H$ is an FC-group if for every element $x \in H$ the index $|H : C_H(x)|$ is finite. The group $G$ is a minimal non-$\text{FC}$-group, if it is not an FC-group, but every proper subgroup of $G$ is an FC-group. The group $X$ is called a barely transitive group if it has a subgroup $H$ of infinite index in $X$ and $\cap_{g \in X} H^g = 1$ and for every proper subgroup $K$ of $X$, the index $|K : K \cap H| < \infty$.

In this spirit we will ask the following:

**Question 2.10.** Classify all infinite simple locally finite groups in which the centralizer of an involution is almost locally soluble.

The examples of Meierfrankenfeld in Theorem [2.4] show that, there are infinitely many non-isomorphic non-linear LFS-groups such that in these groups centralizer of every involution is almost locally soluble. So there are non-linear LFS-groups in which centralizer of every involution (element) is almost locally soluble. In order to get rid of non-linear LFS-groups of this type, we restrict the question for those groups $G \in \mathcal{L}_1$. Then one can extract the following theorem from [3, Theorem 4].

**Theorem 2.11.** Let $G$ be an infinite simple locally finite group in which centralizer of an involution has a locally soluble subgroup of finite index. If $G$ has a Kegel cover $\mathcal{K}$ such that $(H_i, M_i) \in \mathcal{K}$, $M_i/O_2(M_i)$ is hypercentral in $H_i/O_2(M_i)$. Then $G$ is isomorphic to one of the following:

(i) $\text{PSL}(2, K)$ where $K$ is an infinite locally finite field of arbitrary characteristic, $\text{PSL}(3, F)$, $\text{PSU}(3, F)$ and $\text{Sz}(F)$ where $F$ is an infinite locally finite field of characteristic 2. In this case, centralizers of involutions are soluble.

(ii) There exist involutions $i, j \in G$ such that $C_G(i)$ is locally soluble by finite and $C_G(j)$ involves an infinite simple group if and only if $G \cong \text{PSp}(4, F)$ and the characteristic of $F$ is 2.
**Corollary 2.12.** If $G$ is as in the above Theorem and if we assume that centralizer of every involution has a locally soluble subgroup of finite index, then $G$ is as in (i) in the above Theorem.

One of the other question in LFS-groups about the centralizers which is also discussed in [2] is the following:

**Question 2.13.** Let $G$ be a LFS-group. Is it true that, if $C_G(F)$ is a linear group for a finite subgroup $F$ of $G$, then $G$ is a linear group?

Yet again if we assume that $G$ is in the class $L_{1a}$, then we have a positive answer for involutions by a Corollary of [3, Theorem 4].

**Corollary 2.14.** Let $G$ be an infinite simple locally finite group such that every finite subset lies in a finite simple subgroup. Let $i \in G$ be an involution. Then the following statements hold.

1. $C_G(i)$ is linear if and only if $G$ is linear.
2. If $C_G(i)$ involves a finite non-abelian simple group for some involution $i \in G$, then $C_G(i)$ involves an infinite simple group.

If $G \in L_{1a}$ and for every element $x \in G$ the group $C_G(x)$ is linear, then $G$ is linear can be extracted from [10, Theorem B] for abelian semisimple subgroups of odd order see [18, Theorem 1].

One may ask the above questions about centralizers of subgroups in LFS-groups for the fixed point subgroups of finite subgroups of the automorphism groups. For the structure of the centralizers of elements and fixed points of automorphism see Hartley’s survey in [8] and the paper [9].

Recall that an element in a simple group of Lie type is semisimple if its order and the characteristic of the field is relatively prime. In the alternating groups all elements are semisimple.

**Definition 2.15.** Let $G$ be a simple group of Lie type. A finite subgroup $A$ of $G$ is called a totally semisimple subgroup (the name suggested by A. E. Zalesski) if every element of $A$ is a semisimple element in $G$.

For the centralizers of finite abelian semisimple subgroups in infinite LFS-group $G$ we have the following [18, Theorem 2].

**Theorem 2.16.** Suppose that $G$ is infinite non-linear and every finite set of elements of $G$ lies in a finite simple group. Then

(i) There exist infinitely many finite abelian semisimple subgroups $F$ of $G$ and local systems $L$ of $G$ consisting of simple subgroups such that $F$ is abelian totally semisimple in every member of $L$.

(ii) There exists a function $f$ from natural numbers to natural numbers independent of $G$ such that $C = C_G(F)$ has a series of finite length in which at most $f(|F|)$ factors are simple non-abelian groups for any $F$ as in (i). Furthermore $C$ involves a non-linear simple group. In particular $C_G(F)$ is an infinite group.
**Definition 2.17.** Let $G$ be a countably infinite simple locally finite group and $F$ be a finite subgroup of $G$. The group $F$ is called a $\mathcal{K}$-semisimple subgroup of $G$, if $G$ has a Kegel sequence $\mathcal{K} = \{(G_i, M_i) : i \in \mathbb{N}\}$ such that $(|M_i|, |F|) = 1$, $M_i$ are soluble for all $i$ and if $G_i/M_i$ is a linear group over a field of characteristic $p_i$, then $(p_i, |F|) = 1$.

In the following Theorem the finite subgroups are not necessarily abelian. Then the proof technique in Theorem 2.16 and in Theorem 2.18 are quite different. For details see [6].

**Theorem 2.18.** ([6] Ersoy-Kuzucuoğlu) Let $G$ be a non-linear simple locally finite group which has a Kegel sequence $\mathcal{K} = \{(G_i, 1) : i \in \mathbb{N}\}$ consisting of finite simple subgroups. Then for any finite $\mathcal{K}$-semisimple subgroup $F$, the centralizer $C_G(F)$ is an infinite group.

Moreover $C_G(F)$ has an infinite abelian subgroup $A$ isomorphic to the restricted direct product of $Z_{p_i}$ for infinitely many distinct prime $p_i$.

By using the above Theorem from the information on the structure of the centralizers of elements we may decide whether such a simple group is in class $\mathcal{L}_1$ or not.

**Question 2.19.** Is it true that in all LFS-groups centralizers of elements are in class $\mathfrak{S}_n$ for some $n \in \mathbb{N}$.

As we have mentioned in Page 2 one needs a control on the index $|C_G/N(FN/N) : C_G(F)N/N|$. The following lemma gives such a control which is a generalization of [2 Theorem 4.5] from cyclic subgroups to arbitrary subgroups.

**Lemma 2.20.** Let $G$ be a finite group and $N \trianglelefteq G$. Let $F$ be a subgroup generated by the set $\{a_1, a_2, \ldots a_k\}$. Then

$$|C_{G/N}(FN/N) : C_G(F)N/N| \leq |C_N(F)||N|^{k-1}$$

**Proof.** Let $\{\bar{g}_1, \bar{g}_2, \ldots, \bar{g}_m\}$ be a set of coset representatives of $C_G(F)N/N$ in $C_{G/N}(FN/N)$ and let $\{g_1, \ldots, g_m\} \subseteq G$ be a set of coset representatives of $C_G(F)$ in $G$.

Let

$$M = \{([a_1, h_ig_j], [a_2, h_ig_j], \ldots, [a_k, h_ig_j]) : i = 1, \ldots n, \ j = 1, \ldots m\}$$

We first observe that $|M| = mn$. Indeed if $x$ and $y$ are two elements of $M$, then

$$x = ([a_1, h_ig_j], [a_2, h_ig_j], \ldots, [a_k, h_ig_j])$$

and $y = ([a_1, h_sg_i], [a_2, h_sg_i], \ldots, [a_k, h_sg_i])$. If $x = y$, then $[a_r, h_ig_j] = [a_r, h_sg_i]$ for all $r = 1, \ldots, k$. Hence $(h_ig_j)(h_sg_i)^{-1} \in C_G(a_r)$ for all $r = 1, \ldots, t$. Since $a_r$’s generate the group $F$ for $r = 1, \ldots, k$, we have $(h_ig_j)(h_sg_i)^{-1} = h_i(g_jg_i^{-1})h_s^{-1} \in C_G(F)$. It follows that $(\bar{g}_j\bar{g}_i^{-1}) \in C_G(F)N/N$. Hence $j = t$. Then we have $[a_r, h_i] = [a_r, h_s]$ for all $r = 1, \ldots, k$. It follows that $h_i^{-1}h_s^{-1} \in C_N(a_r)$ for all $r = 1, \ldots, k$ and so $h_i^{-1}h_s^{-1} \in C_N(F)$. Hence we obtain $h_i = h_s$. So whenever $i \neq s$ or $j \neq t$ we have $x \neq y$. Hence $|M| = mn$.

It is clear that, for any $r$ and for any $i$ and $j$, the element $[a_r, h_ig_j] \in N$. Then define a map
\[ \theta : M \rightarrow N \times N \times \cdots \times N \]

\(([a_1, h_1g_j], [a_2, h_2g_j], \ldots, [a_k, h_kg_j]) \rightarrow [a_1, h_1g_j], [a_2, h_2g_j], \ldots, [a_k, h_kg_j].\]

The map \(\theta\) is one-to-one. Then \(m n \leq |N|^k\) and so

\[ |C_{G/N}(FN/N) : C_G(F)N/N| = m \leq \frac{|N|^k}{n} = \frac{|N|^k}{|N : C_N(F)|} = |C_N(F)| |N|^{k-1}.\]

**Remark.** Observe that if \(F\) is cyclic and \(C_N(F) = 1\), then \(C_{G/N}(FN/N) = C_G(F)N/N\).

We call a subgroup \(F\) in a LFS-group \(G\) with a Kegel cover \(K = \{(G_i, N_i) \mid i \in I\}\) semisimple if \(FN_i/N_i\) is a totally semisimple subgroup in the finite simple group \(G_i/N_i\) for all \(i \in I\).

The following Lemma will extend most of the results for the centralizers of finite subgroups in LFS-groups.

**Proposition 2.21.** Let \(G\) be a countably infinite non-linear LFS-group with a Kegel sequence \(K = \{(G_i, N_i) \mid i \in I\}\). If there exists an upper bound for \(|N_i| \mid i \in N\}, then for any finite semisimple subgroup \(F\) in \(G\) the subgroup \(C_G(F)\) has elements of order \(p_i\) for infinitely many distinct prime \(p_i\). In particular \(C_G(F)\) is an infinite group.

**Proof.** If \(FN_i/N_i\) is a semisimple subgroup in \(G_i/N_i\), then one can extract from the proof of [6, Theorem 1.2] that \(C_{G_i/N_i}(FN_i/N_i)\) has elements of order \(p_i\) and \(p_i \neq p_j\) when \(i \neq j\). Since by Proposition 2.20 we have a bound for the index \(|C_{G_i/N_i}(FN_i/N_i) : C_{G_i}N_i/N_i|\), for \(i\) sufficiently large, the elements of order \(p_i \in C_{G_i/N_i}(FN_i/N_i)\) become elements of \(C_{G_i}(F)N_i/N_i\), hence there exist elements of order \(p_i\) in \(C_G(F)\) for infinitely many distinct prime \(p_i\).

**References**


Mahmut Kuzucuoğlu
Department of Mathematics, Middle East Technical University, P.O.Box 06531, Ankara, TURKEY

Email: matmah@metu.edu.tr