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Abstract. In [U. Dempwolff, On extensions of elementary abelian groups of order 25 by GL(5, 2), Rend.

Sem. Mat. Univ. Padova, 48 (1972), 359 - 364.] Dempwolff proved the existence of a group of the form

25·GL(5, 2) (a non split extension of the elementary abelian group 25 by the general linear group GL(5, 2)).

This group is the second largest maximal subgroup of the sporadic Thompson simple group Th. In this

paper we calculate the Fischer matrices of Dempwolff group G = 25·GL(5, 2). The theory of projective

characters is involved and we have computed the Schur multiplier together with a projective character

table of an inertia factor group. The full character table of G is then can be calculated easily.

1. Introduction

It is well known (cf. Huppert [15]) that H2(GL(n, q), V (n, q)) = 0, ∀ q > 2, where H2(K,M) is the

second cohomology group of a group K with coefficients in M. Hence a non split extension of the form

V (n, q)·GL(n, q), q > 2 does not exist. In the case q = 2, Dempwolff proved in [8] that apart from the

case n = 5, then

dimF2 H
2(GL(n, 2),Fn2 ) =

1 if n = 3 or 4,

0 otherwise.

Hence non split extensions of the forms 23·GL(3, 2) and 24·GL(4, 2) ∼= 24·S6 exist and they are unique

up to isomorphisms. In fact the group 23·GL(3, 2) is a maximal subgroup of the Chevalley group G2(3),

while 24·GL(4, 2) sits maximally in the sporadic Conway group Co3 (see ATLAS [6]). Later on in 1972,

Dempwolff proved in [9] that a non split extension of the form 25·GL(5, 2) does exist and it is unique up

to isomorphism. This group, which is known as Dempwolff group and we denote it in this section by G,

is the second largest maximal subgroup of the sporadic Thompson group Th (see ATLAS). In the unique
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class of involutions 2A of Thompson group Th, there are 5 commuting involutions, say n1, n2, n3, n4 and

n5. The group 〈n1, n2, n3, n4, n5〉 := K is an elementary abelian 2−group of order 32 and NTh(K) ∼=
25·GL(5, 2) = G. Clearly the group G has order 32 × 9 999 360 = 319 979 520 and index 283 599 225

in Th. In this paper we are interested in the Fischer matrices of G and hence the re-computation of the

character table of G using Clifford-Fischer theory.

Let x and y be in the 248−dimensional matrix group over F2, that are generators of Th given by

the electronic ATLAS of Wilson. Using MAGMA [5] it is possible to construct G inside Th since G is

generated as follows

G =
〈
x, ((xyyxy)2)((xy)15(xyy)9(xy)12(xyy)16(xy)17)

〉
.

However G ≤ GL(69, 2) and generators a and b of G in terms of 69× 69 matrices over F2 are also given

by the electronic ATLAS of Wilson. Using this 69−dimensional representation over F2, one can obtain

the 5 generators n1, n2, n3, n4 and n5 of the normal subgroup N of G using Magma or GAP [13]. The

commands “Complements(G, N)” and “Complementclasses(G, N)” of Magma and GAP respectively

reveal the complements of N in G, where in our case, an empty set will be returned confirming that the

extension is a non-split.

2. The Conjugacy Classes of G = 25·GL(5, 2)

We have used the method of the coset analysis (Moori [23] and [24]) to calculate the conjugacy classes of

G = 25·GL(5, 2). This method have been used by various authors such as Barraclough [3] and in particular

by several MSc and PhD students, such as Mpono [26], Rodrigues [29], Whitely [31] and in [18], [19], [20],

[21] and [22] by the authors of this paper. Thus in this paper we only explain the notations used in Table

1 and interested readers can refer to any of the above mentioned references for a detailed description on

how the coset analysis can be used to determine the conjugacy classes of any group extension.

In Table 1,

• gi is the ith conjugacy class of G = GL(5, 2) as listed in the order given by the ATLAS.
• ki is the number of orbits Qi1, Qi2, · · · , Qiki on the action of N on the coset Ngi = 25gi, where gi

is a pre-image of gi under the natural epimorphism π : G −→ G. In particular, the action of N on

the identity coset N produces 32 orbits each consists of singleton. Thus k1 = 32.

• fij is the number of orbits fused together under the action of G on Qi1, Qi2, · · · , Qiki . In particular,

the action of G on the orbits Q11, Q12, · · · , Q1k1 leaves invariant the orbit Q11 (this orbit assumed

to consist of the identity element of N), while fuse the other 31 orbits (consisting of the involutions

of N) into a single orbit. Thus f11 = 1 and f12 = 31.

• mij ’s are weights (attached to each class of G) that will be used later in computing the Fischer

matrices of G. These weights are computed through the formula

(2.1) mij = [NG(Ngi) : CG(gij)] = |N | |CG(gi)|
|CG(gij)|

.

• gij is a representative of conjugacy class of G that correspond to the class gi of G. In particular

the action of G on N produces two conjugacy classes in G represented by g11 = 1G = 1N and g12

and these two classes have sizes 1 and 31 respectively.
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Table 1. The conjugacy classes of G = 25·GL(5, 2)

[g]GL(5,2) ki fij mij [gij ]G o(gij) |CG(gij)| |[gij ]G|

g1 = 1A k1 = 32 f11 = 1 m11 = 1 g11 1 319979520 1

f12 = 31 m12 = 31 g12 2 10321920 31

g2 = 2A k2 = 16 f21 = 8 m21 = 16 g21 4 43008 7440

f22 = 8 m22 = 16 g22 2 43008 7440

g3 = 2B k3 = 8 f31 = 8 m31 = 32 g31 4 1536 208320

g4 = 3A k4 = 8 f41 = 1 m41 = 4 g41 3 4032 79360

f42 = 7 m42 = 28 g42 6 576 555520

g5 = 3B k5 = 2 f51 = 1 m51 = 16 g51 6 360 888832

f52 = 1 m52 = 16 g52 3 360 888832

g6 = 4A k6 = 8 f61 = 8 m61 = 32 g61 8 384 833280

g7 = 4B k7 = 4 f71 = 4 m71 = 32 g71 4 128 2499840

g8 = 4C k8 = 4 f81 = 4 m81 = 32 g81 8 32 9999360

g9 = 5A k9 = 2 f91 = 1 m91 = 16 g91 10 30 10665984

f92 = 1 m92 = 16 g92 5 30 10665984

f10,1 = 1 m10,1 = 8 g10,1 12 96 3333120

g10 = 6A k10 = 4 f10,2 = 1 m10,2 = 8 g10,2 12 96 3333120

f10,3 = 2 m10,3 = 16 g10,3 6 48 6666240

g11 = 6B k11 = 2 f11,1 = 2 m11,1 = 32 g11,1 12 12 26664960

g12 = 7A k12 = 4 f12,1 = 1 m12,1 = 8 g12,1 7 168 1904640

f12,2 = 3 m12,2 = 24 g12,2 14 56 5713920

g13 = 7B k13 = 4 f13,1 = 1 m13,1 = 8 g13,1 7 168 1904640

f13,2 = 3 m13,2 = 24 g13,2 14 56 5713920

g14 = 8A k14 = 2 f14,1 = 2 m14,1 = 32 g14,1 8 16 19998720

g15 = 12A k15 = 2 f15,1 = 1 m15,1 = 16 g15,1 24 24 13332480

f15,2 = 1 m15,2 = 16 g15,2 24 24 13332480

g16 = 14A k16 = 2 f16,1 = 1 m16,1 = 16 g16,1 28 28 11427840

f16,2 = 1 m16,2 = 16 g16,2 14 28 11427840

Continued on next page
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Table 1 (continued)

[g]GL(5,2) ki fij mij [gij ]G o(gij) |CG(gij)| |[gij ]G|

g17 = 14B k17 = 2 f17,1 = 1 m17,1 = 16 g17,1 28 28 11427840

f17,2 = 1 m17,2 = 16 g17,2 14 28 11427840

g18 = 15A k18 = 2 f18,1 = 1 m18,1 = 16 g18,1 15 30 10665984

f18,2 = 1 m18,2 = 16 g18,2 30 30 10665984

g19 = 15B k19 = 2 f19,1 = 1 m19,1 = 16 g19,1 15 30 10665984

f19,2 = 1 m19,2 = 16 g19,2 30 30 10665984

g20 = 21A k20 = 1 f20,1 = 1 m20,1 = 32 g20,1 21 21 15237120

g21 = 21B k21 = 1 f21,1 = 1 m21,1 = 32 g21,1 21 21 15237120

g22 = 31A k22 = 1 f22,1 = 1 m22,1 = 32 g22,1 31 31 10321920

g23 = 31B k23 = 1 f23,1 = 1 m23,1 = 32 g23,1 31 31 10321920

g24 = 31C k24 = 1 f24,1 = 1 m24,1 = 32 g24,1 31 31 10321920

g25 = 31D k25 = 1 f25,1 = 1 m25,1 = 32 g25,1 31 31 10321920

g26 = 31E k26 = 1 f26,1 = 1 m26,1 = 32 g26,1 31 31 10321920

g27 = 31F k27 = 1 f27,1 = 1 m27,1 = 32 g27,1 31 31 10321920

3. The Theory of Clifford-Fischer Matrices

Let G = N ·G, where N C G and G/N ∼= G, be a group extension. To construct the character table of

G we need to have

• the character tables (ordinary or projective) of the inertia factor groups,

• the fusions of classes of the inertia factors into classes of G,

• the Fischer matrices of G = N ·G.

The theory of Clifford-Fischer matrices, which is based on Clifford Theory (see Clifford [7]), was de-

veloped by B. Fischer ([10], [11] and [12]). This technique has also been discussed and applied to both

split and non-split extension in several publications, for example see Ali and Moori [2], Barraclough [3],

Fischer [12], Moori [23], Moori and Basheer [21], [22], Moori and Mpono [26], Pahlings [27], Rodrigues

[29], Whitely [31] and in a recent book by K. Lux and H. Pahlings [28].

Let H EG and let φ ∈ Irr(H). For g ∈ G, define φg by φg(h) = φ(ghg−1), ∀ h ∈ H. It follows that G

acts on Irr(H) by conjugation and we define the inertia group of φ in G by Hφ = {g ∈ G| φg = φ}. Also

for a finite group K, we let IrrProj(K, α−1) denotes the set of irreducible projective characters of K with

factor set α−1.
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Theorem 3.1 (Clifford Theorem). Let χ ∈ Irr(G) and let θ1, θ2, · · · , θt be representatives of orbits of

G on Irr(N). For k ∈ {1, 2, · · · , t}, let θGk = {θk = θk1, θk2, · · · , θksk} and let Hk be the inertia group in

G of θk. Then

χ↓GN =
t∑

k=1

ek

sk∑
u=1

θku, where ek =
〈
χ↓GN , θk

〉
.

Moreover, for fixed k

Irr(Hk, θk) :=
{
ψk ∈ Irr(Hk)|

〈
ψk↓Hk

N , θk

〉
6= 0
}
←→

{
χ ∈ Irr(G)|

〈
χ↓GN , θk

〉
6= 0
}

:= Irr(G, θk)

under the map ψk 7−→ ψk↑GHk
.

Proof. See Theorems 4.1.5 and 4.1.7 of Ali [1] with the difference in notations. �

Theorem 3.2. Further to the settings of Theorem 3.1, assume that for k ∈ {1, 2, · · · , t}, there exists

ψk ∈ Irr(Hk, θk). Then

(3.1) Irr(G) =
ṫ⋃

k=1

{
(ψk inf(ζ))↑G

Hk
| ζ ∈ Irr(Hk/N)

}
.

Proof. See Ali [1] or Whitley [31]. �

Remark 3.3. It is by no means necessarily the case that there exists an extension ψk of θk to the inertia

group (that is the case Irr(Hk, θk) = ∅, the empty set, is feasible). However, there is always a projective

extension ψ̃k ∈ IrrProj(Hk, α
−1
k ) for some factor set αk of the Schur multiplier of Hk. Thus the more

proper formula for Equation (3.1) is (see Remark 4.2.7 of Ali [1])

(3.2) Irr(G) =
ṫ⋃

k=1

{
(ψ̃k inf(ζ))↑G

Hk
| ψ̃k ∈ IrrProj(Hk, α

−1
k ), ζ ∈ IrrProj(Hk/N, α

−1
k )
}
,

where the factor set αk is obtained from αk as described in Corollary 7.3.3 of Whitely [31]. Hence the

character table of G is partitioned into t blocks K1,K2, · · · ,Kt, where each block Kk of characters (ordinary

or projective) is produced from the inertia subgroup Hk.

Note 3.4. Observe that if αk ∼ [1] in Equation (3.2), then we get Equation (3.1). That is IrrProj(Hk, 1) =

Irr(Hk) and IrrProj(Hk, 1) = Irr(Hk).

By convention we take θ1 = 1N , the trivial character of N. Thus Hθ1 = H1 = G and thus H1/N ∼= G.

Since {1G} ⊆ Irr(G,1N ) and such that 1G↓
G
N = 1N , the block K1 will consists only of the ordinary

irreducible characters of G.

We now fix some notations for the conjugacy classes.

• With π being the natural epimorphism from G onto G, we use the notation U = π(U) for any

subset U ⊆ G. We have seen from Section 2 that π−1([gi]G) =

c(gi)⋃
j=1

[gij ]G for any 1 ≤ i ≤ r. Let us

assume that π(gij) = gi and by convention we may take g11 = 1G. Note that c(g1) is the number

of G−conjugacy classes obtained from N.
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• [gij ]G
⋂
Hk =

c(gijk)⋃
n=1

[gijkn]Hk
, where gijkn ∈ Hk and by c(gijk) we mean the number ofHk−conjugacy

classes that form a partition for [gij ]G. Since g11 = 1G, we have g11k1 = 1G and thus c(g11k1) = 1

for all 1 ≤ k ≤ t.

• [gi]G
⋂
Hk =

c(gik)⋃
m=1

[gikm]Hk
, where gikm ∈ Hk and by c(gik) we mean the number of Hk−conjugacy

classes that form a partition for [gi]G. Since g1 = 1G, we have g1k1 = 1G and thus c(g1k1) = 1 for

all 1 ≤ k ≤ t. Also π(gijkn) = gikm for some m = f(j, n).

Proposition 3.5. With the notations of Theorem 3.2 and the above settings, we have

(ψ̃k inf(ζ))↑G
Hk

(gij) =

c(gik)∑
m=1

ζ(gikm)

c(gijk)∑
n=1

|CG(gij)|
|CHk

(gijkn)|
ψ̃k(gijkn).

Proof. See Ali [1] or Barraclough [3]. �

We proceed to define the Fischer matrix Fi corresponds to the conjugacy class [gi]G. We label the

columns of Fi by the representatives of [gij ]G, 1 ≤ j ≤ c(gi) obtained by the coset analysis and below

each gij we put |CG(gij)|. Thus there are c(gi) columns. To label the rows of Fi we define the set J i to be

(this equivalent to the notation R(g) used by Ali [1] (page 49), where g is a representative for a conjugacy

class of G)

J i = {(k, gikm)| 1 ≤ k ≤ t, 1 ≤ m ≤ c(gik), gikm is α−1
k − regular class},

or for more brevity we let

Ji = {(k,m)| 1 ≤ k ≤ t, 1 ≤ m ≤ c(gik), gikm is α−1
k − regular class}.(3.3)

Then each row of Fi is indexed by a pair (k, gikm) ∈ J i or (k,m) ∈ Ji. For fixed 1 ≤ k ≤ t, we let Fik
be a sub-matrix of Fi with rows correspond to the pairs (k, gik1), (k, gik2), · · · , (k, gikrik) or for brevity

(k, 1), (k, 2), · · · , (k, rk). Now let

a
(k,m)
ij :=

c(gijk)∑
n=1

|CG(gij)|
|CHk

(gijkn)|
ψ̃k(gijkn)(3.4)

(for which π(gijkn) = gikm). For each i, corresponding to the conjugacy class [gi]G, we define the Fischer

matrix Fi =
(
a

(k,m)
ij

)
, where 1 ≤ k ≤ t, 1 ≤ m ≤ c(gik), 1 ≤ j ≤ c(gi). The Fischer matrix Fi,

Fi =
(
a

(k,m)
ij

)
=


Fi1
Fi2

...

Fit


together with additional information required for their definition are presented as follows:
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Fi

gi gi1 gi2 · · · gic(gi)

|CG(gij)| |CG(gi1)| |CG(gi2)| · · · |CG(gic(gi))|
(k,m) |CHk

(gikm)|

(1, 1) |CG(gi)| a
(1,1)
i1 a

(1,1)
i2 · · · a

(1,1)
ic(gi)

(2, 1) |CH2
(gi21)| a

(2,1)
i1 a

(2,1)
i2 · · · a

(2,1)
ic(gi)

(2, 2) |CH2 (gi22)| a
(2,2)
i1 a

(2,2)
i2 · · · a

(2,2)
ic(gi)

...
...

...
...

...
...

(2, r2) |CH2
(gi2ri2 )| a

(2,r2)
i1 a

(2,r2)
i2 · · · a

(2,r2)
ic(gi)

(u, 1) |CHu (giu1)| a
(u,1)
i1 a

(u,1)
i2 · · · a

(u,1)
ic(gi)

(u, 2) |CHu (giu2)| a
(u,2)
i1 a

(u,2)
i2 · · · a

(u,2)
ic(gi)

...
...

..

.
...

...
...

(u, ru) |CHu (giuriu )| a
(u,ru)
i1 a

(u,ru)
i2 · · · a

(u,ru)
ic(gi)

(t, 1) |CHt (git1)| a
(t,1)
i1 a

(t,1)
i2 · · · a

(t,1)
ic(gi)

(t, 2) |CHt (git2)| a
(t,2)
i1 a

(t,2)
i2 · · · a

(t,2)
ic(gi)

...
...

...
...

...
...

(t, rt) |CHt (gitrit )| a
(t,rt)
i1 a

(t,rt)
i2 · · · a

(t,rt)
ic(gi)

mij mi1 mi2 · · · mic(gi)

In the above the last entries give the weights mij as defined by Equation (2.1). These weights are

required for computing the entries of Fi (see Proposition 3.6).

Fischer matrices satisfy some interesting properties, which help in computations of their entries. We

gather these properties in the following Proposition.

Proposition 3.6. (i)
t∑

k=1

c(gik) = c(gi),

(ii) Fi is non-singular for each i,

(iii) a
(1,1)
ij = 1, ∀ 1 ≤ j ≤ c(gi),

(iv) If Ngi is a split coset, then a
(k,m)
i1 = |CG(gi)|

|CHk
(gikm)| , ∀i ∈ {1, 2, · · · , r}. In particular for the identity

coset we have a
(k,m)
11 = [G : Hk]θk(1N ), ∀ (k,m) ∈ J1,

(v) If Ngi is a split coset, then |a(k,m)
ij | ≤ |a(k,m)

i1 | for all 1 ≤ j ≤ c(gi). Moreover if |N | = pα, for some

prime p, then a
(k,m)
ij ≡ a(k,m)

i1 (mod p),

(vi) For each 1 ≤ i ≤ r, the weights mij satisfy the relation

c(gi)∑
j=1

mij = |N |,

(vii) Column Orthogonality Relation:∑
(k,m)∈Ji

|CHk
(gikm)|a(k,m)

ij a
(k,m)

ij′
= δjj′ |CG(gij)|,

(viii) Row Orthogonality Relation:

c(gi)∑
j=1

mija
(k,m)
ij a

(k′ ,m′ )
ij = δ(k,m)(k′ ,m′ )a

(k,m)
i1 |N |.
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Proof. Proofs for many assertions of Proposition 3.6 can be founded in Moori’s students theses, for example

see Ali [1] or Mpono [25] and some other assertions are provided in Schiffer [30] as well as in Moori and

Basheer [22] and Lux and Pahlings [28]. �

3.1. Character Table of G. For fixed 1 ≤ k ≤ t and 1 ≤ i ≤ r, let Kik be the fragment of the projec-

tive character table of Hk, with factor set α−1
k , consisting of columns correspond to the conjugacy classes

gik1, gik2, · · · , gikrik of Hk (those are the α−1
k −regular classes of Hk that fuse to [gi]G and thus rik = c(gik)).

Then the characters of G on the classes [gij ]G, 1 ≤ j ≤ c(gi), is given by the matrix KikFik, where Fik is

the sub-matrix of Fi defined previously with rows correspond to the pairs (k, gik1), (k, gik2), · · · , (k, gikrik).

Note that the size of Kik is |IrrProj(Hk, α
−1
k )|×rik and the size of Fik is rik×c(gi). Therefore the character

table of G will have the form

g1 g2 · · · gr

g11 g12 · · · g1c(g1) g21 g22 · · · g2c(g2) · · · gr1 gr2 · · · grc(gr)

K1 K11F11 K12F12 · · · K1rF1r

K2 K21F21 K22F22 · · · K2rF2r

...
...

...
. . .

...

Kt Kt1Ft1 Kt2Ft2 · · · KtrFtr

Note 3.7. Observe that characters of G consisted in K1 are just Irr(G) and therefore the size of K1iF1i,

for each 1 ≤ i ≤ r, is |Irr(G)| × c(gi). In particular, columns of K11F11 are the degrees of irreducible

characters of G repeated themselves c(g1) times, where we know that c(g1) is number of G−conjugacy

classes obtained from the normal subgroup N.

4. The Inertia Groups of G = 25·GL(5, 2)

We have seen in Section 2 that the action of G = 25·GL(5, 2) on N = 25 produced two orbits with

lengths 1 and 31. By Brauer Theorem (Lemma 4.5.2 of Gorenstein [14]), it follows that the action of G

on Irr(N) will also produce two orbits. These two orbits must necessarily have lengths 1 and 31 and the

first orbit consists of the identity character 1N while the other orbit consists of the other non-trivial linear

characters of N. Thus the corresponding inertia factor groups H1 and H2 have indices 1 and 31 respec-

tively in GL(5, 2). By looking at the maximal subgroups of GL(5, 2) (see ATLAS), it is readily verified

that H1 = GL(5, 2) and H2 = 24:GL(4, 2) (note that there are two isomorphic non-conjugate subgroups of

GL(5, 2) of the form 24:GL(4, 2)). Also note that the corresponding inertia groups are non-split extension

groups of the forms H1 = G = 25·GL(5, 2) and H2 = 25·(24:GL(4, 2)). In this section we show that we

need to use projective characters, we also calculate the Schur multiplier of H2 and supply the projective

character table of H2 with factor set α, α ∼ [2].

As a subgroup of GL(5, 2), the group H2 = 24:GL(4, 2) is generated by the following two elements
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h1 =



1 0 0 1 0

0 0 0 1 1

1 0 1 0 1

1 1 0 1 1

0 0 0 0 1


and h2 =



0 1 1 1 1

1 0 1 1 0

0 1 1 0 1

1 0 0 1 0

0 0 0 0 1


.

The following theorem characterizes the type of character table (ordinary or projective) of H2 that we

will use to construct the character table of the Dempwolff group G.

Theorem 4.1. The character
32∑
i=2

θi, where θ2, θ3, · · · , θ32 are the non-trivial linear characters of N = 25,

is not extendable to a character of its inertia group H2 = 25·(24:GL(4, 2)).

Proof. We recall from Table 1 that the number of conjugacy classes of G is 41. Thus we have to find 41

irreducible characters. From Subsection 3.1, these 41 characters are distributed into two blocks K1 and

K2 corresponding to the inertia factor groups H1 and H2 respectively. From Note 3.7 we see that H1

contributes with 27 characters to the character table of G (these 27 characters are the ordinary irreducible

characters of G = GL(5, 2)). If
32∑
i=2

θi is extendable to an ordinary character of H2, then we will use the

ordinary character table of H2 to construct the character table of G. The two matrices h1 and h2 can

be used to generate H2 in either Magma or GAP and then one can ask for the character table of H2,

where we get |Irr(H2)| = 25. Using this, we obtain that |Irr(G)| = |Irr(H1)| + |Irr(H2)| = 27 + 25 = 52,

contradicting the fact that |Irr(G)| = 41. Therefore

32∑
i=2

θi is not extendable to an ordinary character of

its inertia group H2. �

Remark 4.2. Note that Theorem 4.1 asserts Irr(H2,

32∑
i=2

θi) = ∅ and hence we have to make the use of

projective representations. Thus the projective character table of H2 with factor set α−1, that we will use

to construct the ordinary character table of G, must have 14 irreducible characters.

We note that the group H2 = 24:GL(4, 2) has order 210×32×5×7. To find the Schur Multiplier M(H2)

of H2, we have to find the Multiplier of each Sylow p−subgroup of H2, where p is a prime dividing |H2|.
To find these multipliers in Magma, we firstly convert the matrix group H2 = 〈h1, h2〉 into a permutation

group. The group H2 can be constructed in terms of permutations of a set of cardinality 32. The following

two permutations h̃1 and h̃2 generate the group H2 :

h̃1 = (3 28 12 26 17 19 10)(4 27 11 25 18 20 9)(5 22 7 15

14 24 30 6 21 8 16 13 23 29)(31 32),

h̃2 = (3 19 30 22 4 20 29 21)(5 14 27 12 6 13 28 11)(7 32

8 31)(9 23 17 16)(10 24 18 15)(25 26).

The following sequence of Magma commands will produce the Schur multipliers of the Sylow p−subgroups

for p ∈ {2, 3, 5, 7}. Also we use the command “pCove” to construct the central extension p·H2, but the
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above command works only for finitely presented groups and thus we used the command “FPGroup” to

convert our permutation group H2 into a finitely presented group.

H:= PermutationGroup< 32 | (3,28,12,26,17,19,10)(4,27,11,25,18,20,9)

(5,22,7,15,14,24,30,6,21,8,16,13,23,29)(31,32),

(3,19,30,22,4,20,29,21) (5,14,27,12,6,13,28,11)

(7,32,8,31)(9,23,17,16)(10,24,18,15)(25,26)>;

> pMultiplicator(H,2);

[ 2 ]

> pMultiplicator(H,3);

[ 1 ]

> pMultiplicator(H,5);

[ 1 ]

> pMultiplicator(H,7);

[ 1 ]

> F := FPGroup(H);

> F2 := pCover(H, F, 2);

> Order(F2);

645120

> p, H:= CosetAction(F2, sub<F2|>);

> s:= SylowSubgroup(H, 3);

> p2, H1:= CosetAction(H, s);

> Order(H1);

645120

> ct:= CharacterTable(H1);

> ct;

From the above, we deduce that the Schur Multiplier of H2 is Z2 × Z1 × Z1 × Z1
∼= Z2, abbreviated

to be just 2. Thus the only factor set α that M(H2) contains is α ∼ [2]. The covering group M(H2)·H2
1

(central extension of M(H2) by H2) is isomorphic to 2·(24:GL(4, 2)). To find the projective character

table of H2 with factor set α (since α ∼ [2], α and α−1 are identical), it is sufficient to find the ordinary

character table of the double cover group 2·H2 of H2 (in this situation, the 2-fold cover 2·H2 is the full

covering group M(H2)·H2
∼= 2·(24:GL(4, 2))). From the above sequence of Magma commands, one can

see that the group F2 is the double cover group 2·H2 and it is clear that |F2| = 645120 = 2 × 322560 =

2 × |H2|. Thus one can proceed computationally to obtain the character table of 2·H2. Alternatively

since M(H2)·H2 is of extension type, the Clifford-Fischer theory can be applied recursively to obtain

its character table. In fact the character table of this group is partitioned into two blocks K̃1 and K̃2,

where K̃1 consists of the 25 ordinary irreducible characters of H2, while K̃2 consists of a 14 irreducible

characters (that is |Irr(2·(24:GL(4, 2)))| = 39). We are interested in these 14 characters contained in K̃2,

where these characters represent the projective character table of H2 with factor set α, α ∼ [2]. Note that

|Irr(H1)|+ |IrrProj(H2, 2)| = 27 + 14 = 41 = |Irr(G)|. In Table 2 we list the projective character table of

H2 with factor set α, α ∼ [2].

1some authors refer to this group as the representation group.
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Table 2. Projective characters of H2 = 24:GL(4, 2) with factor set α, α ∼ [2]

[gikm]H2
1a 2a 2b 2c 4a 2d 4b 3a 3b 6a 4c 4d 4e

[gikm]H2
g121 g221 g222 g321 g621 g322 g721 g521 g421 g10,21 g622 g722 g821

|CH2
(gikm)| 322560 21504 1536 512 384 384 128 180 72 24 64 64 32

ψ1 8 8 0 0 0 0 0 −4 2 2 0 0 0

ψ2 24 24 0 0 0 0 0 −6 0 0 0 0 0

ψ3 24 24 0 0 0 0 0 −6 0 0 0 0 0

ψ4 48 48 0 0 0 0 0 6 0 0 0 0 0

ψ5 56 56 0 0 0 0 0 −4 −1 −1 0 0 0

ψ6 56 56 0 0 0 0 0 −4 −1 −1 0 0 0

ψ7 56 56 0 0 0 0 0 2 2 2 0 0 0

ψ8 56 56 0 0 0 0 0 2 2 2 0 0 0

ψ9 64 64 0 0 0 0 0 4 −2 −2 0 0 0

ψ10 120 −8 0 0 0 0 0 0 6 −2 0 0 0

ψ11 120 −8 0 0 0 0 0 0 −3 1 0 0 0

ψ12 120 −8 0 0 0 0 0 0 −3 1 0 0 0

ψ13 360 −24 0 0 0 0 0 0 0 0 0 0 0

ψ14 360 −24 0 0 0 0 0 0 0 0 0 0 0

Table 2 (continued)

[gikm]H2
4f 8a 5a 6b 6c 12a 7a 14a 7b 14b 15a 15b

[gikm]H2
g822 g14,21 g921 g11,21 g10,22 g15,21 g12,21 g16,21 g13,21 g17,21 g18,21 g19,21

|CH2
(gikm)| 16 16 15 12 12 12 14 14 14 14 15 15

ψ1 0 0 2 0 0 0 1 1 1 1 1 1

ψ2 0 0 1 0 0 0 A A A A −1 −1
ψ3 0 0 1 0 0 0 A A A A −1 −1
ψ4 0 0 2 0 0 0 −1 −1 −1 −1 1 1

ψ5 0 0 −1 0 −i
√
3 i

√
3 0 0 0 0 1 1

ψ6 0 0 −1 0 i
√
3 −i

√
3 0 0 0 0 1 1

ψ7 0 0 −1 0 0 0 0 0 0 0 B B

ψ8 0 0 −1 0 0 0 0 0 0 0 B B

ψ9 0 0 1 0 0 0 1 1 1 1 −1 −1
ψ10 0 0 0 0 0 0 1 −1 1 −1 0 0

ψ11 0 0 0 0 −i
√
3 −i

√
3 1 −1 1 −1 0 0

ψ12 0 0 0 0 i
√
3 i

√
3 1 −1 1 −1 0 0

ψ13 0 0 0 0 0 0 A −A A −A 0 0

ψ14 0 0 0 0 0 0 A −A A −A 0 0

where in Table 2, A = −1
2

(
1 + i

√
7
)

and B = −1
2

(
1 + i

√
15
)
.

Table 2 indicates that classes 2b, 2c, 2d, 4a, 4b, 4c, 4d, 4e, 4f, 6b and 8a are α−irregular classes of

H2 by Theorem 7.2.1(3) of Whitely [31]. Thus H2 has fourteen α−regular classes and 14 characters with

factor set α, as required by Theorem 7.2.1(1) of Whitely [31].

5. Fusion of Classes of H2 into Classes of GL(5, 2)

The permutation character χ(G|H2) of GL(5, 2) on H2 is of degree 31. From the ATLAS, we see that

χ(G|H2) decomposes into the form 1a+31a, where 1a is the identity character of GL(5, 2) and 31a is the

irreducible character of GL(5, 2) of degree 31. With the aid of the permutation character and centralizer
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sizes, we were able to determine the fusion of classes of H2 into classes of GL(5, 2). We list this fusion in

Table 3.

Table 3. The fusion of H2 = 24:GL(4, 2) into G = GL(5, 2)

Inertia Factor Class of Class of Class of Class of

↪→ ↪→
Group H2 H2 GL(5, 2) H2 GL(5, 2)

1a = g121 1A 5a = g921 5A

2a = g221 2A 6a = g10,21 6A

2b = g222 2A 6b = g11,21 6B

2c = g321 2B 6c = g10,22 6A

2d = g322 2B 7a = g12,21 7A

3a = g521 3B 7b = g13,21 7B

H2 = 24:GL(4, 2) 3b = g421 3A 8a = g14,21 8A

4a = g621 4A 12a = g15,21 12A

4b = g721 4B 14a = g16,21 14A

4c = g622 4A 14b = g17,21 14B

4d = g722 4B 15a = g18,21 15A

4e = g821 4C 15b = g19,21 15B

4f = g822 4C

6. Fischer Matrices of 25·GL(5, 2)

We recall that we label the top and bottom of the columns of the Fischer matrix Fi, corresponding to

gi, by the sizes of the centralizers of gij , 1 ≤ j ≤ c(gi) in G and mij respectively. In Table 1 we supplied

|CG(gij)| and mij , 1 ≤ i ≤ 27, 1 ≤ j ≤ c(gi). Also having obtained the fusion of the inertia factor group

H2 into GL(5, 2), we are able to label the rows of the Fischer matrices as described in Subsection 3.1.

Since the size of the Fischer matrix Fi is c(gi), it follows from Table 1 that the sizes of the Fischer matrices

of G = 25·GL(5, 2) range between 1 and 3 for every i ∈ {1, 2, · · · , 27}.

We have used the arithmetical properties of Fischer matrices, given in Proposition 3.6, to calculate

some of the entries of the Fischer matrices and also to build an algebraic system of equations. With the

help of the symbolic mathematical package Maxima [16], we were able to solve these systems of equations

and hence we have computed all the Fischer matrices of G, which we list below.

F1

g1 g11 g12

o(g1j) 1 2

|CG(g1j)| 319979520 10321920

(k,m) |CHk
(g1km)|

(1, 1) 9999360 1 1

(2, 1) 322560 31 −1

m1j 1 31

F2

g2 g21 g22

o(g2j) 4 2

|CG(g2j)| 43008 43008

(k,m) |CHk
(g1km)|

(1, 1) 21504 1 1

(2, 1) 21504 1 −1

m2j 16 16
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F3

g3 g31

o(g3j) 4

|CG(g3j)| 1536

(k,m) |CHk
(g3km)|

(1, 1) 1536 1

m3j 32

F4

g4 g41 g42

o(g4j) 3 6

|CG(g4j)| 4032 576

(k,m) |CHk
(g4km)|

(1, 1) 504 1 1

(2, 1) 72 7 −1

m4j 4 28

F5

g5 g51 g52

o(g5j) 6 3

|CG(g5j)| 360 360

(k,m) |CHk
(g5km)|

(1, 1) 180 1 1

(2, 1) 180 1 −1

m5j 16 16

F6

g6 g61

o(g6j) 8

|CG(g6j)| 384

(k,m) |CHk
(g6km)|

(1, 1) 384 1

m6j 32

F7

g7 g71

o(g7j) 4

|CG(g7j)| 128

(k,m) |CHk
(g7km)|

(1, 1) 128 1

m7j 32

F8

g8 g81

o(g8j) 8

|CG(g8j)| 32

(k,m) |CHk
(g8km)|

(1, 1) 32 1

m8j 32

F9

g9 g91 g92

o(g9j) 10 5

|CG(g9j)| 30 30

(k,m) |CHk
(g9km)|

(1, 1) 15 1 1

(2, 1) 15 1 −1

m9j 16 16

F10

g10 g10,1 g10,2 g10,3

o(g10j) 12 12 6

|CG(g10j)| 96 96 48

(k,m) |CHk
(g10km)|

(1, 1) 24 1 1 1

(2, 1) 24 1 1 −1

(2, 2) 12 2 −2 0

m10j 8 8 16

F11

g11 g11,1

o(g11j) 12

|CG(g11j)| 12

(k,m) |CHk
(g11km)|

(1, 1) 12 1

m11j 32

F12

g12 g12,1 g12,2

o(g12j) 7 14

|CG(g12j)| 168 56

(k,m) |CHk
(g12km)|

(1, 1) 42 1 1

(2, 1) 14 3 −1

m12j 8 24



56 Int. J. Group Theory 1 no. 4 (2012) 43-63 Ayoub B. M. Basheer and J. Moori

F13

g13 g13,1 g13,2

o(g13j) 7 14

|CG(g13j)| 168 56

(k,m) |CHk
(g13km)|

(1, 1) 42 1 1

(2, 1) 14 3 −1

m13j 8 24

F14

g14 g14,1

o(g14j) 8

|CG(g14j)| 16

(k,m) |CHk
(g14km)|

(1, 1) 16 1

m14j 32

F15

g15 g15,1 g15,2

o(g15j) 24 24

|CG(g15j)| 24 24

(k,m) |CHk
(g15km)|

(1, 1) 24 1 1

(2, 1) 24 1 −1

m15j 16 16

F16

g16 g16,1 g16,2

o(g16j) 28 14

|CG(g16j)| 28 28

(k,m) |CHk
(g16km)|

(1, 1) 28 1 1

(2, 1) 28 1 −1

m16j 16 16

F17

g17 g17,1 g17,2

o(g17j) 28 14

|CG(g17j)| 28 28

(k,m) |CHk
(g17km)|

(1, 1) 28 1 1

(2, 1) 28 1 −1

m17j 16 16

F18

g18 g18,1 g18,2

o(g18j) 15 30

|CG(g18j)| 30 30

(k,m) |CHk
(g18km)|

(1, 1) 30 1 1

(2, 1) 30 1 −1

m18j 16 16

F19

g19 g19,1 g19,2

o(g19j) 15 30

|CG(g19j)| 30 30

(k,m) |CHk
(g19km)|

(1, 1) 30 1 1

(2, 1) 30 1 −1

m19j 16 16

F20

g20 g20,1

o(g20j) 21

|CG(g20j)| 21

(k,m) |CHk
(g20km)|

(1, 1) 21 1

m20j 32

F21

g21 g21,1

o(g21j) 21

|CG(g21j)| 21

(k,m) |CHk
(g21km)|

(1, 1) 21 1

m21j 32

F22

g22 g22,1

o(g22j) 31

|CG(g22j)| 31

(k,m) |CHk
(g22km)|

(1, 1) 31 1

m22j 32
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F23

g23 g23,1

o(g23j) 31

|CG(g23j)| 31

(k,m) |CHk
(g23km)|

(1, 1) 31 1

m23j 32

F24

g24 g24,1

o(g24j) 31

|CG(g24j)| 31

(k,m) |CHk
(g24km)|

(1, 1) 31 1

m24j 32

F25

g25 g25,1

o(g25j) 31

|CG(g25j)| 31

(k,m) |CHk
(g25km)|

(1, 1) 31 1

m25j 32

F26

g26 g26,1

o(g26j) 31

|CG(g26j)| 31

(k,m) |CHk
(g26km)|

(1, 1) 31 1

m26j 32

F27

g27 g27,1

o(g27j) 31

|CG(g27j)| 31

(k,m) |CHk
(g27km)|

(1, 1) 31 1

m27j 32

7. The Character Table of the Dempwolff Group G = 25·GL(5, 2)

Now we are in the position to construct the character table of Dempwolff group G = 25·GL(5, 2). In

the previous sections we have found

• the conjugacy classes of G = 25·GL(5, 2) (Table 1),

• the projective character table of the inertia factor H2 = 24:GL(4, 2) with factor set α, α ∼ [2]

(Table 2),

• the fusion of classes of the inertia factor H2 into classes of GL(5, 2) (Table 3),

• the Fischer matrices of G (Section 6).

By Section 3, it follows that the full character table of G can be constructed easily. We give an example
on how to construct the character table of G, which is partitioned into 54 blocks corresponding to the 27
cosets and the two inertia factor groups. As an example we construct the parts K10,1F10,1 and K10,2F10,2

of the character table of G (this means that we are listing the values of all the irreducible characters of
G on the classes g10,1, g10,2 and g10,3 of G, which correspond to the conjugacy class 6A of GL(5, 2)). The
two parts K10,1F10,1 and K10,2F10,2 can be derived as follows: From Table 3 we can see that there are two
α−regular classes, namely 6a = g10,21 and 6c = g10,22 of H2 that fuse into the class g6 = [6A]GL(5,2). To
construct the part K10,1F10,1, we multiply the column of the character table of H1 = GL(5, 2) corresponds
to the class 6A of GL(5, 2) (see the ATLAS), by the first row of F10, namely (1 1 1) and thus the
part K10,1F10,1 of size 27 × 3, consists of the column of the character table of GL(5, 2) corresponds to
the class 6A repeated 3 times. To construct the part K10,2F10,2, select the two columns of the projective
character table of H2 = 24:GL(4, 2), with factor set α, α ∼ [2], correspond to the classes 6a and 6c of
H2 (see Table 2) and multiply these two columns by the two rows of F10 correspond to the pair (2, 1)
and (2, 2). Thus we get a block in the character table of G of size 14 × 3. The above two parts have the
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following form:

K10,1F10,1 =



1

2

1

0

−1

−1

0

0

0

0

0

0

−1

−1

−1

−1

0

0

0

0

−1

2

1

1

−2

0

1



(
1 1 1

)
=



g10,1 g10,2 g10,3

1 1 1

2 2 2

1 1 1

0 0 0

−1 −1 −1

−1 −1 −1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

−1 −1 −1

−1 −1 −1

−1 −1 −1

−1 −1 −1

0 0 0

0 0 0

0 0 0

0 0 0

−1 −1 −1

2 2 2

1 1 1

1 1 1

−2 −2 −2

0 0 0

1 1 1



,

K10,2F10,2 =



2 0

0 0

0 0

0 0

−1 −i
√

3

−1 i
√

3

2 0

2 0

−2 0

−2 0

1 −i
√

3

1 i
√

3

0 0

0 0



(
1 1 −1

2 −2 0

)
=



g10,1 g10,2 g10,3

2 2 2

0 0 0

0 0 0

0 0 0

−1− 2i
√

3 −1 + 2i
√

3 1

−1 + 2i
√

3 −1− 2i
√

3 1

2 2 −2

2 2 −2

−2 −2 2

−2 −2 2

1− 2i
√

3 1 + 2i
√

3 −1

1 + 2i
√

3 1− 2i
√

3 −1

0 0 0

0 0 0



.

Similarly one can construct all the other 52 parts KikFik, k ∈ {1, 2}, i ∈ {1, 2, · · · , 27} \ {10}. The

full character table of G = 25·GL(5, 2) is available in many sources such as Magma, GAP or the book of

G. Michler [17]. In Table 4 we supply the character table of G in the format of Clifford-Fischer theory

(characters are organized in blocks corresponding to the inertia factors and the conjugacy classes of G,
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where the conjugacy classes are arranged in blocks corresponding to the cosets 25gi, where gi is a pre-image

of a representative gi of a conjugacy class of G = GL(5, 2)).

Table 4. The character table of Dempwolff group G = 25·GL(5, 2)

[gi]G 1A 2A 2B 3A 3B 4A 4B 4C 5A 6A 6B

[gij ]G 1a 2a 2b 4a 4b 3a 6a 6b 3b 8a 4c 8b 10a 5a 12a 12b 6c 12c

2 15 15 11 11 9 6 6 3 3 7 7 5 1 1 5 5 4 2

3 2 2 1 1 1 2 2 2 2 1 0 0 1 1 1 1 1 1

|CG(gij)| 5 1 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0

7 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

31 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 30 30 14 14 6 6 6 0 0 6 2 2 0 0 2 2 2 0

χ3 124 124 28 28 12 1 1 4 4 4 4 0 −1 −1 1 1 1 0

χ4 155 155 27 27 −5 8 8 5 5 3 −5 −1 0 0 0 0 0 1

χ5 217 217 −7 −7 9 7 7 4 4 −7 1 1 2 2 −1 −1 −1 0

χ6 280 280 56 56 8 7 7 −5 −5 8 0 0 0 0 −1 −1 −1 −1
χ7 315 315 −21 −21 3 0 0 0 0 3 −1 −1 0 0 0 0 0 0

χ8 315 315 −21 −21 3 0 0 0 0 3 −1 −1 0 0 0 0 0 0

χ9 315 315 −21 −21 3 0 0 0 0 3 −1 −1 0 0 0 0 0 0

χ10 315 315 −21 −21 3 0 0 0 0 3 −1 −1 0 0 0 0 0 0

χ11 315 315 −21 −21 3 0 0 0 0 3 −1 −1 0 0 0 0 0 0

χ12 315 315 −21 −21 3 0 0 0 0 3 −1 −1 0 0 0 0 0 0

χ13 465 465 17 17 −15 3 3 0 0 1 1 1 0 0 −1 −1 −1 0

χ14 465 465 17 17 −15 3 3 0 0 1 1 1 0 0 −1 −1 −1 0

χ15 465 465 −31 −31 9 3 3 0 0 1 −3 1 0 0 −1 −1 −1 0

χ16 465 465 −31 −31 9 3 3 0 0 1 −3 1 0 0 −1 −1 −1 0

χ17 496 496 48 48 16 −8 −8 1 1 0 0 0 1 1 0 0 0 1

χ18 651 651 −21 −21 −5 0 0 6 6 3 3 −1 1 1 0 0 0 −2
χ19 651 651 −21 −21 −5 0 0 −3 −3 3 3 −1 1 1 0 0 0 1

χ20 651 651 −21 −21 −5 0 0 −3 −3 3 3 −1 1 1 0 0 0 1

χ21 868 868 −28 −28 4 7 7 1 1 −4 4 0 −2 −2 −1 −1 −1 1

χ22 930 930 50 50 −6 6 6 0 0 −6 −2 −2 0 0 2 2 2 0

χ23 930 930 −14 −14 −6 −3 −3 0 0 2 −2 2 0 0 1 1 1 0

χ24 930 930 −14 −14 −6 −3 −3 0 0 2 −2 2 0 0 1 1 1 0

χ25 960 960 64 64 0 −6 −6 0 0 0 0 0 0 0 −2 −2 −2 0

χ26 1024 1024 0 0 0 −8 −8 4 4 0 0 0 −1 −1 0 0 0 0

χ27 1240 1240 −8 −8 8 1 1 −5 −5 −8 0 0 0 0 1 1 1 −1

χ28 248 −8 −8 8 0 14 −2 4 −4 0 0 0 2 −2 2 2 −2 0

χ29 744 −24 −24 24 0 0 0 6 −6 0 0 0 1 −1 0 0 0 0

χ30 744 −24 −24 24 0 0 0 6 −6 0 0 0 1 −1 0 0 0 0

χ31 1488 −48 −48 48 0 0 0 −6 6 0 0 0 2 −2 0 0 0 0

χ32 1736 −56 −56 56 0 14 −2 −2 2 0 0 0 −1 1 2 2 −2 0

χ33 1736 −56 −56 56 0 14 −2 −2 2 0 0 0 −1 1 2 2 −2 0

χ34 1736 −56 −56 56 0 −7 1 4 −4 0 0 0 −1 1 −A −A 1 0

χ35 1736 −56 −56 56 0 −7 1 4 −4 0 0 0 −1 1 −A −A 1 0

χ36 1984 −64 −64 64 0 −14 2 −4 4 0 0 0 1 −1 −2 −2 2 0

χ37 3720 −120 8 −8 0 42 −6 0 0 0 0 0 0 0 −2 −2 2 0

χ38 3720 −120 8 −8 0 −21 3 0 0 0 0 0 0 0 A A −1 0

χ39 3720 −120 8 −8 0 −21 3 0 0 0 0 0 0 0 A A −1 0

χ40 11160 −360 24 −24 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ41 11160 −360 24 −24 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Continued on next page
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Table 4 (continued)

[gi]G 7A 7B 8A 12A 14A 14B 15A 15B 21A 21B

[gij ]G 7a 14a 7b 14b 8b 24a 24b 28a 14c 28b 14d 15a 30a 15b 30b 21a 21b

2 3 3 3 3 4 3 3 2 2 2 2 1 1 1 1 0 0

3 1 0 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1

|CG(gij)| 5 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

7 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 −1 −1
χ3 −2 −2 −2 −2 0 1 1 0 0 0 0 −1 −1 −1 −1 1 1

χ4 1 1 1 1 −1 0 0 −1 −1 −1 −1 0 0 0 0 1 1

χ5 0 0 0 0 1 −1 −1 0 0 0 0 −1 −1 −1 −1 0 0

χ6 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0

χ7 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

χ8 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

χ9 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

χ10 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

χ11 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

χ12 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

χ13 B B B B 1 1 1 B B B B 0 0 0 0 B B

χ14 B B B B 1 1 1 B B B B 0 0 0 0 B B

χ15 B B B B −1 1 1 −B −B −B −B 0 0 0 0 B B

χ16 B B B B −1 1 1 −B −B −B −B 0 0 0 0 B B

χ17 −1 −1 −1 −1 0 0 0 −1 −1 −1 −1 1 1 1 1 −1 −1
χ18 0 0 0 0 −1 0 0 0 0 0 0 1 1 1 1 0 0

χ19 0 0 0 0 −1 0 0 0 0 0 0 C C C C 0 0

χ20 0 0 0 0 −1 0 0 0 0 0 0 C C C C 0 0

χ21 0 0 0 0 0 −1 −1 0 0 0 0 1 1 1 1 0 0

χ22 −1 −1 −1 −1 0 0 0 1 1 1 1 0 0 0 0 −1 −1
χ23 D D D D 0 −1 −1 0 0 0 0 0 0 0 0 −B −B
χ24 D D D D 0 −1 −1 0 0 0 0 0 0 0 0 −B −B
χ25 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1

χ26 2 2 2 2 0 0 0 0 0 0 0 −1 −1 −1 −1 −1 −1
χ27 1 1 1 1 0 1 1 −1 −1 −1 −1 0 0 0 0 1 1

χ28 3 −1 3 −1 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0

χ29 E −B E −B 0 0 0 B −B B −B −1 1 −1 1 0 0

χ30 E −B E −B 0 0 0 B −B B −B −1 1 −1 1 0 0

χ31 −3 1 −3 1 0 0 0 −1 1 −1 1 1 −1 1 −1 0 0

χ32 0 0 0 0 0 0 0 0 0 0 0 C −C C −C 0 0

χ33 0 0 0 0 0 0 0 0 0 0 0 C −C C −C 0 0

χ34 0 0 0 0 0 −F F 0 0 0 0 1 −1 1 −1 0 0

χ35 0 0 0 0 0 F −F 0 0 0 0 1 −1 1 −1 0 0

χ36 3 −1 3 −1 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0

χ37 3 −1 3 −1 0 0 0 −1 1 −1 1 0 0 0 0 0 0

χ38 3 −1 3 −1 0 I −I −1 1 −1 1 0 0 0 0 0 0

χ39 3 −1 3 −1 0 −I I −1 1 −1 1 0 0 0 0 0 0

χ40 E −B E −B 0 0 0 −B B −B B 0 0 0 0 0 0

χ41 E −B E −B 0 0 0 −B B −B B 0 0 0 0 0 0

Continued on next page
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Table 4 (continued)

[gi]G 31A 31B 31C 31D 31E 31F

[gij ]G 31a 31b 31c 31d 31e 31f

2 0 0 0 0 0 0

3 0 0 0 0 0 0

|CG(gij)| 5 0 0 0 0 0 0

7 0 0 0 0 0 0

31 1 1 1 1 1 1

χ1 1 1 1 1 1 1

χ2 −1 −1 −1 −1 −1 −1
χ3 0 0 0 0 0 0

χ4 0 0 0 0 0 0

χ5 0 0 0 0 0 0

χ6 1 1 1 1 1 1

χ7 G H I H I G

χ8 H I G I G H

χ9 I G H G H I

χ10 G H I H I G

χ11 H I G I G H

χ12 I G H G H I

χ13 0 0 0 0 0 0

χ14 0 0 0 0 0 0

χ15 0 0 0 0 0 0

χ16 0 0 0 0 0 0

χ17 0 0 0 0 0 0

χ18 0 0 0 0 0 0

χ19 0 0 0 0 0 0

χ20 0 0 0 0 0 0

χ21 0 0 0 0 0 0

χ22 0 0 0 0 0 0

χ23 0 0 0 0 0 0

χ24 0 0 0 0 0 0

χ25 −1 −1 −1 −1 −1 −1
χ26 1 1 1 1 1 1

χ27 0 0 0 0 0 0

χ28 0 0 0 0 0 0

χ29 0 0 0 0 0 0

χ30 0 0 0 0 0 0

χ31 0 0 0 0 0 0

χ32 0 0 0 0 0 0

χ33 0 0 0 0 0 0

χ34 0 0 0 0 0 0

χ35 0 0 0 0 0 0

χ36 0 0 0 0 0 0

χ37 0 0 0 0 0 0

χ38 0 0 0 0 0 0

χ39 0 0 0 0 0 0

χ40 0 0 0 0 0 0

χ41 0 0 0 0 0 0

where in Table 4,

• A = 1 + 2
√

3i, • B = −1
2 +

√
7

2 i = b7, • C = −1
2 +

√
15
2 i = b15, • D = −1 +

√
7i = 2b7,

• E = −3
2 + 3

√
7

2 i = 3b7, • F =
√

3i, • G = E(31)3 + E(31)6 + E(31)12 + E(31)17 + E(31)24,

• H = E(31)5 + E(31)9 + E(31)10 + E(31)18 + E(31)20,

• I = E(31)15 + E(31)23 + E(31)27 + E(31)29 + E(31)30.
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