C. Bessenrodt and A. Kleshchev (1999). On Kronecker products of complex
representations of the symmetric and alternating groups,. Pacific J. Math.. 190 (2), 201-223
W. Feit and G. M. Seitz (1989). On finite rational groups and related
topics. llinois J. Math.. 33 (1), 103-131
P. ErdH os (1942). On an elementary proof of some asymptotic formulas in the theory of partitions. Ann. of Math. (2). 43 (3), 437-450
P. X. Gallagher (1970). The number of conjugacy classes in a finite group. Math. Z.. 118, 175-179
The GAP Group (2007). GAP -- Groups, Algorithms, and Programming. Version 4.4.10.
C. K"ohler and H. Pahlings (1999). Regular orbits and the $k(GV)$-problem. Groups and computation III., Proceedings of the international
conference at the Ohio State University, Columbus, OH, USA, June. , 15-19
W. Feit (1993). in ``Linear Algebraic
Groups and Their Representations. Los Angeles, 1992", Contemp.
Math.. 153, 1-9
Z. Halasi, A. Mar'oti, S. Sidki and M. Bezerra Conjugacy expansiveness in finite groups. to appear in J. Group Theory.
H. W. Kuhn (1955). The Hungarian method for the assignment problem. Naval Res. Logist. Quart.. 2, 83-97
I. G. Macdonald (1981). Numbers of conjugacy classes in some finite
classical groups. Bull. Austral. Math. Soc.. 23, 23-48
href http://www.wolfram.com/mathematica http://www.wolfram.com/mathematica.
H. Nagao (1962). On a conjecture of Brauer for $p$-solvable groups. J. Math. Osaka City Univ.. 13, 35-38
P. Schmid (2007). The solution of the $k(GV)$ problem. ICP Advanced Texts in Mathematics. 4. Imperial College Press, London.
'A. Seress (1997). Primitive groups with no regular orbits on the set of subsets. Bull. London Math. Soc.. 29 (6), 697-704