CHARACTERIZATION OF THE SYMMETRIC GROUP BY ITS NON-COMMUTING GRAPH

M. R. DARAFSHEH AND P. YOUSEFZADEH

Communicated by Alireza Abdollahi

Abstract. The non-commuting graph \(\nabla(G) \) of a non-abelian group \(G \) is defined as follows: its vertex set is \(G - Z(G) \) and two distinct vertices \(x \) and \(y \) are joined by an edge if and only if the commutator of \(x \) and \(y \) is not the identity. In this paper we prove that if \(G \) is a finite group with \(\nabla(G) \cong \nabla(S_n) \), then \(G \cong S_n \), where \(S_n \) is the symmetric group of degree \(n \), where \(n \) is a natural number.

1. Introduction

Let \(G \) be a group. The non-commuting graph \(\nabla(G) \) of \(G \) is defined as follows: the set of vertices of \(\nabla(G) \) is \(G - Z(G) \), where \(Z(G) \) is the center of \(G \) and two vertices are connected whenever they do not commute. Also we define the prime graph \(\Gamma(G) \) of \(G \) as follows: the vertices of \(\Gamma(G) \) are the prime divisors of the order of \(G \) and two distinct vertices \(p \) and \(q \) are joined by an edge and we write \(p \sim q \), if there is an element in \(G \) of order \(pq \). We denote by \(\pi_e(G) \) the set of orders of elements of \(G \). The connected components of \(\Gamma(G) \) are denoted by \(\pi_i, i = 1, 2, \ldots, t(G) \), where \(t(G) \) is the number of components. We can express the order of \(G \) as a product of some positive integer \(m_i, i = 1, 2, \ldots, t(G) \) with \(\pi(m_i) = \pi_i \). The integers \(m_i \)'s are called the order components of \(G \). In 2006, A. Abdollahi, S. Akbari and H. R. Maimani put forward a conjecture in [1] as follows.

AAM’s Conjecture: If \(M \) is a finite non abelian simple group and \(G \) is a group such that \(\nabla(G) \cong \nabla(M) \), then \(G \cong M \).

Ron Solomon and Andrew Woldar proved the above conjecture in [6]. In this paper we will prove that if \(G \) is a finite group with \(\nabla(G) \cong \nabla(S_n) \), then \(G \cong S_n \), where \(S_n \) is the symmetric group of degree \(n \).

MSC(2010): Primary: 20F05; Secondary: 05C05.
Keywords: non-commuting graph, symmetric group, finite groups.
Received: 30 August 2012, Accepted: 20 October 2012.
*Corresponding author.
Lemma 2.2. Let \(G \) be a finite group such that \(\nabla(G) \cong \nabla(S_n) \), \(n \geq 3 \). Then \(|G| = |S_n| \).

2. Preliminaries

The following result was proved in part(1) of Theorem 3.16 of [1].

Lemma 2.1. Let \(G \) be a finite group such that \(\nabla(G) \cong \nabla(S_n) \), \(n \geq 3 \). Then \(|G| = |S_n| \).

Lemma 2.2. Let \(G \) and \(H \) be two non-abelian groups. If \(\nabla(G) \cong \nabla(H) \), then

\[
\nabla(C_G(A)) \cong \nabla(C_H(\varphi(A)))
\]

for all \(\emptyset \neq A \subseteq G - Z(G) \), where \(\varphi \) is the isomorphism from \(\nabla(G) \) to \(\nabla(H) \) and \(C_G(A) \) is non-abelian.

Proof. It is sufficient to show that \(\varphi \mid_{V(C_G(A))} \) is the restriction of \(\varphi \) to \(V(C_G(A)) \) and

\[
\begin{align*}
V(C_G(A)) &= C_G(A) - Z(C_G(A)), \\
V(C_H(\varphi(A))) &= C_H(\varphi(A)) - Z(C_H(\varphi(A))).
\end{align*}
\]

Assume \(d \) is an element of \(V(C_H(\varphi(A))) \), then \(d \in H - Z(H) \) and so there exists an element \(c \) of \(G - Z(G) \) such that \(\varphi(c) = d \). From

\[
d = \varphi(c) \in C_H(\varphi(A)),
\]

it follows that \([\varphi(c), \varphi(g)] = 1 \) for all \(g \in A \) and since \(\varphi \) is an isomorphism from \(\nabla(G) \) to \(\nabla(H) \), \([c, g] = 1 \) for all \(g \in A \). Therefore \(c \in C_G(A) \). But \(d \not\in Z(C_H(\varphi(A))) \), so for an element \(x \in C_H(\varphi(A)) \) we have \([x, d] \neq 1 \). Hence \(x \) is an element of \(H \) that does not commute with \(d \in H \). This implies that \(x \in H - Z(H) \). Thus there exists \(x' \in G - Z(G) \), such that \(\varphi(x') = x \). It is easy to see that \([x', c] \neq 1 \) and therefore \(c \not\in Z(G(A)) \). Hence

\[
c \in C_G(A) - Z(C_G(A)) = V(C_G(A))
\]

and \(\varphi(c) = d \). \(\square \)

The following result was proved by E. Artin in [2] and [3] and together with the classification of finite simple groups can be stated as follows:

Lemma 2.3. Let \(G \) and \(M \) be finite simple groups, \(|G| = |M| \), then the following holds:

1. If \(|G| = |A_8| = |L_3(4)| \), then \(G \cong A_8 \) or \(G \cong L_3(4) \);
2. If \(|G| = |B_n(q)| = |C_n(q)| \), where \(n \geq 3 \), and \(q \) is odd, then \(G \cong B_n(q) \) or \(G \cong C_n(q) \);
3. If \(M \) is not in the above cases, then \(G \cong M \).

As an immediate consequence of Lemma 2.3, we get the following corollary.

Corollary 2.4. Let \(G \) be a finite simple group with \(|G| = |A_n| \), where \(n \) is a natural number, \(n \geq 5 \), \(n \neq 8 \), then \(G \cong A_n \).
Lemma 2.5. Let G and H be two finite groups with $\nabla(G) \cong \nabla(H)$ and $|G| = |H|$. Then $p_1p_2\cdots p_t \in \pi_e(G)$ if and only if $p_1p_2\cdots p_t \in \pi_e(H)$, where p_i's are distinct prime numbers for $i = 1, 2, \ldots, t$. In particular, $\Gamma(G) = \Gamma(H)$.

Proof. If φ is an isomorphism from $\nabla(G)$ to $\nabla(H)$ and $|G| = |H|$, then we can easily see that

$$|Z(C_G(x))| = |Z(C_H(\varphi(x)))|$$

for all $x \in G$. If $p_1p_2\cdots p_t \in \pi_e(G)$, then there exists an element $z \in G$ such that $o(z) = p_1p_2\cdots p_t$. Thus

$$p_1p_2\cdots p_t = |\langle z \rangle||Z(C_G(z))|$$

and so

$$p_1p_2\cdots p_t |Z(C_H(\varphi(z)))|.$$

Hence H has an abelian subgroup of order $p_1p_2\cdots p_t$, which is a cyclic group. Therefore $p_1p_2\cdots p_t \in \pi_e(H)$. By a similar argument we see that if $p_1p_2\cdots p_t \in \pi_e(H)$, then $p_1p_2\cdots p_t \in \pi_e(G)$. □

Lemma 2.6. Let G be a finite group with $\nabla(G) \cong \nabla(S_n)$, where $3 \leq n \leq 8$ or $11 \leq n \leq 14$, then $G \cong S_n$.

Proof. Since $\nabla(G) \cong \nabla(S_n)$, by Lemma 2.1, $|G| = |S_n|$. Also by Lemma 2.5 $\Gamma(G) = \Gamma(S_n)$, where Γ denotes the prime graph. Thus the order components of G and S_n are the same. In [7] it is proved that S_p and S_{p+1} are characterizable by their order components, where $p \geq 3$ is a prime number. Hence S_n, where $3 \leq n \leq 8$ or $11 \leq n \leq 14$ is characterizable by their order components and so $G \cong S_n$, where $3 \leq n \leq 8$ or $11 \leq n \leq 14$. □

Lemma 2.7. Let G be a finite group with $\nabla(G) \cong \nabla(S_n)$, $n = 9, 10, 15, 16$, then $G \cong S_n$.

Proof. We give the proof in the case $n = 9$, the proof in other cases is similar. Set

$$T = \{\alpha \in S_9|(i)\alpha = i, i = 4, 5, \ldots, 9\}.$$

Obviously

$$T \leq S_9,$$

$$T \cong S_3$$

and $C_{S_9}(T - \{1\}) \cong S_6$. By Lemma 2.2 we have

$$\nabla(C_{S_9}(T - \{1\})) \cong \nabla(C_G(\varphi(T - \{1\}))),$$

where φ is an isomorphism from $\nabla(S_9)$ to $\nabla(G)$. Thus by Lemma 2.6 $C_G(\varphi(T - \{1\})) \cong S_6$.

Let N be a minimal normal subgroup of G. If

$$N \cap C_G(\varphi(T - \{1\})) = 1,$$
then since
\[|NC_G(\varphi(T - \{1\}))| \cdot |G| = 9! \]
and
\[|C_G(\varphi(T - \{1\}))| = 6!, \]
we have \(|N|9 \cdot 8 \cdot 7\). We know that \(N\) is a union of conjugacy classes of \(G\) and the size of conjugacy class of \(G\) containing \(x\) is equal to the size of conjugacy class of \(S_9\) containing \(\varphi^{-1}(x)\) for all \(x \in G - \{1\}\).

We can see that all conjugacy class sizes in \(S_9\) less than \(9 \cdot 8 \cdot 7\) are 1, \(\frac{9 \cdot 8 \cdot 7}{2}\), \(\frac{9 \cdot 8 \cdot 7}{3}\) and \(\frac{9 \cdot 8 \cdot 7}{8}\). Let \(y\) be an arbitrary element in \(N - \{1\}\). Thus the size of conjugacy class of \(y\) in \(G\) and so the size of conjugacy class of \(\varphi^{-1}(y)\) in \(S_9\) is equal to \(\frac{9 \cdot 8 \cdot 7}{2}\), \(\frac{9 \cdot 8 \cdot 7}{3}\) or \(\frac{9 \cdot 8 \cdot 7}{8}\).

Therefore we have one of the possibilities: \(\varphi^{-1}(y)\) is a 2-cycle, \(\varphi^{-1}(y)\) is a 3-cycle or \(\varphi^{-1}(y)\) is a permutation of type \(2^2\).

In any case there exists a subgroup of \(S_9\), say \(K\) isomorphic to \(S_3\) such that
\[\varphi^{-1}(y) \in C_{S_9}(K - \{1\}) \]
and
\[C_{S_9}(K - \{1\}) \cong S_6. \]
Hence
\[y \in N \cap C_G(\varphi(K - \{1\})). \]

By Lemma 2.6 \(C_G(\varphi(K - \{1\})) \cong S_6\) and since
\[N \cap C_G(\varphi(K - \{1\})) \neq 1, \]
\(A_6\) is embedded in \(N\).

If
\[N \cap C_G(\varphi(T - \{1\})) \neq 1, \]
then since \(C_G(\varphi(T - \{1\})) \cong S_6\) and
\[N \cap C_G(\varphi(T - \{1\})) \subseteq C_G(\varphi(T - \{1\})), \]
we conclude that \(A_6\) is embedded in \(N\) in this case too.

Thus \(2^3 \cdot 3^2 \cdot 5 \cdot |N|\). We know that \(N\) is a direct product of isomorphic simple groups. But \(5 \mid |N|\) and \(5^2 \nmid |N|\), hence \(N\) is a simple group.

Moreover \(5 \sim 7\) in \(\Gamma(S_9)\) and since \(\Gamma(G) = \Gamma(S_9)\) by Lemma 2.5 ,5 \(\not\sim 7\) in \(\Gamma(G)\) too. By Frattini’s argument \(N_G(N_5)N = G\), where \(N_5\) is a Sylow 5-subgroup of \(N\) and since \(7 \mid |G|\), \(7 \mid |N_G(N_5)|\) or \(7 \mid |N|\).

If \(7 \mid |N_G(N_5)|\), then there exists an element \(z\) of order 7 in \(N_G(N_5)\) and so \(\langle z \rangle N_5\) is a subgroup of \(N_G(N_5)\) of order 5.7. Hence \(\langle z \rangle N_5\) is a cyclic group. It means that \(5 \sim 7\) in \(\Gamma(G)\), which is a contradiction. Thus \(7 \mid |N|\).

Now we assert that \(C_G(N) = 1\). Otherwise there is a minimal normal subgroup \(T\) of \(G\) such that
$T \leq C_G(N)$. By the same argument as above we see that $2^3 \cdot 3^2 \cdot 5 \cdot 7 \mid |T|$. Therefore $2^3 \cdot 3^2 \cdot 5 \cdot 7 \mid |C_G(N)|$. Hence $5 \mid |C_G(N)|$ and so there is an element $a \in C_G(N)$ such that $o(a) = 5$ and since $7 \mid |N|$, there is an element of order 7, say b in N. $o(ab) = 5 \cdot 7$, because $ab = ba$. But $5 \not\sim 7$ in $\Gamma(G)$ and this is a contradiction. Thus $C_G(N) = 1$.

It implies that

$$G \cong \frac{G}{1} = \frac{G}{C_G(N)} \hookrightarrow Aut(N).$$

Therefore

$$9! = |G||Aut(N)|.$$

So we proved that N is a simple group with

$$2^3 \cdot 3^2 \cdot 5 \cdot 7 \mid |N|,$$

$$9! = 2^7 \cdot 3^4 \cdot 5 \cdot 7 \mid |Aut(N)|$$

and $|N|2^7 \cdot 3^4 \cdot 5 \cdot 7$. By table 1 of [5], we conclude that $N \cong A_9$. But

$$G \hookrightarrow Aut(N),$$

$$|G| = |S_9|$$

and

$$Aut(N) \cong Aut(A_9) \cong S_9.$$

Hence $G \cong S_9$.

\[\square \]

Lemma 2.8. Let T be a finite group and $T \cong S_1 \times S_2 \times \cdots \times S_t$, where S_is are isomorphic simple groups, $1 \leq i \leq t$. Let T contain a copy of the alternating group A_{n-3}, $n \geq 16$ and $|T||n!$. Then T is a simple group.

Proof. Without loss of generality we may assume that

$$T = S_1 \times S_2 \times \cdots \times S_t.$$

Suppose that $\pi_1 : S_1 \times S_2 \times \cdots \times S_t \rightarrow S_1 \times 1 \times \cdots \times 1$ is defined by

$$\pi_1(s_1, s_2, \ldots, s_t) = (s_1, 1, \ldots, 1)$$

and K is a subgroup of T isomorphic to A_{n-3}. Set

$$\overline{S_1} = S_1 \times 1 \times \cdots \times 1$$

and

$$\overline{S_2} \times \cdots \times \overline{S_t} = 1 \times S_2 \times \cdots \times S_t.$$

Now we consider the following three cases.

Case 1) $K \cap \overline{S_1} = K \cap \overline{S_2} \times \cdots \times \overline{S_t} = 1$.

In this case \(\phi : K \to \pi_1(K) \) defined by \(\phi(k) = \pi_1(k) \) for all \(k \in K \) is an isomorphism from \(K \) onto \(\pi_1(K) \). This means that \(K \cong \pi_1(K) \). Thus we have

\[
\mathbb{A}_{n-3} \cong K \cong \pi_1(K) \leq \mathbb{S}_1 \cong S_1
\]

and so

\[
\frac{(n-3)!}{2} = |\mathbb{A}_{n-3}||S_1|.
\]

But \(S_i \)s are isomorphic simple groups, \(1 \leq i \leq t \) and thus

\[
\frac{(n-3)!}{2} = |\mathbb{A}_{n-3}||S_i|,
\]

for \(1 \leq i \leq t \).

Therefore

\[
\left[\frac{(n-3)!}{2} \right]^t |T|
\]

and since \(|T|n! \), we obtain \(\left[\frac{(n-3)!}{2} \right]^t |n!\). But

\[
\left[\frac{(n-3)!}{2} \right]^2 \mid n!
\]

for \(n \geq 16 \) and so \(t = 1 \) and \(T \) is a simple group.

Case 2) \(K \cap \mathbb{S}_1 \neq 1 \)

Since \(\mathbb{S}_1 \leq T \), we have

\[
1 \neq K \cap \mathbb{S}_1 \leq K \cong \mathbb{A}_{n-3},
\]

which implies that \(K \cap \mathbb{S}_1 = K \) and so

\[
\mathbb{A}_{n-3} \cong K \leq \mathbb{S}_1 \cong S_1.
\]

Now similar argument as in Case (1) shows that \(T \) is a simple group.

Case 3) \(K \cap \mathbf{S}_2 \times \cdots \times \mathbf{S}_t \neq 1 \)

Since

\[
\mathbf{S}_2 \times \cdots \times \mathbf{S}_t \leq T,
\]

we have

\[
1 \neq K \cap \mathbf{S}_2 \times \cdots \times \mathbf{S}_t \leq K \cong \mathbb{A}_{n-3},
\]

which implies that

\[
K \cap \mathbf{S}_2 \times \cdots \times \mathbf{S}_t = K
\]
and so

\[A_{n-3} \cong K \leq S_2 \times \cdots \times S_t \cong S_2 \times \cdots \times S_t. \]

Thus \(A_{n-3} \) is embedded in \(S_2 \times \cdots \times S_t \).

By repeating above argument for

\[T_i = S_i \times \cdots \times S_t, \quad 2 \leq i \leq t, \]

we conclude that \(T \) is a simple group. \(\square \)

Lemma 2.9. Let \(a, b \) be two natural numbers. Then:

1) \(a^b b! \leq (ab)! \) and \(a^0 0! = (a 0)! \)

2) If \(a \geq 4 \), then \(a^{b-1} b! \leq (a(b-1))! \)

3) \(3^{b-1} b! \leq (3b - 3)! \)

4) If \(b \geq 3 \), then \(2^{b-1} b! \leq (2b - 2)! \)

5) If \(b \geq 5 \), then \(2^{b-2} b! \leq 2(2b - 4)! \)

6) If \(b \geq 4 \), then \(2^{b-2} b! \leq 2(3b - 6)! \)

Proof.

1) We prove Lemma 2.9 part 1 by induction on \(b \). If \(b = 1 \), then clearly (1) holds. Suppose that \(a^k k! \leq (ak)! \). We prove that \(a^{k+1} (k+1)! \leq (ak + a)! \).

By induction hypothesis

\[a^{k+1} (k+1)! \leq (ak)! a(k+1). \]

But clearly

\[(ak)! a(k+1) \leq (ak + a)! \]

and so

\[a^{k+1} (k+1)! \leq (ak + a)! \]

and this completes the proof of (1).

2) We prove part 2 by induction on \(b \). If \(b = 1 \), then clearly (2) holds. Suppose that

\[a^{k-1} k! \leq (a(k-1))! \]

for \(k \geq 1 \) and \(a \geq 4 \). We prove that

\[a^k (k+1)! \leq (ak)! \]

By induction hypothesis,

\[a^k (k+1)! \leq (a(k-1))! a(k+1). \]
But since \(ak \geq 4 \), we have \(ak - 1 \geq 3 \) and so
\[
(ak)(ak - 1) \cdots (ak - a + 1) \geq ak + a.
\]
Thus \((ak)! \geq (ak - a)!a(k + 1)\). Hence
\[
a^k(k + 1)! \leq (ak)!
\]
and this completes the proof of (2).

3) We prove this part by induction on \(b \) too. If \(b = 1 \), then (3) clearly holds. Suppose that
\[
3^{k-1}k! \leq (3k - 3)!.
\]
We prove that
\[
3^k(k + 1)! \leq (3k)!.
\]
By induction hypothesis we obtain
\[
3^k(k + 1)! \leq (3k - 3)!3(k + 1).
\]
It is easy to know that
\[
k + 1 \leq k(3k - 1)(3k - 2)
\]
for \(k \geq 1 \). Thus
\[
(3k - 3)!3(k + 1) \leq (3k)!
\]
and so
\[
3^k(k + 1)! \leq (3k)!
\]
and this completes the proof of (3).

4) We prove part (4) by induction on \(b \). If \(b = 3 \), then clearly (4) holds. Suppose that
\[
2^{k-1}k! \leq (2k - 2)!
\]
for \(k \geq 3 \). We prove that
\[
2^k(k + 1)! \leq (2k)!.
\]
By induction hypothesis we obtain \(2^k(k + 1)! \leq (2k - 2)!2(k + 1) \). It is easy to see that \(k + 1 \leq k(2k - 1) \) for \(k \geq 3 \). Thus
\[
(2k - 2)!2(k + 1) \leq (2k)!
\]
and so
\[
2^k(k + 1)! \leq (2k)!
\]
and this completes the proof of (4).

5) We prove this part by induction on \(b \). If \(b = 5 \), then (5) clearly holds. Suppose that
\[
2^{k-2}k! \leq 2(2k - 4)!
\]
for $k \geq 5$. We prove that

$$2^{k-1}(k + 1)! \leq 2(2k - 2)!.$$

By induction hypothesis

$$2^{k-1}(k + 1)! \leq 2(2k - 4)!2(k + 1).$$

But since

$$k^2 - 3k + 1 \geq 0$$

for $k \geq 5$, we have

$$k + 1 \leq (k - 1)(2k - 3)$$

and so

$$2(2k - 4)!2(k + 1) \leq 2(2k - 2)!.$$

Hence

$$2^{k-1}(k + 1)! \leq 2(2k - 2)!$$

and this completes the proof of (5).

6) We prove (6) by induction on b too. If $b = 4$, then (6) clearly holds. Suppose that

$$3^{k-2}k! \leq 2(3k - 6)!$$

for $k \geq 4$. We prove that

$$3^{k-1}(k + 1)! \leq 2(3k - 3)!.$$

By induction hypothesis

$$3^{k-1}(k + 1)! \leq 2(3k - 6)!3(k + 1).$$

It is easy to see that

$$3(k + 1) \leq (3k - 3)(3k - 4)(3k - 5)$$

for $k \geq 4$ and so

$$2(3k - 6)!3(k + 1) \leq 2(3k - 3)!$$

for $k \geq 4$. Hence

$$3^{k-1}(k + 1)! \leq 2(3k - 3)!$$

and this completes the proof of (6).

□

Lemma 2.10. Let $a \geq 0$, $b \geq 0$ be two integers. Then $a!b! \leq (a + b)!$.

Proof. If \(a \geq 1, b \geq 1\), then since
\[
 a + b > b, \\
 a + b - 1 > b - 1, \ldots, \\
 a + 1 > 1,
\]
we have
\[
(a + b)(a + b - 1) \cdots (a + 1) > b!
\]
and so
\[
(a + b)! \\
= (a + b)(a + b - 1) \cdots (a + 1) a! > b! a!.
\]
If \(a = 0\) or \(b = 0\), then clearly \(a! b! = (a + b)!\). \(\square\)

Lemma 2.11. Let \(a_1, a_2, \ldots, a_m\) be integers with \(a_i \geq 0, 1 \leq i \leq m\). Then \(a_1! a_2! \cdots a_m! \leq (a_1 + \cdots + a_m)!\).

Proof. We prove Lemma by induction on \(m\). If \(m = 1\), then clearly Lemma holds. Assume that
\[
a_1! a_2! \cdots a_k! \\
\leq (a_1 + a_2 + \cdots + a_k)!
\]
We prove that
\[
a_1! a_2! \cdots a_k! a_{k+1}! \\
\leq (a_1 + a_2 + \cdots + a_k + a_{k+1})!.
\]
By induction hypothesis
\[
a_1! a_2! \cdots a_k! a_{k+1}! \\
\leq (a_1 + a_2 + \cdots + a_k)! a_{k+1}!.
\]
But by Lemma 2.10 we have
\[
(a_1 + \cdots + a_k)! a_{k+1}! \\
\leq (a_1 + a_2 + \cdots + a_k + a_{k+1})!.
\]
Thus
\[
a_1! a_2! \cdots a_{k+1}! \\
\leq (a_1 + a_2 + \cdots + a_{k+1})!.
\]
\(\square\)

Lemma 2.12. Let \(l, m, n\) be three natural numbers with \(n \geq 13\). Then the following holds.
1) If there exists a m-cycle, $m \geq 4$ in a cycle type of $x \in S_n$, then $|C_{S_n}(x)| \leq m(n - m)!$

2) If there exists two l-cycles in a cycle type of $x \in S_n$, where $l = 2$ or $l = 3$, then $|C_{S_n}(x)| \leq l^2! (n - 2l)!$

3) If there exist a 2-cycle and a 3-cycle in a cycle type of $x \in S_n$, then $|C_{S_n}(x)| \leq 2.3.(n - 5)!$

Proof. 1) Assume that $x \in S_n$ is a permutation of type

$$1^{\alpha_1} \cdot 2^{\alpha_2} \cdot m^{\alpha_m} \cdot n^{\alpha_n},$$

where $\alpha_i \geq 0$, $1 \leq i \leq n$. By assumption $\alpha_m \geq 1$. Thus

$$|C_{S_n}(x)| = 1^{\alpha_1} \cdot 2^{\alpha_2} \cdot m^{\alpha_m} \cdot n^{\alpha_n},$$

where $\alpha_m \geq 1$. By Lemma 2.9 part 1 and 2 we conclude that

$$|C_{S_n}(x)| \leq \alpha_1! \cdot 2^{\alpha_2} \cdot m^{(\alpha_m - 1)} \cdot n^{\alpha_n}!$$

and so by Lemma 2.11, we have

$$|C_{S_n}(x)| \leq m(\alpha_1 + 2\alpha_2 + \cdots + m(\alpha_m - 1) + \cdots + n\alpha_n)! = m(n - m)!$$

and this completes the proof of (1).

2) Assume that $x \in S_n$ is a permutation of type

$$1^{\alpha_1} \cdot 2^{\alpha_2} \cdot n^{\alpha_n}$$

where $\alpha_i \geq 0$, $1 \leq i \leq n$. By assumption $\alpha_l \geq 2$, where $l = 2$ or $l = 3$. First suppose that $l = 2$.

We have

$$|C_{S_n}(x)| = 1^{\alpha_1} \cdot 2^{\alpha_2}\cdot n^{\alpha_n}!.$$

If $\alpha_2 \geq 5$, then by Lemma 2.9 part 5 and 1 we conclude that

$$|C_{S_n}(x)| \leq \alpha_1! \cdot 2^{\alpha_2} \cdot (2\alpha_2 - 4)! \cdots (n\alpha_n)!$$

and so by Lemma 2.11 we have

$$|C_{S_n}(x)| \leq 2^3(\alpha_1 + 2\alpha_2 - 4 + \cdots + n\alpha_n)! = 2^3(n - 4)! = 2^22!(n - 4)!.$$
If $\alpha_2 = 2$, then

$$|C_{S_n}(x)| = 1^{\alpha_1} \cdot \alpha_1! \cdot 2^2 \cdot 2! \cdot \cdots \cdot n^{\alpha_n} \cdot \alpha_n!.$$

By part 1 of Lemma 2.9 and Lemma 2.11 we conclude that

$$|C_{S_n}(x)| \leq 2^2 \cdot 2! \cdot \alpha_1! \cdot (3\alpha_3)! \cdot \cdots \cdot (n\alpha_n)! \leq 2^2 \cdot 2!(n-4)!.$$

If $\alpha_2 = 3$ or $\alpha_2 = 4$, then similar argument as case $\alpha_2 = 2$ shows us that

$$|C_{S_n}(x)| \leq 2^3 \cdot 3!(n-6)!$$

or

$$|C_{S_n}(x)| \leq 2^4 \cdot 4!(n-8)!$$

respectively and since

$$2^3 \cdot 3!(n-6)! \leq 2^2 \cdot 2!(n-4)!$$

and

$$2^4 \cdot 4!(n-8)! \leq 2^2 \cdot 2!(n-4)!$$

for $n \geq 13$, we have

$$|C_{S_n}(x)| \leq 2^2 \cdot 2!(n-4)!$$

in this case too.

Now suppose that $l = 3$. If $\alpha_3 \geq 4$, then by Lemma 2.9 part 6 and 1 we have

$$|C_{S_n}(x)| \leq \alpha_1!(2\alpha_2)! \cdot 3^2 \cdot 2(3\alpha_3 - 6)! \cdot \cdots \cdot (n\alpha_n)!$$

and so by Lemma 2.11 we have

$$|C_{S_n}(x)| \leq 3^2 \cdot 2!(\alpha_1 + 2\alpha_2 + 3\alpha_3 - 6 + \cdots + n\alpha_n)! = 3^2 \cdot 2!(n-6)!.$$
If $\alpha_3 = 2$, then
\[
|C_{S_n}(x)| = 1^{\alpha_1}\alpha_1!2^{\alpha_2}\alpha_2!3^{2}\alpha_2!\cdots n^{\alpha_n}\alpha_n!.
\]

By Lemma 2.9 part 1 and Lemma 2.11 we conclude that
\[
|C_{S_n}(x)| \leq 3^2\alpha_1!(2\alpha_2)!4\alpha_2!\cdots (n\alpha_n)! \\
\leq 3^2!(n-6)!.
\]

If $\alpha_3 = 3$, then similar argument as case $\alpha_3 = 2$ shows us that
\[
|C_{S_n}(x)| \leq 3^3.3!(n-9)!
\]
and since
\[
3^3.3!(n-9)! \leq 3^22!(n-6)!
\]
for $n \geq 13$, we have
\[
|C_{S_n}(x)| \leq 3^22!(n-6)!
\]
in this case too and so the proof of (2) is complete.

3) Again assume that $x \in S_n$ is a permutation of type
\[
1^{\alpha_1}\cdot 2^{\alpha_2}\cdots n^{\alpha_n},
\]
where $\alpha_i \geq 0$, $1 \leq i \leq n$. By assumption $\alpha_2 \geq 1$ and $\alpha_3 \geq 1$. We have
\[
|C_{S_n}(x)| = 1^{\alpha_1}\alpha_1!2^{\alpha_2}\alpha_2!3^{\alpha_3}\alpha_3!\cdots n^{\alpha_n}\alpha_n!.
\]
If $\alpha_2 \geq 3$, then by Lemma 2.9 part 4,3 and 1 we have
\[
|C_{S_n}(x)| \leq \alpha_1!2(2\alpha_2-2)!3(3\alpha_3-3)!\cdots (n\alpha_n)!
\]
and so by Lemma 2.11
\[
|C_{S_n}(x)| \leq 2.3.(\alpha_1 + 2\alpha_2 - 2 + 3\alpha_3 - 3 + \cdots + n\alpha_n)! \\
= 2.3.(n-5)!.
\]
If $\alpha_2 = 1$, then we have
\[
|C_{S_n}(x)| = 1^{\alpha_1}\alpha_1!2.3^{\alpha_3}\alpha_3!\cdots n^{\alpha_n}\alpha_n!.
\]
By Lemma 2.9 part 1 and 3 we have

\[|C_{S_n}(x)| \leq \alpha_1! \cdot 2 \cdot 3 \cdot (3\alpha_3 - 3)! \cdots (n\alpha_n)! \]

and so by Lemma 2.11

\[|C_{S_n}(x)| \leq 2 \cdot 3 \cdot (\alpha_1 + 3\alpha_3 - 3 + \cdots + n\alpha_n)! \]

\[= 2 \cdot 3 \cdot (n - 5)!. \]

If \(\alpha_2 = 2 \), then similar argument as case \(\alpha_2 = 1 \) shows us that

\[|C_{S_n}(x)| \leq \alpha_1! 2^2 \cdot 2! \cdot 3 \cdot (3\alpha_3 - 3)! \cdots (n\alpha_n)! \]

\[\leq 2^2 \cdot 2! \cdot 3(\alpha_1 + 3\alpha_3 - 3 + \cdots + n\alpha_n)! \]

\[= 2^2 \cdot 2! \cdot 3(n - 7)! \]

and since

\[2^2 \cdot 2! \cdot 3(n - 7)! \leq 2.3(n - 5)! \]

for \(n \geq 13 \), we have

\[|C_{S_n}(x)| \leq 2.3(n - 5)! \]

in this case too and the proof of (3) is complete. \(\Box \)

Lemma 2.13. Let \(l, k \) be two natural numbers with \(l > 1 \) and \(1 < l + k < n - 1 \), where \(n \geq 13 \) is a natural number. Then \(l(n - l)! > (l + k)(n - l - k)! \).

Proof. We prove Lemma 2.12 by induction on \(k \). If \(k = 1 \), then since \(n - l > 2 \), \(l > 1 \), we have \(l(n - l) > l + 1 \) and so

\[l(n - l)! > (l + 1)(n - l - 1)!. \]

Thus the lemma holds whenever \(k = 1 \). Suppose that if

\[1 < l + k < n - 1, \]

\[l > 1, \]

then

\[l(n - l)! > (l + k)(n - l - k)!. \]
We prove the lemma for \(k + 1 \).

Suppose that

\[
1 < l + k + 1 < n - 1, \\
l > 1.
\]

Since

\[
(n - l - k) > 2, \\
l + k > 1,
\]

we have

\[
(l + k)(n - l - k) \\
> 2(l + k) > l + k + 1
\]

and so

\[
(l + k)(n - l - k)! \\
> (l + k + 1)(n - l - k - 1)!.
\]

Thus by induction hypothesis we conclude that

\[
l(n - l)! \\
> (l + k + 1)(n - l - k - 1)!.
\]

Hence the lemma is proved. \(\square \)

Lemma 2.14. Let \(l, m, n \) be three natural numbers with \(l > 1 \), \(n \geq 13 \), \(m \neq n \) and \(l \leq m \). Then \(l(n - l)! \geq m(n - m)! \)

Proof. If \(l = m \), then clearly Lemma holds. If \(l < m \) and \(1 < m < n - 1 \), then since \(l > 1 \), Lemma 2.14 concluded from Lemma 2.13. But if \(l < m \) and \(m = n - 1 \), then we have

\[
m(n - m)! \\
= (n - 1)!
\]

\[
= n - 1.
\]

We have \((n - 1) < (n - 2)2 \) for \(n \geq 13 \) and since \(1 < n - 2 < n - 1 \) by above argument for all \(1 < l \leq n - 2 \) we have

\[
l(n - l)! \geq (n - 2)2!.
\]

Hence \(l(n - l)! > n - 1 \), also if \(l = n - 1 \), clearly

\[
l(n - l)! \geq n - 1.
\]

So the proof is complete. \(\square \)
Lemma 2.15. If \(x \in S_n \) and \(|x^{S_n}| \leq n(n-1)(n-2) \), where \(x^{S_n} \) is the conjugacy class of \(S_n \), \(n \geq 13 \) containing \(x \). Then \(x = 1 \), \(x \) is a 2-cycle or \(x \) is a 3-cycle and \(|x^{S_n}| = (n-3)! \).

Proof. Suppose that \(|x^{S_n}| \leq n(n-1)(n-2) \). Then

\[
|C_{S_n}(x)| \geq \frac{n!}{n(n-1)(n-2)} = (n-3)!.
\]

If there exists a \(m \)-cycle, \(m \geq 4 \) in a cycle type of \(x \), then by Lemma 2.12 part 1

\[
|C_{S_n}(x)| \leq m(m-1)!\]

and by Lemma 2.14 we conclude that if \(m \neq n \), then

\[m(n-m)! \leq 4(n-4)! \]

But if \(m = n \), then \(m(n-m)! = n \). It is easy to know that

\[n < 4(n-4)! \]

for \(n \geq 13 \). Therefore if there exists a \(m \)-cycle, \(m \geq 4 \) in a cycle type of \(x \), then

\[
|C_{S_n}(x)| \leq 4(n-4)!.
\]

But we have \(|C_{S_n}(x)| \geq (n-3)! \) and so

\[(n-3)! \leq 4(n-4)! \]

which is a contradiction, because \(n \geq 13 \). Thus there is no \(m \)-cycle, \(m \geq 4 \) in a cycle type of \(x \). If there exist two 2-cycles or two 3-cycles in a cycle type of \(x \), then by Lemma 2.12 part 2 we conclude that

\[
|C_{S_n}(x)| \leq 2^22!(n-4)!
\]

or

\[
|C_{S_n}(x)| \leq 3^22!(n-6)!
\]

respectively and so

\[(n-3)! \leq 2^22!(n-4)! \]

or

\[(n-3)! \leq 3^22!(n-6)! \]

which is a contradiction, because \(n \geq 13 \). Also if there exists a 3-cycle and a 2-cycle in a cycle type of \(x \), then by Lemma 2.12 part 3 we conclude that

\[|C_{S_n}(x)| \leq 2.3.(n-5)! \]
and so
\[(n - 3)! \leq 2.3(n - 5)!,\]
which is a contradiction with \(n \geq 13\). Thus \(x = 1\) or \(x\) is a 2-cycle or \(x\) is a 3-cycle. Hence \(|xS_n| = 1\) or \(|xS_n| = \frac{n(n-1)}{2}\) or \(xS_n = \frac{n(n-1)(n-2)}{3}\).

Lemma 2.16. Let \(x\) be an element of \(S_n\), \(n \geq 13\). If \(|C_{S_n}(x)| = 3(n - 3)!\), then \(x\) is a 3-cycle.

Proof. If \(|C_{S_n}(x)| = 3(n - 3)!\), then
\[|C_{S_n}(x)| \geq (n - 3)!\]
and so by Lemma 2.15 we conclude that \(x = 1\) or \(x\) is a 2-cycle or \(x\) is a 3-cycle. But if \(x = 1\) or \(x\) is a 2-cycle, then clearly
\[|C_{S_n}(x)| \neq 3(n - 3)!\]
\((n \neq 3(n - 3)!\) and \(2(n - 2)! \neq 3(n - 3)!\) and so \(x\) is a 3-cycle. \(\square\)

3. Main result

In this section we will prove our main result.

Theorem 3.1. Let \(G\) be a finite group with \(\nabla(G) \cong \nabla(S_n)\), where \(S_n\) is the symmetric group of degree \(n\) and \(n \geq 3\), then \(G \cong S_n\).

Proof. By Lemma 2.1, we have \(|G| = |S_n|\). Since \(\nabla(G) \cong \nabla(S_n)\),
\[|G - Z(G)| = |S_n - Z(S_n)| = |S_n| - 1\]
and so \(|Z(G)| = 1\).

By Lemmas 2.6 and 2.7 we may assume that \(n \geq 16\). Without loss of generality we can assume that \(\varphi : S_n \to G\) and \(\varphi(1) = 1\), where \(\varphi\) is an isomorphism from \(\nabla(S_n)\) to \(\nabla(G)\).

Now we prove the theorem by induction on \(n\), where \(n \geq 16\). If \(n = 16\), then theorem holds by Lemma 2.7. Suppose the theorem is true for all \(m < n\) and assume that \(n \geq 16\). We will prove that the result is valid for \(S_n\).

Set
\[A = \{\alpha \in S_n|(i)\alpha = i, i = 4, 5, \ldots, n\}.\]

Clearly
\[A \leq S_n,\]
\[A \cong S_3.\]
By Lemma 2.2 we have
\[\nabla(C_{S_n}(A)) \cong \nabla(C_G(\varphi(A))) \]
and since \(C_{S_n}(A) \cong S_{n-3} \), we have
\[\nabla(S_{n-3}) \cong \nabla(C_G(\varphi(A))). \]
Thus by induction hypothesis \(C_G(\varphi(A)) \cong S_{n-3} \). Therefore \(G \) has a subgroup isomorphic to \(S_{n-3} \).

Let \(H = C_G(\varphi(A)) \). Now we assume that \(N \) is an arbitrary minimal normal subgroup of \(G \). We will prove that \(N \) is a simple group and that \(H \rightarrow N \cap P \)

for all subgroups \(P \) of \(G \) isomorphic to \(S_{n-3} \). In particular \(N \) contains all even permutations of \(P \), for all \(P \leq G, P \cong S_{n-3} \).

Let \(P \) be an arbitrary subgroup of \(G \) isomorphic to \(S_{n-3} \). We have \(N \cap P \leq P \). We assert that \(N \cap P \neq 1 \). If \(N \cap P = 1 \), then we have
\[|NP| = |N||P||G| = n!. \]
Thus
\[|N|.(n-3)!\cdot n!, \]
since \(|P| = (n-3)! \). This implies that \(|N|n(n-1)(n-2) \). Moreover \(N \) is a union of conjugacy classes of \(G \) and the size of conjugacy class of \(G \) containing \(x \) is equal to the size of conjugacy class of \(S_n \) containing \(\varphi^{-1}(x) \) for all \(x \in G - \{1\} \).

By Lemma 2.15 we see that all conjugacy class sizes less than \(n(n-1)(n-2) \) in \(S_n \), \(n \geq 16 \) are 1, \(\frac{n(n-1)}{2} \) and \(\frac{n(n-1)(n-2)}{3} \).

Let \(y \) be an arbitrary element of \(N - \{1\} \). Thus the size of the conjugacy class of \(G \) containing \(y \) and so the size of conjugacy class of \(S_n \) containing \(\varphi^{-1}(y) \) is equal to \(\frac{n(n-1)}{2} \) or \(\frac{n(n-1)(n-2)}{3} \). Also by Lemma 2.15 \(\varphi^{-1}(y) \) is a 2-cycle or \(\varphi^{-1}(y) \) is a 3-cycle.

In any case there exists a subgroup of \(S_n \), say \(E \) isomorphic to \(S_3 \) such that \(\varphi^{-1}(y) \in C_{S_n}(E) \) and
\[C_{S_n}(E) \cong S_{n-3}. \]
So \(y \in C_G(\varphi(E)) \), also we know that \(y \in N - \{1\} \). Therefore
\[y \in N \cap C_G(\varphi(E)) \]
and
\[N \cap C_G(\varphi(E)) \neq 1. \]

By Lemma 2.2
\[\nabla(S_{n-3}) \cong \nabla(C_{S_n}(E)) \]
\[\cong \nabla(C_G(\varphi(E))) \]
and so by induction hypothesis
\[C_G(\varphi(E)) \cong S_{n-3}. \]

Since
\[1 \neq N \cap C_G(\varphi(E)) \]
\[\leq C_G(\varphi(E)) \cong S_{n-3}, \]
we conclude that
\[A_{n-3} \hookrightarrow N \cap C_G(\varphi(E)). \]

Set \(R = N \cap C_G(\varphi(E)) \). Therefore
\[\frac{(n-3)!}{2} ||R||. \]

Since \(P \cap N = 1 \),
\[P \cap R \]
\[\subseteq P \cap N = 1 \]
and so \(P \cap R = 1 \). Thus \(|PR| = |P||R| \). On the other hand \(|P| = (n-3)!| \) and
\[\frac{(n-3)!}{2} ||R||. \]

So
\[\frac{(n-3)!}{2}^2 ||P||^2 = |PR|. \]

But since \(PR \subseteq G \), we have
\[|PR| \leq |G| = n!. \]

So
\[\frac{(n-3)!}{2} \leq n!, \]
which is a contradiction, since we assumed that \(n \geq 16 \). Hence \(P \cap N \neq 1 \) for all subgroup \(P \) of \(G \) isomorphic to \(S_{n-3} \). In particular \(N \cap H \neq 1 \). Also
\[1 \neq N \cap P \leq P \cong S_{n-3} \]
implies that
\[A_{n-3} \hookrightarrow N \cap P \]
for all \(P \leq G, P \cong S_{n-3} \).
Since \(N \) is a minimal normal subgroup of \(G \), \(N \) is a direct product of isomorphic simple groups, say
\[N \cong S_1 \times \cdots \times S_t, \]
where \(S_i \)'s are isomorphic simple groups, \(1 \leq i \leq t \). Also since
\[A_{n-3} \hookrightarrow N \cap H, \]
\(A_{n-3} \hookrightarrow N \). Thus by Lemma 2.8 \(N \) is a simple group.

Next set
\[B = \{ \beta \in S_n | (i) \beta = i, i = 1, 2, \ldots, n - 3 \}. \]
Clearly
\[B \leq S_n, \]
\[B \cong S_3 \]
and
\[C_{S_n}(B) \cong S_{n-3}. \]
It is easy to see that
\[C_{S_n}(A) \cap C_{S_n}(B) \cong S_{n-6}. \]
By Lemma 2.2 we have
\[
\nabla(S_{n-6}) \\
\cong \nabla(C_{S_n}(A) \cap C_{S_n}(B)) \\
= \nabla(C_{S_n}(A \cup B)) \\
\cong \nabla(C_G(\varphi(A \cup B))) \\
= \nabla(C_G(\varphi(A) \cup \varphi(B))) \\
= \nabla(C_G(\varphi(A) \cap C_G(\varphi(B))))
\]
and so by induction hypothesis
\[C_G(\varphi(A)) \cap C_G(\varphi(B)) \cong S_{n-6}. \]
Similarly \(C_G(\varphi(B)) \cong S_{n-3} \).
By above argument
\[A_{n-3} \hookrightarrow N \cap C_G(\varphi(A)) \]
and

\[A_{n-3} \hookrightarrow N \cap C_G(\varphi(B)). \]

Let

\[L \leq N \cap C_G(\varphi(A)), \]
\[K \leq N \cap C_G(\varphi(B)) \]

and \(L \cong K \cong A_{n-3} \). We have

\[L \cap K \leq N \cap C_G(\varphi(A)) \cap C_G(\varphi(B)) \leq C_G(\varphi(A)) \cap C_G(\varphi(B)) \cong S_{n-6}. \]

Now we will prove the following claim.

Claim: \(L \cap K \neq C_G(\varphi(A)) \cap C_G(\varphi(B)) \)

Suppose by way of contradiction, that

\[L \cap K = C_G(\varphi(A)) \cap C_G(\varphi(B)). \]

Assume that \(a = (1\ 2\ 3) \in S_n \). Clearly \(a \in C_{S_n}(B) \). Since

\[|C_{S_n}(B) \cap C_{S_n}(a)| = |C_{C_{S_n}(B)}(a)| = 3(n - 6)!, \]

we conclude that

\[|C_G(\varphi(B)) \cap C_G(\varphi(a))| = |C_{C_G(\varphi(B))}(\varphi(a))| = 3(n - 6)! \]

But

\[C_G(\varphi(B)) \cong S_{n-3} \]

and by Lemma 2.16 if

\[y \in S_{n-3}, \]
\[|C_{S_{n-3}}(y)| = 3(n - 6)!, \]
\[n \geq 16, \]
then \(y \) is a 3-cycle. Thus \(\varphi(a) \) is a 3-cycle in \(C_G(\varphi(B)) \cong S_{n-3} \). Therefore \(\varphi(a) \) is an even permutation in \(C_G(\varphi(B)) \cong S_{n-3} \) and so
\[
\varphi(a) \in K \cong A_{n-3}
\]
(Note that \(K \leq C_G(\varphi(B)) \)). Also we have
\[
C_{S_n}(A) \cap C_{S_n}(B) \subseteq C_{S_n}(a),
\]
so
\[
L \cap K = C_G(\varphi(A)) \cap C_G(\varphi(B)) \leq C_G(\varphi(a)),
\]
which implies that
\[
C_G(\varphi(A)) \cap C_G(\varphi(B)) \leq C_G(\varphi(a)) \cap K = C_K(\varphi(a)).
\]
On the other hand \(\langle \varphi(a) \rangle \leq C_K(\varphi(a)) \). Since
\[
C_{S_n}(C_{S_n}(a)) \cap C_{S_n}(A) \cap C_{S_n}(B) = 1,
\]
we have
\[
\langle \varphi(a) \rangle \cap C_G(\varphi(A)) \cap C_G(\varphi(B)) \subseteq C_G(\varphi(a)) \cap C_G(\varphi(A)) \cap C_G(\varphi(B)) = 1
\]
and so
\[
\langle \varphi(a) \rangle \cap C_G(\varphi(A)) \cap C_G(\varphi(B)) = 1.
\]
Therefore
\[
|\langle \varphi(a) \rangle C_G(\varphi(A)) \cap C_G(\varphi(B))| = |\langle \varphi(a) \rangle| |C_G(\varphi(A)) \cap C_G(\varphi(B))| = 3(n - 6)!.
\]
Moreover since \(a \) commutes with all elements of \(C_{S_n}(A) \cap C_{S_n}(B) \), \(\varphi(a) \) commutes with all elements of
\[
C_G(\varphi(A)) \cap C_G(\varphi(B)).
\]
So
\[
\langle \varphi(a) \rangle C_G(\varphi(A)) \cap C_G(\varphi(B)) \leq G.
\]
But we have

\[\langle \varphi(a) \rangle \leq C_K(\varphi(a)), \]
\[C_G(\varphi(A)) \cap C_G(\varphi(B)) \leq C_K(\varphi(a)) \]

and thus

\[\langle \varphi(a) \rangle C_G(\varphi(A)) \cap C_G(\varphi(B)) \leq C_K(\varphi(a)). \]

Hence

\[3(n-6)! \frac{\left| C_K(\varphi(a)) \right|}{2}, \]

where \(K \cong A_{n-3} \). But this is impossible, because \(\varphi(a) \) is a 3-cycle in \(K \) and so

\[|C_K(\varphi(a))| = |C_{A_{n-3}}(\varphi(a))| \]
\[= 3 \cdot \frac{(n-6)!}{2}. \]

Hence

\[L \cap K \neq C_G(\varphi(A)) \cap C_G(\varphi(B)) \]

and the claim is proved. For the order of \(N \) we will prove the followings:

1. \(|N| > \frac{n!}{4} \)

We know that \(L, K \leq N \) and \(|L| = |K| = \frac{(n-3)!}{2} \). Also

\[L \cap K \leq C_G(\varphi(A)) \cap C_G(\varphi(B)) \]

and so

\[|L \cap K| \leq \frac{|C_G(\varphi(A)) \cap C_G(\varphi(B))|}{2}. \]

From \(L, K \leq N \), we deduce that \(LK \leq N \). Thus

\[
\frac{|N|}{|LK|} = \frac{|L||K|}{|L \cap k|} \geq \frac{|L||K|}{|C_G(\varphi(A)) \cap C_G(\varphi(B))|} \geq \frac{\frac{(n-3)!}{2} \cdot \frac{(n-3)!}{2}}{\frac{(n-6)!}{2}} \frac{(n-6)!}{2} = \frac{n!}{4}.
\]

On the other hand

\[
\frac{(n-3)! \cdot \frac{(n-3)!}{2} \cdot \frac{(n-6)!}{2}}{2} > \frac{n!}{4}.
\]
for $n \geq 16$. Thus $|N| > \frac{n!}{4}$.

2. $|N| \neq \frac{n!}{3}$

We know that

$$C_G(\varphi(A)) \cong C_G(\varphi(B)) \cong S_{n-3}$$

and

$$N \cap C_G(\varphi(A)) \neq 1$$

and

$$N \cap C_G(\varphi(B)) \neq 1.$$

If $C_G(\varphi(A)) \leq N$ and $C_G(\varphi(B)) \leq N$, then

$$C_G(\varphi(A))C_G(\varphi(B)) \subseteq N.$$

Thus

$$|N| \geq |C_G(\varphi(A))C_G(\varphi(B))| = \frac{|C_G(\varphi(A))||C_G(\varphi(B))|}{|C_G(\varphi(A)) \cap C_G(\varphi(B))|} = \frac{(n-3)!(n-3)!}{(n-6)!}.$$

But

$$\frac{(n-3)!(n-3)!}{(n-6)!} > \frac{n!}{2}$$

for $n \geq 16$, which implies that $|N| = |G|$ and since N is an arbitrary minimal normal subgroup of G, we conclude that G is a simple group. By assumption $\nabla(G) \cong \nabla(S_n)$ and [6] we have $G \cong S_n$, so S_n must be a simple group too, which is a contradiction.

Hence

$$N \cap C_G(\varphi(A)) \neq C_G(\varphi(A))$$

or

$$N \cap C_G(\varphi(B)) \neq C_G(\varphi(B)).$$

Suppose that

$$N \cap C_G(\varphi(A)) \neq C_G(\varphi(A)).$$
We know that
\[1 \neq N \cap C_G(\varphi(A)) \leq C_G(\varphi(A)) \cong S_{n-3}. \]

Therefore
\[|N \cap C_G(\varphi(A))| = |A_{n-3}| = \frac{(n-3)!}{2} \]

and so we have
\[|N\mathbf{C}_G(\varphi(A))| = \frac{|N||C_G(\varphi(A))|}{|N \cap C_G(\varphi(A))|} = \frac{|N|(n-3)!}{(n-3)!} = 2|N|. \]

Moreover \(N \trianglelefteq G \) implies that \(N\mathbf{C}_G(\varphi(A)) \leq G \). Thus
\[|N\mathbf{C}_G(\varphi(A))| = 2|N||G| = n!. \]

Now if \(|N| = \frac{n!}{4}\), then we have \(2n!|n!| = n! \), a contradiction. This shows that \(|N| \neq \frac{n!}{4}\).

3. \(|N| = \frac{n!}{2}\)

From \(|N| > \frac{n!}{4}\) and \(|N||G| = n!\), we conclude that \(|N|\) is equal to one of \(\frac{n!}{4}, \frac{n!}{2} \) or \(n! \). By \(2 |N| \neq \frac{n!}{4} \).

If \(|N| = |G| = n!\), then \(G \) is a simple group, since \(N \) is an arbitrary minimal normal subgroup of \(G \). By assumption \(\nabla(G) \cong \nabla(S_n) \). Now since \(G \) is a simple group, by [6] \(G \cong S_n \). So \(S_n \) must be a simple group too, a contradiction. Hence \(|N| = \frac{n!}{2}\).

From \(|N| = \frac{n!}{2}\), simplicity of \(N \) and by corollary 2.4, \(N \cong A_n \). We assert that \(C_G(N) = 1 \). Otherwise there is a minimal normal subgroup of \(G \), say \(M \) such that \(M \leq C_G(N) \). We proved that all minimal normal subgroups of \(G \) are isomorphic to \(A_n \). Thus \(M \cong A_n \) and since
\[N \cap C_G(N) = Z(N) = 1, \]
\[M \cap N = 1. \]

On the other hand \(MN \leq G \) and so
\[|MN| = |M||N||G|. \]

It follows that \((\frac{n!}{2})^2|G| = n!\), a contradiction. Hence \(C_G(N) = 1 \) and so
\[G \cong \frac{G}{C_G(N)} \hookrightarrow Aut(N) \]
and since for $n \geq 16$,

$$\text{Aut}(N) \cong \text{Aut}(\mathbb{A}_n) \cong S_n,$$

we conclude that G is embedded into S_n. But $|G| = |S_n|$ and so $G \cong S_n$.

\[\square\]

REFERENCES

M. R. Darafsheh
School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
Email: darafsheh@ut.ac.ir

Pedram Yousefzadeh
Department of Mathematics, K. N. Toosi University of Technology, Tehran, Iran
Email: pedram_yous@yahoo.com