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Abstract. Let G be a finite p-group and N be a normal subgroup of G with |N | = pn and |G/N | = pm.

A result of Ellis (1998) shows that the order of the Schur multiplier of such a pair (G,N) of finite p-

groups is bounded by p
1
2
n(2m+n−1) and hence it is equal to p

1
2
n(2m+n−1)−t for some non-negative integer

t. Recently, the authors have characterized the structure of (G,N) when N has a complement in G

and t ≤ 3. This paper is devoted to classification of pairs (G,N) when N has a normal complement in

G and t = 4, 5.

1. Introduction

By a pair of groups (G,N) we mean a group G with a normal subgroup N . In 1998, Ellis [2] defined

the Schur multiplier of a pair (G,N) to be the abelian group M(G,N) appearing in a natural exact

sequence

H3(G) → H3(G/N)→M(G,N)→M(G)→M(G/N)

→ N/[N,G]→ (G)ab → (G/N)ab → 0

in which H3(G) is the third homology of G with integer coefficients. He [2] also noted that for any

pair (G,N) of groups,

M(G,N) ∼= ker(N ∧G→ G),

where N ∧G is the exterior product of N and G. In particular, if N = G, then M(G,G) is the usual

Schur multiplier of G.
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In 1956, Green [4] showed that if G is a group of order pn, then its Schur multiplier is of order at

most p
n(n−1)

2 and hence equals to p
n(n−1)

2
−t for some non-negative integer t. Berkovich [1], Zhou [11],

Ellis [3] and Niroomand [7, 8] determined the structure of G for t = 0, 1, 2, 3, 4, 5 by different methods.

In 1998, Ellis [2] gave an upper bound for the order of the Schur multiplier of a pair of finite p-

groups. He proved that if G is a finite p-group with a normal subgroup N of order pn and its quotient

G/N of order pm, then the Schur multiplier of (G,N) is bounded by p
1
2
n(2m+n−1) and hence equals to

p
1
2
n(2m+n−1)−t for some non-negative integer t.

Let (G,N) be a pair of groups and K be the complement of N in G. In 2004, Salemkar, Moghaddam

and Saeedi [10] characterized the structure of such a pair (G,N) when t = 0, 1 under some conditions.

Recently, the authors [5] determined the structure of the pair (G,N), for t = 0, 1 without any condition

and also gave the structure of (G,N) for t = 2, 3 when K is normal. In this paper, we are going to

determine the structure of (G,N) for t = 4, 5 when K is a normal subgroup of G.

In this paper, D and Q denote the dihedral and the quaternion group of order 8, D16 denotes

the dihedral group of order 16 and, E1 and E2 denote the extra special p-groups of order p3 of

odd exponent p and p2, respectively. Also E4 denotes the unique central product of a cyclic group

of order p2 and a non-abelian group of order p3, and Z
(m)
n denotes the direct product of m copies of Zn.

The following result is essential to prove the main theorems.

Theorem 1.1. [2]Let (G,N) be a pair of groups and K be the complement of N in G. Then

M(G) ∼= M(G,N)×M(K).

In 1907, Schur [6] gave an structure for the Schur multiplier of a direct product of finite groups. He

showed that

M(G1 ×G2) = M(G1)×M(G2)× (Gab
1 ⊗Gab

2 ).

As a consequence of this fact we have the following important result.

Corollary 1.2. Let (G,N) be a pair of groups and K be the complement of N in G. Then

|M(G,N)| = |M(N)||Nab ⊗Kab|.

The following theorems give the structure of a finite p-group in terms of the order of its Schur

multiplier.

Theorem 1.3. [3] Let G be a group of prime-power order pn with |M(G)| = p
1
2
n(n−1)−t. Then

i) t = 0 if and only if G is elementary abelian;

ii) t = 1 if and only if G ∼= Zp2 or G ∼= E1;

iii) t = 2 if and only if G ∼= Zp × Zp2, G ∼= D or G ∼= Zp × E1;

iv) t = 3 if and only if G ∼= Zp3, G ∼= Zp×Zp×Zp2, G ∼= Q, G ∼= E2, G ∼= D×Z2 or G ∼= E1×Zp×Zp.
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Theorem 1.4. [9] Let G be an abelian group of order pn with |M(G)| = p
1
2
n(n−1)−4. Then G is

isomorphic to Zp2 × Zp2 or Zp2 × Zp
(3).

The following result can be easily obtained by using a method similar to the proof of Theorem 1.4.

Theorem 1.5. Let G be an abelian group of order pn with |M(G)| = p
1
2
n(n−1)−5. Then G is isomor-

phic to Zp3 × Zp or Zp2 × Zp
(4).

Theorem 1.6. [7] Let G be a non-abelian group of order pn with |M(G)| = p
1
2
n(n−1)−4. Then G is

isomorphic to one of the following groups.

For p = 2,

1) D × Z
(2)
p ;

2) Q× Z2;

3) 〈a, b|a4 = b4 = 1, [a, b, a] = [a, b, b] = 1, [a, b] = a2b2〉;
4) 〈a, b, c|a2 = b2 = c2 = 1, abc = bca = cab〉;

For p 6= 2

5) E4;

6) E1 × Z
(3)
p ;

7) Z
(4)
p >CθZp;

8) E2 × Zp;

9) 〈a, b|ap2 = bp = 1, [a, b, a] = [a, b, b] = 1〉;
10) 〈a, b|a9 = b3 = 1, [a, b, a] = 1, [a, b, b] = a6, [a, b, b, b] = 1〉;
11) 〈a, b|ap = bp = 1, [a, b, a] = [a, b, b, a] = [a, b, b, b] = 1〉(p 6= 3);

Theorem 1.7. [8] Let G be a non-abelian group of order pn with |M(G)| = p
1
2
n(n−1)−5. Then G is

isomorphic to one of the following groups.

1) D × Z
(3)
2 ;

2) E1 × Z
(4)
p ;

3) E2 × Z
(2)
p ;

4) E4 × Zp;

5) extra special p-group of order p5;

6) 〈a, b|ap2 = bp
2

= 1, [a, b, a] = [a, b, b] = 1, [a, b] = ap〉;
7) 〈a, b|ap2 = bp = 1, [a, b, a] = [a, b, b] = ap, [a, b, b, b, ] = 1〉;
8) 〈a, b|ap2 = bp = 1, [a, b, a] = [a, b, b, b, ] = 1, [a, b, b] = anp〉

where n is a fixed quadratic non-residue of p and p 6= 3;

9) 〈a, b|ap2 = 1, b3 = a3, , [a, b, a] = [a, b, b, b, ] = 1, [a, b, b] = a6〉;
10) 〈a, b|ap = 1, bp = [a, b, b], [a, b, a] = [a, b, b, b, ] = [a, b, b, a] = 1〉;
11) D16;

12) 〈a, b|a4 = b4 = 1, a−1ba = b−1〉;
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13) Q× Z
(2)
2 ;

14) (D × Z2) >CZ2;

15) (Q× Z2) >CZ2;

16) Z2 × 〈a, b, c|a2 = b2 = c2 = 1, abc = bca = cab〉;

2. Main Results

In this section, let (G,N) be a pair of groups such that G ∼= N ×K with |N | = pn and |K| = pm.

As mentioned before, Ellis [2] showed that |M(G,N)| = p
1
2
n(2m+n−1)−t for some non-negative integer

t. Recently, all these pairs of finite p-groups are listed in [5] by the authors, when t = 0, 1, 2, 3. The

aim of this paper is to characterize the structure of such pairs of finite p-groups, when t = 4, 5.

Theorem 2.1. By the above assumption, t = 4 if and only if G is isomorphic to one of the following

groups.

1) G ∼= N ×K where N ∼= Zp and K is any group with d(K) = m− 4;

2) G ∼= N ×K where N ∼= Zp × Zp and K is any group with d(K) = m− 2;

3) G ∼= N ×K where N ∼= Zp
(4) and K is any group with d(K) = m− 1;

4) G = N ∼= D × Z
(2)
2 ;

5) G = N ∼= Q× Z2;

6) G = N ∼= 〈a, b|a4 = b4 = 1, [a, b, a] = [a, b, b] = 1, [a, b] = a2b2〉;
7) G = N ∼= 〈a, b, c|a2 = b2 = c2 = 1, abc = bca = cab〉;
8) G = N ∼= E4;

9) G = N ∼= E1 × Z
(3)
p ;

10) G = N ∼= Z
(4)
p >CθZp;

11) G = N ∼= E2 × Zp;

12) G = N ∼= 〈a, b|ap2 = bp = 1, [a, b, a] = [a, b, b] = 1〉;
13) G = N ∼= 〈a, b|a9 = b3 = 1, [a, b, a] = 1, [a, b, b] = a6, [a, b, b, b] = 1〉;
14) G = N ∼= 〈a, b|ap = bp = 1, [a, b, a] = [a, b, b, a] = [a, b, b, b] = 1〉

(p 6= 3);

15) G = N ∼= Zp2 × Zp2 ;

16) G = N ∼= Zp2 × Zp
(3);

17) G ∼= N ×K where K = Zp and N ∼= Zp
(2) × Zp2 ;

18) G ∼= N ×K where K = Zp and N ∼= Q;

19) G ∼= N ×K where K = Zp and N ∼= E2;

20) G ∼= N ×K where K = Zp and N ∼= D × Z2;

21) G ∼= N ×K where K = Zp and N ∼= E1 × Zp
(2);

22) G ∼= N ×K where K = Zp
(2) and N ∼= Zp2 × Zp;

23) G ∼= N ×K where K = Zp
(2) and N ∼= D;
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24) G ∼= N ×K where K = Zp
(2) and N ∼= E1 × Zp;

25) G ∼= N ×K where K = Zp2 × Zp and N ∼= Zp2;

26) G ∼= N ×K where K = Zp
(3) and N ∼= E1;

27) G ∼= N ×K where K = Zp
(3) and N ∼= Zp2.

Proof. The necessity of theorem follows from the fact that G = N × K and Corollary 1.2. For

sufficiency, first suppose that N is an elementary abelian p-group. Then nm − 4 = nd(K) and using

Corollary 1.2 we have |N ⊗ Kab| = pnm−4 = pnd(K). Hence n(m − d(K)) = 4 which implies that

n = 1, 2 or 4. Therefore N ∼= Zp and K is any group with d(K) = m− 4 or N ∼= Zp
(2) and K is any

group with d(K) = m− 2, or N ∼= Zp
(4) and K is any group with d(K) = m− 1.

Now suppose that N is not an elementary abelian p-group . Then using Corollary 1.2 we have

|Nab ⊗ Kab| > pnm−4 and so md(N) > nm − 4 which implies that m(n − d(N)) < 4. Therefore

m = 0, 1, 2, 3 .

If m = 0, then K = 1 and N is one of the groups which are listed in Theorems 1.4 and 1.6.

If m = 1, then K = Zp and d(N) = n− 1, n− 2 or n− 3. It follows that |Nab ⊗K| = pn−1, pn−2 or

pn−3 and so Corollary 1.2 implies that |M(N)| = p
n2−n

2
−3, p

n2−n
2

−2, or p
n2−n

2
−1, respectively. In the

first case N is Zp × Zp × Zp2 , Q,E2, , D × Z2 or E1 × Zp × Zp and the other cases are impossible by

Theorem 1.3.

If m = 2, then d(N) = n − 1 and K = Zp × Zp or K = Zp2 . In the first case |Nab ⊗K| = p2(n−1)

and so |M(N)| = p
n2−n

2
−2. Therefore N is Zp ×Zp2 , D or Zp ×E1. In the second case Nab ∼= Zp

(n−1)

or Nab ∼= Zp2 × Zp
(n−2). If Nab is an elementary abelian p-group, then |Nab ⊗ K| = p(n−1) and so

|M(N)| = p
n2+n−6

2 which is impossible. If Nab ∼= Zp2 × Zp
(n−2), then |M(N)| = p

n2+n−8
2 which is

impossible too.

If m = 3, then d(N) = n − 1 and K is an abelian p-group of order p3 or an extra special p-group

of order p3. In the first case we have three possibilities for K. The first possibility is K ∼= Z
(3)
p , and

similar to the previous part, one can see that |M(N)| = p
n2−n

2
−1 and so N ∼= E1 or Zp2 . The second

possibility is K ∼= Zp3 . This implies that n = 1 which is a contradiction. The third possibility is

K ∼= Zp2 × Zp which implies that n = 2 and N ∼= Zp2 .

In the second case, if K is an extra special p-group of order p3, then Nab ∼= Z
(n−1)
p or Nab ∼=

Zp2×Z
(n−2)
p . This implies that |Nab⊗K| = |Nab⊗Z(2)

p | = p2n−2 and so n = 1 which is a contradiction.

Hence the proof is complete. �

Theorem 2.2. By the previous assumption, t = 5 if and only if G is isomorphic to one of the following

groups.

1) G ∼= N ×K where N ∼= Zp and K is any group with d(K) = m− 5;

2) G ∼= N ×K where N ∼= Zp
(5) and K is any group with d(K) = m− 1;

3) G = N ∼= D × Z
(3)
2 ;

4) G = N ∼= E1 × Z
(4)
p ;

5) G = N ∼= E2 × Z
(2)
p ;
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6) G = N ∼= E4 × Zp;

7) G = N ∼= an extra special p-group of order p5;

8) G = N ∼= 〈a, b|ap2 = bp
2

= 1, [a, b, a] = [a, b, b] = 1, [a, b] = ap〉;
9) G = N ∼= 〈a, b|ap2 = bp = 1, [a, b, a] = [a, b, b] = ap, [a, b, b, b, ] = 1〉;
10) G = N ∼= 〈a, b|ap2 = bp = 1, [a, b, a] = [a, b, b, b, ] = 1, [a, b, b] = anp〉,

where n is a fixed quadratic non-residue of p and p 6= 3 ;

11) G = N ∼= 〈a, b|b3 = a3, ap
2

= [a, b, a] = [a, b, b, b, ] = 1, [a, b, b] = a6〉;
12) G = N ∼= 〈a, b|ap = 1, bp = [a, b, b], [a, b, a] = [a, b, b, b, ] = [a, b, b, a]

= 1〉;
13) G = N ∼= D16;

14) G = N ∼= 〈a, b|a4 = b4 = 1, a−1ba = b−1〉;
15) G = N ∼= Q× Z

(2)
2 ;

16) G = N ∼= (D × Z2) >CZ2;

17) G = N ∼= (Q× Z2) >CZ2;

18) G = N ∼= Z2× < a, b, c|a2 = b2 = c2 = 1, abc = bca = cab >;

19) G = N ∼= Zp3 × Zp;

20) G = N ∼= Zp2 × Zp
(4);

21) G ∼= N ×K where K = Zp and N ∼= D × Z2
(2);

22) G ∼= N ×K where K = Zp and N ∼= Q× Z2;

23) G ∼= N ×K where K = Zp and N ∼=< a, b, c|a2 = b2 = c2 = 1,

abc = bca = cab >;

24) G ∼= N ×K where K = Zp and N ∼= E4;

25) G ∼= N ×K where K = Zp and N ∼= E1 × Zp
(3);

26) G ∼= N ×K where K = Zp and N ∼= Z
(4)
p >CZp;

27) G ∼= N ×K where K = Zp and N ∼= E2 × Zp;

28) G ∼= N ×K where K = Zp and N ∼= E2 × Zp;

29) G ∼= N ×K where K = Zp
(2) and N ∼= E1 × Zp

(2);

30) G ∼= N ×K where K = Zp
(2) and N ∼= Zp

(2) × Zp2;

31) G ∼= N ×K where K = Zp
(2) and N ∼= Q;

32) G ∼= N ×K where K = Zp
(2) and N ∼= E2;

33) G ∼= N ×K where K = Zp
(2) and N ∼= D × Z2;

34) G ∼= N ×K where K = Zp2 and N ∼= E1;

35) G ∼= N ×K where K = Zp2 and N ∼= Zp × Zp2;

36) G ∼= N ×K where K = Zp3 and N ∼= Zp2;

37) G ∼= N ×K where K = Zp
(3) and N ∼= D;

38) G ∼= N ×K where K = Zp
(3) and N ∼= E1 × Zp;

39) G ∼= N ×K where K = Zp
(3) and N ∼= Zp × Zp2;

40) G ∼= N ×K where K is an extra special P -group and N ∼= Zp2;

41) G ∼= N ×K where K = Zp
(4) and N ∼= E1;
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42) G ∼= N ×K where K = Zp
(2) × Zp and N ∼= Zp2 .

Proof. The proof of this theorem is similar to the proof of the previous theorem so we left the details

to the reader. Necessity is straightforward. For sufficiency, first suppose that N is an elementary

abelian p-group . Then n(m− d(K)) = 5, so n = 1 or 5. If n = 1, then N ∼= Zp and K is any group

with d(K) = m− 5 and n = 5 which implies that N ∼= Z
(5)
p and K is any group with d(K) = m− 1.

Suppose that N is not an elementary abelian p-group. Then we have |Nab ⊗ Kab| > pnm−5 by

Corollary 1.2. It follows that md(N) > nm − 5 and thus m(n − d(N)) < 5 which implies that

m = 0, 1, 2, 3 or 4. If m = 0, then K = 1 and N is one of the groups that are listed in Theorems 1.5

and 1.7.

If m = 1, then K = Zp and d(N) = n − i, for 1 ≤ i ≤ 4. Therefore by Corollary 1.2 |M(N)| =

p
n(n−1)

2
−(5−i), for 1 ≤ i ≤ 4, respectively. It follows that N ∼= Zp2 × Zp

(3), D × Z
(2)
2 , Q × Z2, E4,

E1 × Z
(3)
p , E2 × Zp, N ∼= Zp3 or 〈a, b, c|a2 = b2 = c2 = 1, abc = bca = cab〉 by Theorems 1.6, 1.4 and

1.3.

If m = 2, then K = Zp2 or K = Zp × Zp and d(N) = n − 1 or d(N) = n − 2. First suppose

that K = Zp × Zp . If d(N) = n − 1, then |M(N)| = p
n2−n

2
−3. It follows that N ∼= Zp × Zp × Zp2 ,

N ∼= E1 × Zp × Zp, N ∼= Q, N ∼= E2 or N ∼= D × Z2. If d(N) = n− 2, then |N ⊗K| = p2(n−2). This

implies that |M(N)| = p
n2+n−2

2 and so n < 1 which is impossible.

Now suppose that K = Zp2 . If d(N) = n − 1 and Nab ∼= Zp
(n−1), then |M(N)| = p

n2+n−8
2 which

implies that n = 3 and |M(N)| = p2. Therefore N ∼= E1. If d(N) = n − 1 and Nab ∼= Z2
p × Zp

(n−2),

then n = 3 or n = 4. For n = 3 there is not any structure for N and n = 4 implies that N ∼= Zp2 ×Zp.

If d(N) = n − 2, then Nab ∼= Z
(n−2)
p or Nab ∼= Z3

p × Z
(n−3)
p or Nab ∼= Z2

p × Z2
p × Z

(n−4)
p . Therefore

similar to the previous case one can see that n < 5 which is impossible.

If m = 3, then d(N) = n− 1 and K is an abelian p-group of order p3 or is an extra special p-group

of order p3. In the first case we have three possibilities for K. The first possibility is K ∼= Zp3 . If

Nab ∼= Z
(n−1)
p , then n = 1 which is impossible and if Nab ∼= Zp2 × Z

(n−2)
p , then N ∼= Zp2 . The second

possibility is K ∼= Zp2×Zp. In this case, there is no structure for N . The third possibility is K ∼= Z
(3)
p .

Thus |M(N)| = p
n2−n

2
−2 and so N ∼= D, N ∼= E1 × Zp or N ∼= Zp2 × Zp by Theorem 1.3.

Now suppose that K is an extra special p-group of order p3. Then Nab ∼= Z
(n−1)
p or Nab ∼= Zp2×Z

(n−2)
p .

If Nab is an elementary abelian, then there is no structure for N . Otherwise N = Zp2 .

If m = 4, then d(N) = n−1. So Nab ∼= Z
(n−1)
p or Nab ∼= Z2

p×Z
(n−2)
p . In the first case |Nab⊗Kab| =

|Z(n−1)
p ⊗ Kab| ≤ pd(K)(n−1). Now suppose that d(K) < 4. Then we have |Nab ⊗ Kab| ≤ p3(n−1).

Therefore |M(N)| ≥ p−3(n−1)+(8n+n2−n−10)/2 by Corollary 1.2. So n < 2 which is impossible. If

d(K) = 4, then we have K ∼= Z
(4)
p . Hence |Nab ⊗ Kab| = p4(n−1) which implies that |M(N)| =

p(n
2−n)/2−1. So N ∼= E1 by Theorem 1.3.

In the second case, suppose that K is not abelian. Then |Nab ⊗ Kab| = |Zp2 × Z
(n−2)
p ⊗ Kab| =

|Zp2 ⊗Kab||Z(n−2)
p ⊗Kab| ≤ p3pd(K)(n−2) ≤ p3(n−1) which implies that n < 2 and it is impossible.

If K is abelian, then K ∼= Zp2 × Z
(2)
p . Thus |Nab ⊗ K| = p3n−2. It follows that N ∼= Zp2 . This

completes the proof. �
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