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ABSTRACT. Let G be a finite p-group and N be a normal subgroup of G with |N| = p™ and |G/N| = p™.

A result of Ellis (1998) shows that the order of the Schur multiplier of such a pair (G, N) of finite p-

n(2m+n—1)

groups is bounded by p% and hence it is equal to p%"@m““l)*t for some non-negative integer

t. Recently, the authors have characterized the structure of (G, N) when N has a complement in G
and ¢ < 3. This paper is devoted to classification of pairs (G, N) when N has a normal complement in
G and t =4,5.

1. Introduction

By a pair of groups (G, N) we mean a group G with a normal subgroup N. In 1998, Ellis [2] defined
the Schur multiplier of a pair (G, N) to be the abelian group M (G, N) appearing in a natural exact

sequence
Hs(G) — H3(G/N)—- M(G,N) — M(G) — M(G/N)
— N/[N,G] = (&)® = (G/N)® =0
in which H3(G) is the third homology of G with integer coefficients. He [2] also noted that for any
pair (G, N) of groups,
M(G,N)=Zker(N NG — G),

where N A G is the exterior product of N and G. In particular, if N = G, then M (G, G) is the usual
Schur multiplier of G.
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In 1956, Green [4] showed that if G is a group of order p™, then its Schur multiplier is of order at
most p% and hence equals to pw_t for some non-negative integer ¢. Berkovich [1], Zhou [11],
Ellis [3] and Niroomand [7, 8] determined the structure of G for t = 0,1, 2,3, 4,5 by different methods.

In 1998, Ellis [2] gave an upper bound for the order of the Schur multiplier of a pair of finite p-
groups. He proved that if G is a finite p-group with a normal subgroup NV of order p™ and its quotient
G/N of order p™, then the Schur multiplier of (G, N) is bounded by p%”(zmﬂ%l) and hence equals to

p%n(2m+n71)

~t for some non-negative integer t.

Let (G, N) be a pair of groups and K be the complement of N in G. In 2004, Salemkar, Moghaddam
and Saeedi [10] characterized the structure of such a pair (G, N) when ¢ = 0, 1 under some conditions.
Recently, the authors [5] determined the structure of the pair (G, N), for ¢ = 0,1 without any condition
and also gave the structure of (G, N) for ¢ = 2,3 when K is normal. In this paper, we are going to
determine the structure of (G, N) for t = 4,5 when K is a normal subgroup of G.

In this paper, D and @ denote the dihedral and the quaternion group of order 8, D;g denotes
the dihedral group of order 16 and, E; and E, denote the extra special p-groups of order p3 of
odd exponent p and p?, respectively. Also E; denotes the unique central product of a cyclic group

of order p? and a non-abelian group of order p3, and Z&m) denotes the direct product of m copies of Z,,.

The following result is essential to prove the main theorems.

Theorem 1.1. [2]Let (G,N) be a pair of groups and K be the complement of N in G. Then
M(G) =2 M(G,N) x M(K).

In 1907, Schur [6] gave an structure for the Schur multiplier of a direct product of finite groups. He
showed that
M(Gy x Gy) = M(G1) x M(Gs) x (G @ G).

As a consequence of this fact we have the following important result.

Corollary 1.2. Let (G, N) be a pair of groups and K be the complement of N in G. Then
M(G, N)| = [M(N) [N & K.

The following theorems give the structure of a finite p-group in terms of the order of its Schur

multiplier.

1

Theorem 1.3. [3] Let G be a group of prime-power order p" with |M(G)| = p2"™=D=t. Then
i) t =0 if and only if G is elementary abelian;

ii) t =1 if and only if G = Z,2 or G = Ey;

iii) t =2 if and only if G = Zy x L2, G=D or G = Zy x Ey;

iw)t=3ifand only if G 22y, G =22y xLyxZyp, G=Q,G=Ey, G=DxZy orG=E\xZyxZy.
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Theorem 1.4. [9] Let G be an abelian group of order p" with |M(G)| = p%"("_l)_4. Then G s

isomorphic to Zy2 X Zy2 or Ly X Zp(?’).

The following result can be easily obtained by using a method similar to the proof of Theorem

Theorem 1.5. Let G be an abelian group of order p™ with |M(G)| = p2"(=1=5_ Then G is isomor-
phic to Zys X Zy, or Zy2 X Zp(4).

Theorem 1.6. [7] Let G be a non-abelian group of order p"™ with |M(G)| = p2" D=4 Then G is
isomorphic to one of the following groups.
Forp=2,
1) D x Z?;
2) Q x Za;
3) {a,bla* = b* = 1,[a,b,a] = [a,b,b] = 1, [a,b] = a®b?);
4) {a,b,cla® = b? = ¢? = 1, abc = bca = cab);
Forp#2
5) Ey;
6) By x 23V
7) 28 ><19Z,;
8) By x Zp;
9) (a,bla”” = =1,[a,b,a] = [a,b,b] = 1);
10) {a,bla® = b3 = 1,]a,b,a] = 1,[a, b, b] = a®,[a,b,b,b] = 1);
11) {(a,bla? =P =1,[a,b,a] = [a,b,b,a] = [a,b,b,b] = 1)(p # 3);

Theorem 1.7. [§] Let G be a non-abelian group of order p" with |M(G)| = p%"("fl)ff’. Then G is
isomorphic to one of the following groups.
1) D x ZY;
2) By x Z8V;
3) By x 2
4) By X Zp;
5) extra special p-group of order p°;
6) (a,bla”” =" =1,[a,b,a] = [a,b,b] = 1,[a,b] = aP);
7) {a,bla?” = b = 1,[a,b,a] = [a,b,b] = a?, [a,b,b,b,] = 1);
8) (a,bla?” = =1,[a,b,a] = [a,b,b,b,] = 1,[a,b,b] = a")
where n is a fived quadratic non-residue of p and p # 3;
9) (a,bla”” = 1,03 = a3, ,[a,b,a] = [a,b,b,b,] = 1,[a, b, b] = a);
10) {a,bla? = 1,bP = [a,b,b], [a,b,a] = [a,b,b,b,] = [a,b,b,a] = 1);
11) Dqg;
12) {a,bla* = b* = 1,07 ba = b~ 1);
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13) Q x Z;

14) (D x Zy) ><1Zs;

15) (Q x Zg) ><1Zy;

16) Zy x {a,b,cla® = b* = c® = 1, abc = bca = cab);

2. Main Results

In this section, let (G, N) be a pair of groups such that G =2 N x K with |N| = p” and |K| = p™.
As mentioned before, Ellis [2] showed that |[M (G, N)| = p2n@mEn=D= fo1 some non-negative integer
t. Recently, all these pairs of finite p-groups are listed in [5] by the authors, when ¢t = 0,1,2,3. The

aim of this paper is to characterize the structure of such pairs of finite p-groups, when t = 4, 5.

Theorem 2.1. By the above assumption, t = 4 if and only if G is isomorphic to one of the following
groups.
1) G= N x K where N =2 Z,, and K is any group with d(K) =m — 4;
2) G= N x K where N 27, x Z,, and K is any group with d(K) =m — 2;
3) G = N x K where N = Z,™ and K is any group with d(K) =m — 1;
4)G=N=Dxz?,
5) G =N2=Q x Zo;
6) G = N = {(a,bla* = b* = 1,[a,b,a] = [a,b,b] = 1, [a,b] = a®b?);
7) G = N = (a,b,cla® = b? = % = 1, abc = bca = cab);
8) G=N = Ey;
9)G=N=E xZ¥;
10) G = N = Z8Y >yZ,;
11) G =N~ Ey x Z,;
12) G = N = (a,bla?” =W = 1,[a,b,a] = [a,b,b] = 1);
18) G = N = {(a,bla® = b3 = 1,]a,b,a] = 1,]a, b,b] = a®,[a,b,b,b] = 1);
14) G = N = (a,bla? = b = 1,[a,b,a] = [a,b,b,a] = [a,b,b,b] = 1)
(p # 3);
15) G =N = Z, x Zyp;
16) G =N = Z,» x Z,%);
17) G = N x K where K = Z,, and N = Z,'%) x Z;
18) G = N x K where K =7, and N = Q;
19) G = N x K where K =Z, and N = Ejy;
20) G = N x K where K =Z, and N = D x Zy;
21) G= N x K where K = Z, and N = Ey x Z,(?;
22) G = N x K where K = Z,?) and N = Z,> X Zy;
23) G = N x K where K = Z,*) and N = D;
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2}) G = N x K where K = Z,? and N = By x Z,;
25) G= N x K where K = Z,» X Zy, and N = Z,;;
26) G = N x K where K = 7,3 and N = E;
27) G = N x K where K = Z,%Y) and N = Z,,.

Proof. The necessity of theorem follows from the fact that G = N x K and Corollary For
sufficiency, first suppose that N is an elementary abelian p-group. Then nm — 4 = nd(K) and using
Corollary we have |N @ K| = prm=4 = pndK) " Hence n(m — d(K)) = 4 which implies that
n = 1,2 or 4. Therefore N = Z,, and K is any group with d(K) =m —4 or N = Zp(z) and K is any
group with d(K) =m — 2, or N = Zp(4) and K is any group with d(K) =m — 1.

Now suppose that N is not an elementary abelian p-group . Then using Corollary we have
IN® @ K| > p"™* and so md(N) > nm — 4 which implies that m(n — d(N)) < 4. Therefore
m=20,1,2,3 .

If m =0, then K =1 and N is one of the groups which are listed in Theorems and

If m =1, then K = Z, and d(N) =n —1,n —2 or n — 3. It follows that [N ® K| = p"~!,p"~2 or
p"~3 and so Corollary implies that |[M(N)| = pn22_n_3,pn227_n_2, or pﬁT_n_l, respectively. In the
first case N is Zy X Zp X Zy2,Q, Eo,, D X Zy or Ey X Zy X Z); and the other cases are impossible by
Theorem [1.3]

If m =2, then d(N) =n —1 and K = Z, x Z, or K = Z,>. In the first case |[N% ® K| = p?("~1
and so |[M(N)| = pn25n ~2. Therefore N is Z, x Z,2, D or Z), x Ey. In the second case N = Z," Y
or N =~ Z, x Zp(”fz). If N is an elementary abelian p-group, then |[N% @ K| = p(®~1) and so
IM(N)| = p™3=° which is impossible. If N = Z, x Z,(™ 2, then |M(N)| = p" 3= which is

impossible too.

If m = 3, then d(N) = n — 1 and K is an abelian p-group of order p® or an extra special p-group
of order p3. In the first case we have three possibilities for K. The first possibility is K = Z;(,S), and
~land so N 2 F; or Z,>. The second
possibility is K = Zp3. This implies that n = 1 which is a contradiction. The third possibility is
K = 7,2 X Z; which implies that n =2 and N = Z.

In the second case, if K is an extra special p-group of order p3, then N = Zz(gn_l) or Nob =~
Z,> x Z}(,THQ). This implies that [N ® K| = |N“b®Z,()2)\ = p?"~2 and so n = 1 which is a contradiction.

Hence the proof is complete. O

n2—n

similar to the previous part, one can see that |[M(N)| =p =2

Theorem 2.2. By the previous assumption, t = 5 if and only if G is isomorphic to one of the following
groups.

1) G= N x K where N =2 Z,, and K is any group with d(K) =m —5;

2) G = N x K where N = 7, and K is any group with d(K) =m — 1;

3)G=N=DxZ,

/)G =N=E xzV;

5 G=N=E,xZP;
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6) G =N = Ey x Zy;

7) G = N = an extra special p-group of order p°;

8) G =N = (a,bla?” =b"" =1,[a,b,a] = [a,b,b] = 1, [a,b] = aP);

9) G =N = (a,bla”” = b = 1,]a,b,a] = [a,b,b] = a?, [a,b,b,b,] = 1);

10) G = N = (a,bla?” = b =1,[a,b,a] = [a,b,b,b,] = 1,[a, b, b] = a™P),
where n is a fized quadratic non-residue of p and p # 3 ;

11) G = N = (a,b|p® = a3,a”" = [a,b,a] = [a,b,b,b,] = 1,[a,b,b] = a);

12) G = N = (a,bla? = 1,b° = [a, b, b], [a,b,a] = [a,b,b,b,] = [a,b,b,a]
=1);

13) G = N = Dqg;

14) G = N = (a,bla* =b* = 1,a " ba = b~ 1);

15)G=N=Qxz?;

16) G = N = (D X Zy) >1Zs;

17) G = N = (Q x Zg) ><1Zs;

18) G = N 2 Zyx < a,b,cla® =b*> = c? = 1, abc = bca = cab >;

19) G =N =73 x Zy;

20) G =N 2 Z, x Z,\V;

21) G= N x K where K = Z, and N = D x Zy?;

22) G = N x K where K =7, and N = Q x Zy;

23) G2 N x K where K =Z, and N 2< a,b,cla* =b*> = c* =1,
abc = bea = cab >;

24) G= N x K where K =Z, and N = Ey;

25) G = N x K where K = Z, and N = E; x Z,®;

26) G = N x K where K = Z,, and N =~ 7" >4Z,;

27) G = N x K where K =7, and N = Ey x Zy;

28) G = N x K where K =7, and N = Ey x Zy;

29) G = N x K where K = Z,'?) and N = E; x Z,?;

30) G = N x K where K =Z,» and N 27, x Z;

31) G= N x K where K = Z,*) and N = Q;

32) G = N x K where K = Zp(2) and N = Ey;

33) G= N x K where K = Z,*) and N = D x Zy;

34) G =N x K where K =Z,> and N = Ey;

35) G= N x K where K =Z,2 and N =7, x Z,2;

36) G =N x K where K = Z,3 and N = Z,;

37) G = N x K where K = Z,%) and N = D;

38) G = N x K where K = 7, and N = By x Z,;

39) G = N x K where K = Z,¥) and N 2 Z,, x Z»;

40) G = N x K where K is an extra special P-group and N = Z,;

41) G= N x K where K = Z," and N = Fy;
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42) G = N x K where K = 2,) x Z, and N = Z,».

Proof. The proof of this theorem is similar to the proof of the previous theorem so we left the details
to the reader. Necessity is straightforward. For sufficiency, first suppose that N is an elementary
abelian p-group . Then n(m — d(K)) =5,son=1or 5. If n =1, then N = Z, and K is any group
with d(K) = m — 5 and n = 5 which implies that N = Zz(75) and K is any group with d(K) =m — 1.

Suppose that N is not an elementary abelian p-group. Then we have |[N® @ K®| > p»m=5 by
Corollary It follows that md(N) > nm — 5 and thus m(n — d(N)) < 5 which implies that
m=0,1,2,3 or 4. If m = 0, then K =1 and N is one of the groups that are listed in Theorems [1.5
and [L7

If m =1, then K = Z, and d(N) = n — 1, for 1 < i < 4. Therefore by Corollary |M(N)| =
p#‘“‘i), for 1 < i < 4, respectively. It follows that N = Z,» x Zp(3), D x Zg), Q X Zs, Ey,
Ep x Zég), Ey x Zy, N = Z,3 or (a, b,cla? = b? = ¢ = 1,abc = bea = cab) by Theorems and
Lol

If m =2, then K = Z,2 or K = Z, x Z;, and d(N) = n — 1 or d(N) = n — 2. First suppose
that K = Z, x Z, . If d(N) = n — 1, then |M(N)| = p T3 It follows that N = Zy X Zp x Ly,
N2E xZyxZy, N2Q, N=FEyor N=D xZy. Ifd(N)=n—2, then |[N ® K| = p*"2). This
implies that |M (V)| = p% and so n < 1 which is impossible.

n2+n78

Now suppose that K = Z». If d(N) =n —1 and N* = Z," Y then |[M(N)| = p*—2  which
implies that n = 3 and |[M(N)| = p?. Therefore N = Ey. If d(N) =n — 1 and N = Z2 x Z,("~?),
then n = 3 or n = 4. For n = 3 there is not any structure for N and n = 4 implies that N = Z,» X Z,,.
If d(N) = n — 2, then N = Zén_m or N =~ Z3 x Z}()n—s) or N =~ 72 x 72 x Z;,n_él). Therefore
similar to the previous case one can see that n < 5 which is impossible.

If m = 3, then d(N) =n — 1 and K is an abelian p-group of order p3 or is an extra special p-group
of order p3. In the first case we have three possibilities for K. The first possibility is K = Z,s. If
Naob =~ Zénfl), then n = 1 which is impossible and if N = Z,> x Z](g"ﬂ), then N = Z,,. The second
possibility is K = Z,,2 x Zy,. In this case, there is no structure for N. The third possibility is K = ZZ(,?’).
Thus |M(N))| :p#*2 andso N =D, N= E; x Z, or N =2 Z,2 X Zy, by Theorem
Now suppose that K is an extra special p-group of order p®. Then N% = Zz(,nfl) or N =~ Z,> X Zj(g"*Q).
If N is an elementary abelian, then there is no structure for N. Otherwise N = Zy.

Ifm = 4, then d(N) = n—1. So N® = Z{" " or N® = 72 x Z{" . In the first case | N & K| =
|Z1(D"71) ® K% < pE) =1 Now suppose that d(K) < 4. Then we have |[N% @ K%| < p3(n=1),
Therefore |[M(N)| > p=3(n—1+@Entn’=n—10)/2 1o Corollary So n < 2 which is impossible. If
d(K) = 4, then we have K = ZZ(,4). Hence [N* @ K| = p*"=1) which implies that |M(N)| =
p("Q’”)/Qfl. So N = E; by Theorem
In the second case, suppose that K is not abelian. Then |[N% ® K%| = Z,2 x Zz(yn_2) ® K® =
|Z,2 @ K“bHZ}(gnJ) ® K%| < p3ptE)(n=2) < 53(n=1) which implies that n < 2 and it is impossible.

If K is abelian, then K & Z, x Zi”. Thus [N% © K| = p?~2. It follows that N 2 Z,. This
completes the proof. O
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