

International Journal of Group Theory

ISSN (print): 2251-7650 , ISSN (on-line): 2251-7669 Vol. 2 No. 3 (2013), pp. 1-8. © 2013 University of Isfahan

www.ui.ac.ir

ON THE ORDER OF THE SCHUR MULTIPLIER OF A PAIR OF FINITE p-GROUPS II

F. MOHAMMADZADEH, A. HOKMABADI* AND B. MASHAYEKHY

Communicated by Hamid Mousavi

ABSTRACT. Let G be a finite p-group and N be a normal subgroup of G with $|N| = p^n$ and $|G/N| = p^m$. A result of Ellis (1998) shows that the order of the Schur multiplier of such a pair (G, N) of finite p-groups is bounded by $p^{\frac{1}{2}n(2m+n-1)}$ and hence it is equal to $p^{\frac{1}{2}n(2m+n-1)-t}$ for some non-negative integer t. Recently, the authors have characterized the structure of (G, N) when N has a complement in G and $t \leq 3$. This paper is devoted to classification of pairs (G, N) when N has a normal complement in G and t = 4, 5.

1. Introduction

By a pair of groups (G, N) we mean a group G with a normal subgroup N. In 1998, Ellis [2] defined the Schur multiplier of a pair (G, N) to be the abelian group M(G, N) appearing in a natural exact sequence

$$H_3(G) \rightarrow H_3(G/N) \rightarrow M(G,N) \rightarrow M(G) \rightarrow M(G/N)$$

 $\rightarrow N/[N,G] \rightarrow (G)^{ab} \rightarrow (G/N)^{ab} \rightarrow 0$

in which $H_3(G)$ is the third homology of G with integer coefficients. He [2] also noted that for any pair (G, N) of groups,

$$M(G, N) \cong \ker(N \wedge G \to G),$$

where $N \wedge G$ is the exterior product of N and G. In particular, if N = G, then M(G, G) is the usual Schur multiplier of G.

MSC(2010): Primary: 20E34; Secondary: 20D15.

Keywords: Pair of groups, Schur multiplier, Finite p-groups.

Received: 13 April 2012, Accepted: 17 November 2012.

 $* Corresponding \ author.$

In 1956, Green [4] showed that if G is a group of order p^n , then its Schur multiplier is of order at most $p^{\frac{n(n-1)}{2}}$ and hence equals to $p^{\frac{n(n-1)}{2}-t}$ for some non-negative integer t. Berkovich [1], Zhou [11], Ellis [3] and Niroomand [7, 8] determined the structure of G for t = 0, 1, 2, 3, 4, 5 by different methods.

In 1998, Ellis [2] gave an upper bound for the order of the Schur multiplier of a pair of finite p-groups. He proved that if G is a finite p-group with a normal subgroup N of order p^n and its quotient G/N of order p^m , then the Schur multiplier of (G,N) is bounded by $p^{\frac{1}{2}n(2m+n-1)}$ and hence equals to $p^{\frac{1}{2}n(2m+n-1)-t}$ for some non-negative integer t.

Let (G, N) be a pair of groups and K be the complement of N in G. In 2004, Salemkar, Moghaddam and Saeedi [10] characterized the structure of such a pair (G, N) when t = 0, 1 under some conditions. Recently, the authors [5] determined the structure of the pair (G, N), for t = 0, 1 without any condition and also gave the structure of (G, N) for t = 2, 3 when K is normal. In this paper, we are going to determine the structure of (G, N) for t = 4, 5 when K is a normal subgroup of G.

In this paper, D and Q denote the dihedral and the quaternion group of order 8, D_{16} denotes the dihedral group of order 16 and, E_1 and E_2 denote the extra special p-groups of order p^3 of odd exponent p and p^2 , respectively. Also E_4 denotes the unique central product of a cyclic group of order p^2 and a non-abelian group of order p^3 , and $\mathbf{Z}_n^{(m)}$ denotes the direct product of m copies of \mathbf{Z}_n .

The following result is essential to prove the main theorems.

Theorem 1.1. [2] Let (G, N) be a pair of groups and K be the complement of N in G. Then

$$M(G) \cong M(G, N) \times M(K)$$
.

In 1907, Schur [6] gave an structure for the Schur multiplier of a direct product of finite groups. He showed that

$$M(G_1 \times G_2) = M(G_1) \times M(G_2) \times (G_1^{ab} \otimes G_2^{ab}).$$

As a consequence of this fact we have the following important result.

Corollary 1.2. Let (G, N) be a pair of groups and K be the complement of N in G. Then

$$|M(G,N)| = |M(N)||N^{ab} \otimes K^{ab}|.$$

The following theorems give the structure of a finite p-group in terms of the order of its Schur multiplier.

Theorem 1.3. [3] Let G be a group of prime-power order p^n with $|M(G)| = p^{\frac{1}{2}n(n-1)-t}$. Then

- i) t = 0 if and only if G is elementary abelian;
- ii) t = 1 if and only if $G \cong \mathbf{Z}_{p^2}$ or $G \cong E_1$;
- iii) t = 2 if and only if $G \cong \mathbf{Z}_p \times \mathbf{Z}_{p^2}$, $G \cong D$ or $G \cong \mathbf{Z}_p \times E_1$;
- $iv) \ t = 3 \ if \ and \ only \ if \ G \cong \mathbf{Z}_{p^3}, \ G \cong \mathbf{Z}_p \times \mathbf{Z}_p \times \mathbf{Z}_{p^2}, \ G \cong Q, \ G \cong E_2, \ G \cong D \times \mathbf{Z}_2 \ or \ G \cong E_1 \times \mathbf{Z}_p \times \mathbf{Z}_p$

Theorem 1.4. [9] Let G be an abelian group of order p^n with $|M(G)| = p^{\frac{1}{2}n(n-1)-4}$. Then G is isomorphic to $\mathbf{Z}_{p^2} \times \mathbf{Z}_{p^2}$ or $\mathbf{Z}_{p^2} \times \mathbf{Z}_{p^{(3)}}$.

The following result can be easily obtained by using a method similar to the proof of Theorem 1.4.

Theorem 1.5. Let G be an abelian group of order p^n with $|M(G)| = p^{\frac{1}{2}n(n-1)-5}$. Then G is isomorphic to $\mathbf{Z}_{p^3} \times \mathbf{Z}_p$ or $\mathbf{Z}_{p^2} \times \mathbf{Z}_p^{(4)}$.

Theorem 1.6. [7] Let G be a non-abelian group of order p^n with $|M(G)| = p^{\frac{1}{2}n(n-1)-4}$. Then G is isomorphic to one of the following groups.

For p=2,

- 1) $D \times \mathbf{Z}_p^{(2)}$;
- 2) $Q \times \mathbf{Z}_2$;
- 3) $\langle a, b | a^4 = b^4 = 1, [a, b, a] = [a, b, b] = 1, [a, b] = a^2b^2 \rangle$;
- 4) $\langle a, b, c | a^2 = b^2 = c^2 = 1, abc = bca = cab \rangle$;

For $p \neq 2$

- 5) E_4 ;
- 6) $E_1 \times \mathbf{Z}_p^{(3)}$;
- γ) $\mathbf{Z}_{p}^{(4)} > \!\!\! \triangleleft_{\theta} \mathbf{Z}_{p};$
- 8) $E_2 \times \mathbf{Z}_n$;
- 9) $\langle a, b | a^{p^2} = b^p = 1, [a, b, a] = [a, b, b] = 1 \rangle;$
- 10) $\langle a, b | a^9 = b^3 = 1, [a, b, a] = 1, [a, b, b] = a^6, [a, b, b, b] = 1 \rangle;$
- 11) $\langle a, b | a^p = b^p = 1, [a, b, a] = [a, b, b, a] = [a, b, b, b] = 1 \rangle (p \neq 3);$

Theorem 1.7. [8] Let G be a non-abelian group of order p^n with $|M(G)| = p^{\frac{1}{2}n(n-1)-5}$. Then G is isomorphic to one of the following groups.

- 1) $D \times \mathbf{Z}_{2}^{(3)}$;
- 2) $E_1 \times \mathbf{Z}_p^{(4)}$;
- 3) $E_2 \times \mathbf{Z}_p^{(2)}$;
- 4) $E_4 \times \mathbf{Z}_p$;
- 5) extra special p-group of order p^5 ;
- 6) $\langle a, b | a^{p^2} = b^{p^2} = 1, [a, b, a] = [a, b, b] = 1, [a, b] = a^p \rangle;$
- 7) $\langle a,b|a^{p^2}=b^p=1, [a,b,a]=[a,b,b]=a^p, [a,b,b,b]=1 \rangle;$
- 8) $\langle a, b | a^{p^2} = b^p = 1, [a, b, a] = [a, b, b, b,] = 1, [a, b, b] = a^{np} \rangle$ where n is a fixed quadratic non-residue of p and $p \neq 3$;
- 9) $\langle a, b | a^{p^2} = 1, b^3 = a^3, [a, b, a] = [a, b, b, b,] = 1, [a, b, b] = a^6 \rangle$;
- 10) $\langle a, b | a^p = 1, b^p = [a, b, b], [a, b, a] = [a, b, b, b,] = [a, b, b, a] = 1 \rangle;$
- 11) D_{16} ;
- 12) $\langle a, b | a^4 = b^4 = 1, a^{-1}ba = b^{-1} \rangle;$

```
13) Q \times \mathbf{Z}_{2}^{(2)};
```

$$14) (D \times \mathbf{Z}_2) > < \mathbf{Z}_2;$$

15)
$$(Q \times \mathbf{Z}_2) > < \mathbf{Z}_2;$$

16)
$$\mathbf{Z}_2 \times \langle a, b, c | a^2 = b^2 = c^2 = 1, abc = bca = cab \rangle$$
;

2. Main Results

In this section, let (G, N) be a pair of groups such that $G \cong N \times K$ with $|N| = p^n$ and $|K| = p^m$. As mentioned before, Ellis [2] showed that $|M(G, N)| = p^{\frac{1}{2}n(2m+n-1)-t}$ for some non-negative integer t. Recently, all these pairs of finite p-groups are listed in [5] by the authors, when t = 0, 1, 2, 3. The aim of this paper is to characterize the structure of such pairs of finite p-groups, when t = 4, 5.

Theorem 2.1. By the above assumption, t = 4 if and only if G is isomorphic to one of the following groups.

```
1) G \cong N \times K where N \cong \mathbf{Z}_p and K is any group with d(K) = m - 4;
```

2)
$$G \cong N \times K$$
 where $N \cong \mathbf{Z}_p \times \mathbf{Z}_p$ and K is any group with $d(K) = m - 2$;

3)
$$G \cong N \times K$$
 where $N \cong \mathbf{Z}_p^{(4)}$ and K is any group with $d(K) = m - 1$;

4)
$$G = N \cong D \times \mathbf{Z}_{2}^{(2)};$$

5)
$$G = N \cong Q \times \mathbf{Z}_2$$
;

6)
$$G = N \cong \langle a, b | a^4 = b^4 = 1, [a, b, a] = [a, b, b] = 1, [a, b] = a^2b^2 \rangle$$
;

7)
$$G = N \cong \langle a, b, c | a^2 = b^2 = c^2 = 1, abc = bca = cab \rangle$$
:

8)
$$G = N \cong E_4$$
;

9)
$$G = N \cong E_1 \times \mathbf{Z}_n^{(3)}$$
;

10)
$$G = N \cong \mathbf{Z}_p^{(4)} \rtimes_{\theta} \mathbf{Z}_p;$$

11)
$$G = N \cong E_2 \times \mathbf{Z}_p$$
;

12)
$$G = N \cong \langle a, b | a^{p^2} = b^p = 1, [a, b, a] = [a, b, b] = 1 \rangle;$$

13)
$$G = N \cong \langle a, b | a^9 = b^3 = 1, [a, b, a] = 1, [a, b, b] = a^6, [a, b, b, b] = 1 \rangle;$$

14)
$$G = N \cong \langle a, b | a^p = b^p = 1, [a, b, a] = [a, b, b, a] = [a, b, b, b] = 1 \rangle$$

 $(p \neq 3);$

15)
$$G = N \cong \mathbf{Z}_{p^2} \times \mathbf{Z}_{p^2};$$

16)
$$G = N \cong \mathbf{Z}_{p^2} \times \mathbf{Z}_p^{(3)};$$

17)
$$G \cong N \times K$$
 where $K = \mathbf{Z}_p$ and $N \cong \mathbf{Z}_p^{(2)} \times \mathbf{Z}_{p^2}$;

18)
$$G \cong N \times K$$
 where $K = \mathbf{Z}_p$ and $N \cong Q$;

19)
$$G \cong N \times K$$
 where $K = \mathbf{Z}_p$ and $N \cong E_2$;

20)
$$G \cong N \times K$$
 where $K = \mathbf{Z}_p$ and $N \cong D \times \mathbf{Z}_2$;

21)
$$G \cong N \times K$$
 where $K = \mathbf{Z}_p$ and $N \cong E_1 \times \mathbf{Z}_p^{(2)}$;

22)
$$G \cong N \times K$$
 where $K = \mathbf{Z}_p^{(2)}$ and $N \cong \mathbf{Z}_{p^2} \times \mathbf{Z}_p$;

23)
$$G \cong N \times K$$
 where $K = \mathbf{Z}_p^{(2)}$ and $N \cong D$;

- 24) $G \cong N \times K$ where $K = \mathbf{Z}_p^{(2)}$ and $N \cong E_1 \times \mathbf{Z}_p$;
- 25) $G \cong N \times K$ where $K = \mathbf{Z}_{p^2} \times \mathbf{Z}_p$ and $N \cong \mathbf{Z}_{p^2}$;
- 26) $G \cong N \times K$ where $K = \mathbf{Z}_p^{(3)}$ and $N \cong E_1$;
- 27) $G \cong N \times K$ where $K = \mathbf{Z}_p^{(3)}$ and $N \cong \mathbf{Z}_{p^2}$.

Proof. The necessity of theorem follows from the fact that $G = N \times K$ and Corollary 1.2. For sufficiency, first suppose that N is an elementary abelian p-group. Then nm - 4 = nd(K) and using Corollary 1.2 we have $|N \otimes K^{ab}| = p^{nm-4} = p^{nd(K)}$. Hence n(m - d(K)) = 4 which implies that n = 1, 2 or 4. Therefore $N \cong \mathbb{Z}_p$ and K is any group with d(K) = m - 4 or $N \cong \mathbb{Z}_p^{(2)}$ and K is any group with d(K) = m - 1.

Now suppose that N is not an elementary abelian p-group. Then using Corollary 1.2 we have $|N^{ab}\otimes K^{ab}|>p^{nm-4}$ and so md(N)>nm-4 which implies that m(n-d(N))<4. Therefore m=0,1,2,3.

If m = 0, then K = 1 and N is one of the groups which are listed in Theorems 1.4 and 1.6.

If m=1, then $K=\mathbf{Z}_p$ and d(N)=n-1, n-2 or n-3. It follows that $|N^{ab}\otimes K|=p^{n-1}, p^{n-2}$ or p^{n-3} and so Corollary 1.2 implies that $|M(N)|=p^{\frac{n^2-n}{2}-3}, p^{\frac{n^2-n}{2}-2}$, or $p^{\frac{n^2-n}{2}-1}$, respectively. In the first case N is $\mathbf{Z}_p\times\mathbf{Z}_p\times\mathbf{Z}_p$, $Q,E_2, D\times\mathbf{Z}_2$ or $E_1\times\mathbf{Z}_p\times\mathbf{Z}_p$ and the other cases are impossible by Theorem 1.3.

If m=2, then d(N)=n-1 and $K=\mathbf{Z}_p\times\mathbf{Z}_p$ or $K=\mathbf{Z}_{p^2}$. In the first case $|N^{ab}\otimes K|=p^{2(n-1)}$ and so $|M(N)|=p^{\frac{n^2-n}{2}-2}$. Therefore N is $\mathbf{Z}_p\times\mathbf{Z}_{p^2},D$ or $\mathbf{Z}_p\times E_1$. In the second case $N^{ab}\cong\mathbf{Z}_p^{(n-1)}$ or $N^{ab}\cong\mathbf{Z}_{p^2}\times\mathbf{Z}_p^{(n-2)}$. If N^{ab} is an elementary abelian p-group, then $|N^{ab}\otimes K|=p^{(n-1)}$ and so $|M(N)|=p^{\frac{n^2+n-6}{2}}$ which is impossible. If $N^{ab}\cong\mathbf{Z}_{p^2}\times\mathbf{Z}_p^{(n-2)}$, then $|M(N)|=p^{\frac{n^2+n-8}{2}}$ which is impossible too.

If m=3, then d(N)=n-1 and K is an abelian p-group of order p^3 or an extra special p-group of order p^3 . In the first case we have three possibilities for K. The first possibility is $K \cong \mathbf{Z}_p^{(3)}$, and similar to the previous part, one can see that $|M(N)| = p^{\frac{n^2-n}{2}-1}$ and so $N \cong E_1$ or \mathbf{Z}_{p^2} . The second possibility is $K \cong \mathbf{Z}_{p^3}$. This implies that n=1 which is a contradiction. The third possibility is $K \cong \mathbf{Z}_{p^2} \times \mathbf{Z}_p$ which implies that n=2 and $N \cong \mathbf{Z}_{p^2}$.

In the second case, if K is an extra special p-group of order p^3 , then $N^{ab} \cong \mathbf{Z}_p^{(n-1)}$ or $N^{ab} \cong \mathbf{Z}_{p^2} \times \mathbf{Z}_p^{(n-2)}$. This implies that $|N^{ab} \otimes K| = |N^{ab} \otimes \mathbf{Z}_p^{(2)}| = p^{2n-2}$ and so n = 1 which is a contradiction. Hence the proof is complete.

Theorem 2.2. By the previous assumption, t = 5 if and only if G is isomorphic to one of the following groups.

- 1) $G \cong N \times K$ where $N \cong \mathbf{Z}_p$ and K is any group with d(K) = m 5;
- 2) $G \cong N \times K$ where $N \cong \mathbf{Z}_p^{(5)}$ and K is any group with d(K) = m 1;
- 3) $G = N \cong D \times \mathbf{Z}_2^{(3)}$;
- 4) $G = N \cong E_1 \times \mathbf{Z}_p^{(4)};$
- 5) $G = N \cong E_2 \times \mathbf{Z}_p^{(2)}$;

- 6) $G = N \cong E_4 \times \mathbf{Z}_p$;
- 7) $G = N \cong an \ extra \ special \ p$ -group of order p^5 ;
- 8) $G = N \cong \langle a, b | a^{p^2} = b^{p^2} = 1, [a, b, a] = [a, b, b] = 1, [a, b] = a^p \rangle$;
- 9) $G = N \cong \langle a, b | a^{p^2} = b^p = 1, [a, b, a] = [a, b, b] = a^p, [a, b, b, b, b] = 1 \rangle$;
- 10) $G = N \cong \langle a, b | a^{p^2} = b^p = 1, [a, b, a] = [a, b, b, b,] = 1, [a, b, b] = a^{np} \rangle$, where n is a fixed quadratic non-residue of p and $p \neq 3$;
- 11) $G = N \cong \langle a, b | b^3 = a^3, a^{p^2} = [a, b, a] = [a, b, b, b, b] = 1, [a, b, b] = a^6 \rangle;$
- 12) $G = N \cong \langle a, b | a^p = 1, b^p = [a, b, b], [a, b, a] = [a, b, b, b,] = [a, b, b, a] = 1 \rangle;$
- 13) $G = N \cong D_{16}$;
- 14) $G = N \cong \langle a, b | a^4 = b^4 = 1, a^{-1}ba = b^{-1} \rangle$;
- 15) $G = N \cong Q \times \mathbf{Z}_{2}^{(2)};$
- 16) $G = N \cong (D \times \mathbf{Z}_2) \rtimes \mathbf{Z}_2;$
- 17) $G = N \cong (Q \times \mathbf{Z}_2) \rtimes \mathbf{Z}_2;$
- 18) $G = N \cong \mathbf{Z}_2 \times \langle a, b, c | a^2 = b^2 = c^2 = 1, abc = bca = cab \rangle;$
- 19) $G = N \cong \mathbf{Z}_{n^3} \times \mathbf{Z}_p;$
- 20) $G = N \cong \mathbf{Z}_{p^2} \times \mathbf{Z}_{p^{(4)}};$
- 21) $G \cong N \times K$ where $K = \mathbf{Z}_n$ and $N \cong D \times \mathbf{Z}_2^{(2)}$;
- 22) $G \cong N \times K$ where $K = \mathbf{Z}_p$ and $N \cong Q \times \mathbf{Z}_2$;
- 23) $G \cong N \times K$ where $K = \mathbf{Z}_p$ and $N \cong \langle a, b, c | a^2 = b^2 = c^2 = 1$, abc = bca = cab >;
- 24) $G \cong N \times K$ where $K = \mathbf{Z}_p$ and $N \cong E_4$;
- 25) $G \cong N \times K$ where $K = \mathbf{Z}_p$ and $N \cong E_1 \times \mathbf{Z}_p^{(3)}$;
- 26) $G \cong N \times K$ where $K = \mathbf{Z}_p$ and $N \cong \mathbf{Z}_p^{(4)} \rtimes \mathbf{Z}_p$;
- 27) $G \cong N \times K$ where $K = \mathbf{Z}_n$ and $N \cong E_2 \times \mathbf{Z}_n$;
- 28) $G \cong N \times K$ where $K = \mathbf{Z}_p$ and $N \cong E_2 \times \mathbf{Z}_p$;
- 29) $G \cong N \times K$ where $K = \mathbf{Z}_p^{(2)}$ and $N \cong E_1 \times \mathbf{Z}_p^{(2)}$;
- 30) $G \cong N \times K$ where $K = \mathbf{Z}_p{}^{(2)}$ and $N \cong \mathbf{Z}_p{}^{(2)} \times \mathbf{Z}_{p^2};$
- 31) $G \cong N \times K$ where $K = \mathbf{Z}_p^{(2)}$ and $N \cong Q$;
- 32) $G \cong N \times K$ where $K = \mathbf{Z}_p^{(2)}$ and $N \cong E_2$;
- 33) $G \cong N \times K$ where $K = \mathbf{Z}_{p}^{(2)}$ and $N \cong D \times \mathbf{Z}_{2}$;
- 34) $G \cong N \times K$ where $K = \mathbf{Z}_{v^2}$ and $N \cong E_1$;
- 35) $G \cong N \times K$ where $K = \mathbf{Z}_{n^2}$ and $N \cong \mathbf{Z}_{n} \times \mathbf{Z}_{n^2}$;
- 36) $G \cong N \times K$ where $K = \mathbf{Z}_{p^3}$ and $N \cong \mathbf{Z}_{p^2}$;
- 37) $G \cong N \times K$ where $K = \mathbf{Z}_p^{(3)}$ and $N \cong D$;
- 38) $G \cong N \times K$ where $K = \mathbf{Z}_{p}^{(3)}$ and $N \cong E_{1} \times \mathbf{Z}_{p}$;
- 39) $G \cong N \times K$ where $K = \mathbf{Z}_p^{(3)}$ and $N \cong \mathbf{Z}_p \times \mathbf{Z}_{p^2}$;
- 40) $G \cong N \times K$ where K is an extra special P-group and $N \cong \mathbf{Z}_{n^2}$;
- 41) $G \cong N \times K$ where $K = \mathbf{Z}_p^{(4)}$ and $N \cong E_1$;

42) $G \cong N \times K$ where $K = \mathbf{Z}_p^{(2)} \times \mathbf{Z}_p$ and $N \cong \mathbf{Z}_{p^2}$.

Proof. The proof of this theorem is similar to the proof of the previous theorem so we left the details to the reader. Necessity is straightforward. For sufficiency, first suppose that N is an elementary abelian p-group. Then n(m-d(K))=5, so n=1 or 5. If n=1, then $N\cong \mathbb{Z}_p$ and K is any group with d(K)=m-5 and n=5 which implies that $N\cong \mathbb{Z}_p^{(5)}$ and K is any group with d(K)=m-1.

Suppose that N is not an elementary abelian p-group. Then we have $|N^{ab} \otimes K^{ab}| > p^{nm-5}$ by Corollary 1.2. It follows that md(N) > nm - 5 and thus m(n - d(N)) < 5 which implies that m = 0, 1, 2, 3 or 4. If m = 0, then K = 1 and N is one of the groups that are listed in Theorems 1.5 and 1.7.

If m=1, then $K=\mathbf{Z}_p$ and d(N)=n-i, for $1\leq i\leq 4$. Therefore by Corollary 1.2 $|M(N)|=p^{\frac{n(n-1)}{2}-(5-i)}$, for $1\leq i\leq 4$, respectively. It follows that $N\cong \mathbf{Z}_{p^2}\times \mathbf{Z}_p^{(3)}$, $D\times \mathbf{Z}_2^{(2)}$, $Q\times \mathbf{Z}_2$, E_4 , $E_1\times \mathbf{Z}_p^{(3)}$, $E_2\times \mathbf{Z}_p$, $N\cong \mathbf{Z}_{p^3}$ or $\langle a,b,c|a^2=b^2=c^2=1$, $abc=bca=cab\rangle$ by Theorems 1.6, 1.4 and 1.3.

If m=2, then $K=\mathbf{Z}_{p^2}$ or $K=\mathbf{Z}_p\times\mathbf{Z}_p$ and d(N)=n-1 or d(N)=n-2. First suppose that $K=\mathbf{Z}_p\times\mathbf{Z}_p$. If d(N)=n-1, then $|M(N)|=p^{\frac{n^2-n}{2}-3}$. It follows that $N\cong\mathbf{Z}_p\times\mathbf{Z}_p\times\mathbf{Z}_p\times\mathbf{Z}_p$, $N\cong E_1\times\mathbf{Z}_p\times\mathbf{Z}_p$, $N\cong Q$, $N\cong E_2$ or $N\cong D\times\mathbf{Z}_2$. If d(N)=n-2, then $|N\otimes K|=p^{2(n-2)}$. This implies that $|M(N)|=p^{\frac{n^2+n-2}{2}}$ and so n<1 which is impossible.

Now suppose that $K = \mathbf{Z}_{p^2}$. If d(N) = n - 1 and $N^{ab} \cong \mathbf{Z}_p^{(n-1)}$, then $|M(N)| = p^{\frac{n^2 + n - 8}{2}}$ which implies that n = 3 and $|M(N)| = p^2$. Therefore $N \cong E_1$. If d(N) = n - 1 and $N^{ab} \cong \mathbf{Z}_p^2 \times \mathbf{Z}_p^{(n-2)}$, then n = 3 or n = 4. For n = 3 there is not any structure for N and n = 4 implies that $N \cong \mathbf{Z}_{p^2} \times \mathbf{Z}_p$. If d(N) = n - 2, then $N^{ab} \cong \mathbf{Z}_p^{(n-2)}$ or $N^{ab} \cong \mathbf{Z}_p^3 \times \mathbf{Z}_p^{(n-3)}$ or $N^{ab} \cong \mathbf{Z}_p^2 \times \mathbf{Z}_p^2 \times \mathbf{Z}_p^{(n-4)}$. Therefore similar to the previous case one can see that n < 5 which is impossible.

If m=3, then d(N)=n-1 and K is an abelian p-group of order p^3 or is an extra special p-group of order p^3 . In the first case we have three possibilities for K. The first possibility is $K \cong \mathbf{Z}_{p^3}$. If $N^{ab} \cong \mathbf{Z}_p^{(n-1)}$, then n=1 which is impossible and if $N^{ab} \cong \mathbf{Z}_{p^2} \times \mathbf{Z}_p^{(n-2)}$, then $N \cong \mathbf{Z}_{p^2}$. The second possibility is $K \cong \mathbf{Z}_{p^2} \times \mathbf{Z}_p$. In this case, there is no structure for N. The third possibility is $K \cong \mathbf{Z}_p^{(3)}$. Thus $|M(N)| = p^{\frac{n^2-n}{2}-2}$ and so $N \cong D$, $N \cong E_1 \times \mathbf{Z}_p$ or $N \cong \mathbf{Z}_{p^2} \times \mathbf{Z}_p$ by Theorem 1.3.

Now suppose that K is an extra special p-group of order p^3 . Then $N^{ab} \cong \mathbf{Z}_p^{(n-1)}$ or $N^{ab} \cong \mathbf{Z}_{p^2} \times \mathbf{Z}_p^{(n-2)}$. If N^{ab} is an elementary abelian, then there is no structure for N. Otherwise $N = \mathbf{Z}_{p^2}$.

If m=4, then d(N)=n-1. So $N^{ab}\cong \mathbf{Z}_p^{(n-1)}$ or $N^{ab}\cong \mathbf{Z}_p^2\times \mathbf{Z}_p^{(n-2)}$. In the first case $|N^{ab}\otimes K^{ab}|=|\mathbf{Z}_p^{(n-1)}\otimes K^{ab}|\leq p^{d(K)(n-1)}$. Now suppose that d(K)<4. Then we have $|N^{ab}\otimes K^{ab}|\leq p^{3(n-1)}$. Therefore $|M(N)|\geq p^{-3(n-1)+(8n+n^2-n-10)/2}$ by Corollary 1.2. So n<2 which is impossible. If d(K)=4, then we have $K\cong \mathbf{Z}_p^{(4)}$. Hence $|N^{ab}\otimes K^{ab}|=p^{4(n-1)}$ which implies that $|M(N)|=p^{(n^2-n)/2-1}$. So $N\cong E_1$ by Theorem 1.3.

In the second case, suppose that K is not abelian. Then $|N^{ab} \otimes K^{ab}| = |\mathbf{Z}_{p^2} \times \mathbf{Z}_p^{(n-2)} \otimes K^{ab}| = |\mathbf{Z}_{p^2} \otimes K^{ab}| |\mathbf{Z}_p^{(n-2)} \otimes K^{ab}| \leq p^3 p^{d(K)(n-2)} \leq p^{3(n-1)}$ which implies that n < 2 and it is impossible. If K is abelian, then $K \cong \mathbf{Z}_{p^2} \times \mathbf{Z}_p^{(2)}$. Thus $|N^{ab} \otimes K| = p^{3n-2}$. It follows that $N \cong \mathbf{Z}_{p^2}$. This completes the proof.

References

- [1] Ya. G. Berkovich, On the order of the commutator subgroup and Schur multiplier of a finite p-group, *J. Algebra*, 144 (1991) 269-272.
- [2] G. Ellis, The Schur multiplier of a pair of groups, Appl. Categ. Structures, 6 (1998) 355-371.
- [3] G. Ellis, On the Schur multiplier of p-groups, Comm. Algebra, 27 no. 9 (1999) 4173-4177.
- [4] J. A. Green, On the number of outomorphisms of a finite p-group, *Proc. Roy. Soc. London Ser. A*, **237** (1956) 574-581.
- [5] A. Hokmabadi, F. Mohammadzadeh and B. Mashayekhy, On the order of the Schur multiplier of a pair of finite p-groups, arxive: 1101.2503v2.
- [6] G. Karpilovsky, The Schur Multiplier, Clarendon Press, Oxford, 1987.
- [7] P. Niroomand, Characterizing finite p-groups by their Schur multipliers, arXiv: 1001.4256v1.
- [8] P. Niroomand, Characterizing finite p-groups by their Schur multipliers t(G) = 5, arXiv: 1001.4257v1.
- [9] A. R. Salemkar, M. R. R. Moghaddam, M. Davarpanah and F. Saeedi, A remark on the Schur multiplier of p-groups, Comm. Algebra, 35 (2007) 1215-1221.
- [10] A. R. Salemkar, M. R. Moghaddam and F. Saeedi, The commutator subgroup and Schur multiplier of finite p-groups, J. Aust. Math. Soc., 81 (2006) 1-9.
- [11] X. Zhou, On the order of Schur multipliers of finite p-groups, Comm. Algebra, 22 no. 1 (1994) 1-8.

Fahimeh Mohammadzadeh

Department of Mathematics, Payame Noor University 19395-4697 Tehran, Iran

Email: mohamadzadefahime@yahoo.com

Azam Hokmabadi

Department of Mathematics, Payame Noor University 19395-4697 Tehran, Iran

Email: ahokmabadi@pnu.ac.ir

Behrooz Mashayekhy

Department of Mathematics, Ferdowsi University of Mashhad, P.O.Box 1159-91775, Mashhad, Iran

Email: bmashf@um.ac.ir