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THE FISCHER-CLIFFORD MATRICES OF THE INERTIA GROUP 27:0; (2) OF
A MAXIMAL SUBGROUP 27:5ps(2) IN Sps(2)

A. L. PRINS* AND R. L. FRAY

Communicated by Jamshid Moori

ABSTRACT. The subgroups of symplectic groups which fix a non-zero vector of the underlying symplec-
tic space are called affine subgroups. The split extension group A(4) = 27:Sps(2) is the affine subgroup
of the symplectic group Sps(2) of index 255. In this paper, we use the technique of the Fischer-Clifford
matrices to construct the character table of the inertia group 27:05 (2) of A(4) of index 28.

1. Introduction

Let G = N:G be a split extension of N by G. Then for 6 € Irr(N), define

0= {zcGo" =0} = I(0)
H={ge Gt =0} = I(9).

Since I(6) is the stabilizer of 6 in the action of G on Irr(N), we have that Iz(6) is a subgroup of G
and N is normal in Iz(0). Also [G, I5(0)] is the size of the orbit containing . Then it can be shown
that H = N:H, where H is the inertia group of 6 in G. The inertia factor H/N =2 H can be regarded
as the inertia group of @ in the factor group G/N = G.

In this paper we are concerned with the inertia group 27:0y (2) in A(4), the affine subgroup of Sps(2).
A(4) is the maximal subgroup of Spg(2) fixing the non-zero vector e; in V3(2), where Vg(2) is the
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vector space of dimension 8 over GF(2). We obtain from Theorem 6.2.6 and Lemma 6.2.5 (see [1])
that

A(4) = [Sps(2)],, = P(4):H = 27:Spg(2).

Ali [1] constructed both of 27 and Spg(2) in terms of 8 x 8 matrices inside Spg(2) and then act
Spe(2) on 27 by conjugation to represent Spg(2) in terms of 7 x 7 matrices over GF(2). The group
27:Sp6(2) acts on Irr(27) to produce four inertia groups H; = 27:H; of indices 1, 36, 28 and 63 in
27:Spg(2), respectively and where i € {1,2,3,4}. The groups are 27:Spg(2), 27:Ss, 27:06_(2) and
27:(25:S6), where the inertia factor groups H;, that is, S, Og (2) and 2%:8¢ are maximal subgroups of
Spe(2). Note that Og (2) = U4(2):2. The reader is referred to Ali [I] regarding the above mentioned

inertia groups which are all split extensions and sit maximally in 27:Spg(2).

Ali [1] has already calculated the character table of 27:Spg(2) by the method of Fischer-Clifford
matrices. In this paper, the conjugacy classes and the Fischer-Clifford matrices of 27:06_ (2) will be
computed. We shall use the technique of the Fischer-Clifford matrices to construct the character table
of 27:06_ (2). We shall use the properties of the Fischer-Clifford matrices and additional information,
which are discussed in Chapter 5 (see [I3]), to construct their entries. Most of the Fischer-Clifford
matrices have several candidates satisfying the properties discussed in Chapter 5 [I13] and therefore
we used the additional information and methods in the elimination process. The complete fusion of
27:04 (2) into 27:Spg(2) will be determined. Motivation for the problem came from the Ph.D thesis
of Ali [1].

2. Theory of Fischer-Clifford Matrices

Since the character table of 27:05 (2) will be constructed by means of its Fischer-Clifford matrices
we will give a brief theoretical background of this technique. Here we will follow the work of Whitley
[16] and Mpono [13].

Let G = N.G be an extension of N by G and 6 € Irr(N). Define #9 by 69(n) = 0(gng~!) for g € G
and n € N and 69 € Irr(N). Let H be the inertia group of 6 in G then N is normal in H. We say
that 6 is extendible to H if there exists ¢ € Irr(H) such that ¢ | y= 0. If § is extendible to H, then
by Gallagher [9], we have

{ww € Irr(H),< ¢ |n,0 >F# 0} = {B¢|B € IT"F(F/N)}.

Let G has the property that every irreducible character of N can be extended to its inertia group.
Now let 6 = 1y,0s,--- ,0; be representatives of the orbits of G on Irr(N), H; = Is(¢:), 1 <i < t,
¢; € Irr(H;) be an extension of §; to H; and 8 € Irr(H;) such that N C ker(8). Then it can be
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shown that
t t

Irr(@) = | J{(B:) | 8 € Irr(H:), N C ker(8)} = | J{(8:)C | 8 € Irr(H;/N)}

i=1 =1
Hence the irreducible characters of G will be divided into blocks, where each block corresponds to an
inertia group H;.
Let H; be the inertia factor group and ¢; be an extension of §; to H;. Take 6; = 1y as the identity
character of N, then H; = G and Hy = G. Let X (g) = {x1,22,--- , x4} be a set of representatives
of the conjugacy classes of G from the coset Ng whose images under the natural homomorphism

G — G are in [g] and we take 71 = g. We define
R(g) ={(i,y) [1 <i<t, HiN[g] #0,1 <k <r}

and we note that gy, runs over representatives of the conjugacy classes of elements of H; which fuse

into [g] in G. Then we define the Fischer-Clifford matrix M (g) by M(g) = (a7, ), where

/
i N\~ C()]
al, =Y =iy,
) — & |CE(yzk)|¢ (o)

with columns indexed by X (g) and rows indexed by R(g) and where Y_; is the summation over all [ for

which y;, ~ z; in G. Then the partial character table of G on the classes {z1,z2, - ,xc(g)} is given by
C1(g) Mi(g) Mi(g)

Ca(g) Ma(g) M>(g)

where the Fischer-Clifford matrix M (g) = is divided into blocks M;(g)

| Ci(g) Mi(g) | | Mi(g) |
with each block corresponding to an inertia group H; and C;(g) is the partial character table of H;
consisting of the columns corresponding to the classes that fuse into [g] in G. We can also observe
that the number of irreducible characters of G is the sum of the number of irreducible characters of
the inertia factors H,’s. The group G = 27:04 (2) is a split extension with 27 abelian and therefore
by Mackey’s theorem [J] each irreducible character of 27 can be extended to its inertia group in G.

Hence by the above theoretical outline we can fully determine the character table of 27:04 (2).

3. The Conjugacy Classes of 27:0; (2)

In this section we use the method of coset analysis to determine the conjugacy classes of elements of
27:04 (2). We refer readers to [1],[10],[13] and [16] for full details and background material regarding
the method of coset analysis. Most of the information, which involved the conjugacy classes and
permutation characters, were obtained by using direct computations in MAGMA [3] and therefore the
classes and permutation characters may be represented differently in ATLAS [5]. We generated Og (2)
by two elements g; € 44 and go € 6A of Spg(2). Ali [1] constructed Spg(2) in terms of 7 x 7 matrices
over GF'(2). Here 4A and 6A are conjugacy classes of elements of Spg(2) and g and g are given by :
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The elements g7 and go are of order 4 and 6, respectively. We obtained the conjugacy classes of

(2) using MAGMA [3] and are represented in the Table 1. The class representatives of each class

6

)

(2) are given in terms of 7 X 7 matrices over GF(2).

6

@) of O

6

[9]0

(2)

6

TABLE 1. The conjugacy classes of O

90 2

36

270

80

480

540

Class representative

[g]oﬁ— =)

2A

2C

3A

3C

4B

| [9}06— @

45

540

240

540

Class representative

[9]06— ()

1A

2B

2D

3B

4A
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Table 1 (continued)

llglo )|

3240

720

1440

1440

4320

5760

4320

Class representative

6o ()

4D

6A

6C

6E

6G

9A

12A

| [g]oe— @

1620

5184

1440

1440

2160

6480

5184

4320

Class representative

9o~ )

4C

6B

6D

6F

8A

10A

12B
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Og (2) has 25 conjugacy classes and under the action of Oy (2) on 27 we obtain six orbits of lengths
1, 1, 27, 27, 36 and 36. The point stabilizers for the orbits of lengths 1, 27 and 36 are Og (2), 24: 55
and Sg x 2 of indices 1, 27 and 36, respectively in Oy (2). We used Programme A (Ali [1]) in MAGMA
[3] to compute the orbit lengths and the corresponding stabilizers. The Programme A was originally
developed in CAYLEY [4] by Mpono [13] and later the programme was adapted for MAGMA by
Ali [1]. Let x(Og (2)|27) be the permutation character of Oy (2) on 27. We also let x(Og (2)[2*:S5)
and x(Og (2)|Ss x 2) be the permutation characters of Oy (2) on 2*:S5 and Sg x 2, respectively. The
permutation characters x(Og (2)|2*:55) = la + 6b + 20c and x(Og (2)|Se x 2) = la + 15b + 20c are
written in terms of the irreducible characters of Oy (2) and are computed directly using the character
tables of the point stabilizers together with the fusion maps of 24:S5 and Sg x 2 into Og (2).

We obtain that x(Og (2)[27) = I s @ 4 I s @ +I24S( ) +IQ4 5(2)+IS6X(2)+I§ X(22)’ where 12465( ) and

Og (2) Og (2)
Ing(QQ) are the identity characters of 2*:S5 and Sg x 2 respectively, induced to Og (2). We note that

O _
150 = x(05 (2)[2%:55) and I583) = x(O5 (2)IS6 x 2).

Therefore

— Og Og (2 Og (2 Og (2 Og (2
X(05 (N27) = 198 5) + 108 3 + 158 Y +I00 T+ 108 +IGS
:1a—|—1a—|—1a+66—|—200—|—1a—|—6b+2()c—|—1a+15b+200+1a+15b+200

=6x1la+2x6b+2x 150+ 4 x 20c
The values of x(Og (2)|27) on the different classes of Oy (2) determine the number k of fixed points

of each g € Og (2) in 27. These values of the k’s will enable us to calculate the conjugacy classes of
27:05 (2) and are listed in Table 2.

TABLE 2. The values of x(Og (2)|27) on the different classes of O (2)

(916~ 2 1A 24 2B 2C 2D 3A 3B 3C 4A 4B 4C 4D 5A
6

x(05 (2)|0g (2)) | 1 1 1 1 1 1 1 1 1 1 1 1 1
x(05 (2)|05 (2)) | 1 1 1 1 1 1 1 1 1 1 1 1 1
x(05(2)2%8s) [ 27 15 3 7 3 o 9 o0 1 3 5 1 2
x(05(2)]2%8s) [ 27 15 3 7 3 o 9 o 1 3 5 1 2
x(O5(2)|Sex2)| 36 16 12 8 4 0 6 3 6 0 2 2 1
x(Og(2)|Sex2) | 36 16 12 8 4 o0 6 3 6 0 2 2 1

l 128 64 32 32 16 2 32 8 16 8 16 8 8
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Table 2 (continued)

[9) 0 (o) 6A 6B 6C 6D 6E 6F 6G 8A 9A 104 12A 12B
6
x(05 (2)|05 (2)) 11 1 1 1 101 1 1 1 1 1
x(05 (2)|0g (2)) 11 1 1 1 11 1 1 1 1 1
x(05 (2)[2%:55) o 3 o0 0 3 1 0 1 0 0 0 1
x(Og (2)]2*:S5) 0o 3 0 0 3 1 0 1 0 0 0 1
x(0g (2)|S6 % 2) o o 1 3 4 2 1 0 o0 1 0 0
x(0g (2)|S6 % 2) o o 1 3 4 2 1 0 o0 1 0 0
l 2 8§ 4 8 16 8 4 4 2 4 2 4

The values of k enabled us to determine the number f; of orbits @;’s, 1 <7 < k which have fused
together under the action of 006_(2) (9), for each class representative g € Oy (2) , to form one orbit
Ay. We used Programme A written in MAGMA [3] due to Ali [I] to calculate these f;’s. We obtained
that 27:06_ (2) has exactly 130 conjugacy classes of elements. The values of the f;’s, the length of each
class [x]271067(2) and its corresponding centralizer 02705 @) (x) are listed in Table 3. We also list the
d;’s where d;g is a representative of the A;. By Theorem 2.3.10 and Remark 2.3.11 (see [13]), we

have

if =1

2m otherwise

for the class representative dg € G where d € 27, g € Og (2) and o(g) = m. The above result together
with Programme B (Ali [I]) developed in MAGMA [3] enabled us to compute the orders of the various

class representatives of 27:Og (2). Table 3 contains all the relevant information regarding the conjugacy

classes of 27:04 (2).

TABLE 3. The conjugacy classes of elements of G = 27:04 (2)

[5106—(2) k fi dj w [1127106—(2) HI]27:06—(2)‘ |C27=OE<2>(I)‘

14 128 | =1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 1A 1 6635520
fa=1 |(0,0,0,0,0,1,1) | (0,0,0,0,0,1,1) 24 1 6635520
fs =27 | (1,1,1,0,1,1,1) | (1,1,1,0,1,1,1) 2B 27 245760
fa=27(1,1,1,1,1,1,0) | (1,1,1,1,1,1,0) 2C 27 245760
fs =36 | (1,1,1,1,1,1,1) | (1,1,1,1,1,1,1) 2D 36 184320
fe =136 | (1,1,0,1,1,1,1) | (1,1,0,1,1,1,1) 2F 36 184320

24 64 | f1=1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 2F 72 92160
fo=1 | (0,1,1,1,1,0,1) | (0,0,0,0,0,0,0) 2G 72 92160
fs=6 | (1,1,1,1,0,1,0) | (0,1,1,1,1,1,0) 1A 432 15360
fa=6 | (1,1,1,0,1,1,1) | (0,1,1,1,1,1,0) 4B 432 15360
fs =10 | (1,0,1,1,0,1,1) | (0,1,1,1,1,1,0) 4c 720 9216
fe =10 | (1,1,1,1,0,1,1) | (0,1,1,1,1,1,0) 4D 720 9216
fr=15|(1,1,1,1,1,1,1) | (0,0,0,0,0,0,0) 2H 1080 6144
fs =15 | (1,1,1,1,1,0,1) | (0,0,0,0,0,0,0) 21 1080 6144
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Table 3(continued)

A. L. Prins and R. L. Fray

[g]og (2) k fj dj w [x]27:06_ (2) ‘[$]27:OS— (2)| ‘027506_ (2>($)‘
2B 32 fi= (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 2J 180 36864
fa= (0,1,0,1,1,1,0) | (0,0,0,0,0,0,0) 2K 180 36864
f3 =3 (0,1,1,1,1,1,1) | (0,0,0,0,0,0,0) 2L 540 12288
fa=3 (0,0,1,1,1,1,0) | (0,0,0,0,0,0,0) 2M 540 12288
fs =12 (1,1,1,1,1,1,1) | (0,1,0,0,1,1,1) 4FE 2160 3072
fée =12 | (1,1,1,1,1,0,1) | (0,0,0,1,0,1,0) 4F 2160 3072
2C 32 fi= (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 2N 1080 6144
fa=1 (0,0,1,1,1,1,1) | (0,0,0,0,0,0,0) 20 1080 6144
fa=1 (1,0,1,1,1,0,1) | (0,0,1,1,1,0,0) 4G 1080 6144
fa=1 (1,0,1,1,1,1,0) | (0,0,1,1,1,0,0) 4H 1080 6144
fs=3 (1,1,0,1,1,1,1) | (0,0,1,1,1,0,0) 41 3240 2048
fe =3 (1,1,1,1,1,1,1) | (0,0,1,1,1,0,0) 4J 3240 2048
fr=3 (0,1,1,1,1,1,0) | (0,0,0,0,0,0,0) 2P 3240 2048
fs =3 (1,1,1,0,1,1,1) | (0,0,0,0,0,0,0) 2Q 3240 2048
fo=38 (1,1,1,1,1,1,0) | (0,0,1,0,0,1,1) 4K 8640 768
fio=81 (1,1,1,1,1,0,1) | (0,0,1,0,0,1,1) 4L 8640 768
2D 16 fi=1 (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 2R 4320 1536
fa= (1,0,1,1,0,1,0) | (0,0,0,0,0,0,0) 28 4320 1536
fa=1 (1,1,1,1,0,1,1) | (0,0,1,0,0,1,0) 4M 4320 1536
fa=1 (1,1,1,0,0,1,1) | (0,0,1,0,0,1,0) AN 4320 1536
fs5=3 (1,1,1,1,1,1,1) | (0,0,1,1,0,0,1) 40 12960 512
fe =3 (1,0,1,1,1,1,1) | (1,0,0,0,0,0,0) 4P 12960 512
fr=3 (1,1,1,1,0,1,0) | (1,0,1,1,0,0,1) 4Q 12960 512
fs = (1,1,1,1,1,0,1) | (1,0,1,0,0,1,0) 4R 12960 512
3A 2 fi=1 (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 3A 5120 1296
fa=1 (1,1,1,1,1,0,1) | (0,0,0,0,0,1,1) 6A 5120 1296
3B 32 fi=1 (o0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 3B 960 6912
fo=1 (1,1,1,1,0,0,0) | (0,0,0,0,0,1,1) 6B 960 6912
f3=6 (1,1,1,1,1,1,0) | (0,0,0,0,1,0,1) 6C 5760 1152
fa=6 (1,1,1,1,1,0,1) | (0,0,0,0,1,1,0) 6D 5760 1152
f5=9 (1,1,0,1,1,1,1) | (1,0,0,1,1,0,1) 6E 8640 768
fe =9 (1,1,1,1,1,1,1) | (1,0,1,1,1,0,1) 6F 8640 768
3C 8 fi=1 (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 3C 7680 864
fa=1 (1,1,1,1,1,0,1) | (0,0,0,0,0,1,1) 6G 7680 864
f3 =3 (1,1,1,1,1,1,1) | (0,0,1,0,0,1,0) 6H 23040 288
fa=3 (1,1,0,1,1,1,1) | (0,0,1,0,0,0,1) 61 23040 288
4A 16 fi=1 (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 45 4320 1536
fo=1 (1,0,1,1,1,1,0) | (0,0,0,0,0,0,0) 4T 4320 1536
f3=3 (1,1,1,1,1,1,1) | (0,0,0,0,0,0,0) 4U 12960 512
fa=3 (1,1,0,1,1,1,1) | (0,0,0,0,0,0,0) 4V 12960 512
fs=4 (1,1,1,1,1,0,1) | (0,0,1,1,1,0,0) 8A 17280 384
fe =4 (1,1,1,1,1,1,0) | (0,0,1,1,1,0,0) 8B 17280 384
4B 8 fi=1 (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 4w 8640 768
fa=1 (0,1,1,1,0,0,1) | (0,0,0,0,0,0,0) 4X 8640 768
f3= (1,1,1,1,1,1,1) | (0,0,0,0,0,0,0) 4Y 25920 256
fa=3 (1,1,1,1,1,0,1) | (0,0,0,0,0,0,0) 47 25920 256
4C 16 fi=1 (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 4AA 12960 512
fa=1 (1,1,1,1,1,0,0) | (0,0,0,0,0,0,0) 4AB 12960 512
fa=1 (1,1,1,0,1,1,0) | (0,0,0,0,0,0,0) 4AC 12960 512
fa=1 (1,1,1,0,1,0,1) | (0,0,0,0,0,0,0) 4AD 12960 512
fs=2 (1,1,1,1,0,1,1) | (0,0,0,0,0,0,0) 4AFE 25920 256
fe =2 (1,1,0,1,1,1,1) | (0,0,0,0,0,0,0) 4AF 25920 256
fr=4 (1,1,1,1,1,0,1) | (1,0,0,0,1,0,0) 8C 51840 128
fs =4 (1,1,1,1,1,1,0) | (1,0,0,0,1,0,0) 8D 51840 128
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Table 3(continued)
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[g]OG_ (2) k fj dj w [x]27:06_ (2) |[$]27:06—<2)| |Cz7:06— (2) (@)
4D 16 | fr=11 (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 4AG 51840 128
fo=11(1,1,1,0,1,0,1) | (0,0,0,0,0,0,0) 4AH 51840 128
fs=11 (0,0,0,1,0,0,0) | (0,0,0,0,0,0,0) 4AI 51840 128
fa=11(,1,1,1,1,0,1) | (0,0,0,0,0,0,0) 4AJT 51840 128
fs=11(,1,1,1,0,1,1) | (0,1,1,0,0,0,1) 8E 51840 128
fe=11(,1,1,0,1,1,1) | (0,1,1,0,0,0,1) 8F 51840 128
fr=11(,1,1,1,1,1,1) | (0,1,1,0,0,0,1) 8G 51840 128
fs=11(1,1,0,1,1,1,1) | (0,1,1,0,0,0,1) 8H 51840 128
5A 8 fi 1| (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 5A 82944 80
f2=11(,1,1,1,1,0,1) | (0,0,0,0,0,1,1) 10A 82944 80
fs=11(0,1,1,1,1,1,1) | (0,1,1,1,1,1,0) 10B 82944 80
fa=11(1,0,1,1,1,1,1) | (0,1,1,1,1,0,1) 10C 82944 80
fs=21(1,1,1,0,1,1,1) | (1,1,1,0,1,1,1) 10D 165888 40
fe=21(1,1,1,1,0,1,1) | (1,1,1,0,1,0,0) 10E 165888 40
6A 2 fi=11 (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 6J 46080 144
fo=11(,1,1,1,1,0,1) | (0,0,0,0,0,0,0) 6K 46080 144
6B 8 fi=11 (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 6L 23040 288
f2=11 (0,0,1,0,0,0,1) | (0,0,0,0,0,0,0) 6M 23040 288
fs=31(1,1,0,0,0,1,0) | (1,1,1,0,1,0,0) 12A 69120 96
fa=31(1,0,1,1,1,1,1) | (0,0,0,1,0,1,0) 12B 69120 96
6C 4 fi=11 (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 6N 46080 144
fo=11(,1,1,1,1,1,1) | (0,0,1,1,1,0,1) 12C 46080 144
fs=11(1,1,0,0,0,0,1) | (0,0,1,1,1,0,1) 12D 46080 144
fa=11(,1,1,1,1,0,1) | (0,0,0,0,0,0,0) 60 46080 144
6D 8 fi=11 (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 6P 23040 288
f2=11 (0,0,0,0,0,1,1) | (0,0,0,0,0,0,0) 6Q 23040 288
fs =31 (0,0,0,1,0,1,1) | (0,0,0,0,0,0,0) 6R 69120 96
fs=31(1,1,0,0,0,0,1) | (0,0,0,0,0,0,0) 6S 69120 96
6E 16 | f1=11 (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 6T 11520 576
f2=11(0,1,1,1,0,0,1) | (0,0,0,0,0,0,0) 6U 11520 576
fs=11(1,1,1,0,1,1,1) | (1,0,0,0,0,0,0) 12E 11520 576
fa=11(,1,1,0,1,0,0) | (1,0,0,0,0,0,0) 12F 11520 576
fs=31(0,1,0,0,0,1,0) | (1,0,0,0,0,0,0) 12G 34560 192
fée =31 (0,1,0,0,0,0,1) | (1,0,0,0,0,0,0) 12H 34560 192
f=31(,1,1,1,1,0,1) | (0,0,0,0,0,0,0) 6V 34560 192
fs=31(1,1,1,1,1,1,0) | (0,0,0,0,0,0,0) 6w 34560 192
6F 8 fi=11 (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 6X 34560 192
f2=11(,1,1,0,1,1,1) | (0,0,0,0,0,0,0) 6Y 34560 192
fs=11(,1,1,1,1,1,1) | (0,0,1,1,1,0,0) 121 34560 192
fa=11(1,1,0,1,1,1,1) | (0,0,1,1,1,0,0) 12J 34560 192
fs=21(1,1,1,1,1,1,0) | (0,0,1,0,0,1,1) 12K 69120 96
fe=21(,1,1,1,1,0,1) | (0,0,1,0,0,1,1) 12L 69120 96
6G 4 fi=11 (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 672 138240 48
f2=11(1,0,1,1,1,1,1) | (0,0,1,0,0,1,0) 12M 138240 48
fs=11(1,1,1,0,1,1,1) | (0,0,0,0,0,0,0) 6AA 138240 48
fa=11(,1,1,1,0,1,1) | (0,0,1,0,0,1,0) 12N 138240 48
8A 4 fi=11 (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 81 207360 32
f2=11(,1,1,1,1,0,1) | (0,0,0,0,0,0,0) 8J 207360 32
fs=11(1,1,1,0,1,1,1) | (0,0,0,0,0,0,0) 8K 207360 32
fa=11(1,0,0,1,1,1,1) | (0,0,0,0,0,0,0) 8L 207360 32
9A 2 fi=11 (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 9A 368640 18
f2=11(,1,1,0,1,1,1) | (0,0,0,0,0,1,1) 18A 368640 18

27
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Table 3(continued)

[5']0672) k fi d; w [$]27:oﬁ_(2) Hx]ﬂ:og(z)‘ |Cz7;oﬁ—<2)(”:)|
104 fi=11(0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 10F 165888 40
f2=11(1,1,1,1,1,0,1) | (0,0,0,0,0,0,0) 10G 165888 40
f5=11(1,1,1,0,1,1,1) | (0,1,1,1,1,1,0) 20A 165888 40
fi=11(1,1,1,1,0,1,1) | (0,1,1,1,1,1,0) 20B 165888 40
124 fi=11(0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 120 276480 24
fa=11(,1,1,0,1,1,1) | (0,0,0,0,0,0,0) 12P 276480 24
12B f1=1 1 (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 12Q 138240 48
f2=11(1,1,1,1,1,1,0) | (0,0,1,1,1,0,0) 244 138240 48
fs=11(,1,1,1,1,0,1) | (0,0,1,1,1,0,0) 24B 138240 48
fa=11(,1,1,0,1,1,1) | (0,0,0,0,0,0,0) 12R 138240 48

4. The Inertia Groups of 27:0; (2)

The action of Og (2) on the conjugacy classes of 27 determine 6 orbits being formed, with respective
lengths of 1,1,27,27,36 and 36. Therefore by Brauer’s Theorem [7], Og (2) acting on Irr(27) will also
form 6 orbits of lenghts 1, r, s, ¢, v and v such that »r + s + ¢t + u + v = 127. Hence there are six
inertia groups H; = 27:H;, i = 1,2,3,4,5 and 6, such that [G:H;|=1, [G:Ha] = 7, [G:H3)= s, [G:Hy] =
t, |G:Hs]= u, and [G:Hg] = v. The H;’s are the factor groups of the inertia groups, which are maximal

subgroups or sit in the maximal subgroups of Oy (2).

The sum of the number of conjugacy classes of these inertia factors must be in total equal to 130,
that is, the number of the conjugacy classes of 27:0g (2). Since Oy (2) = Uy(2):2, then by checking all
the indices of maximal subgroups of Oy (2) in the ATLAS [5] and all combinations that can possibly
satisfy the previous two facts, we deduce that s =t = 27, u = v = 36 and r= 1 are the only lengths of
these orbits. 2%:S5 and Sg x 2 are the only copies of maximal subgroups of Og (2), up to isomorphism,
that have indices of 27 and 36 in Og (2). Hence Hy = Hy = Og (2), H3 = Hy = 24:S5, Hs = Hg
= Sg x 2. The inertia groups 24:S5 and Sg x 2 are constructed from elements within Og (2) and the

generators are as follows :

o S x2=(a1,a2,a3) , a1 € 4A a3 € 6F, a3 € 6F where

o o o o

; 3=

Q

[
= = = O O O
O O = O O = O
= = O R O O O
= o= == O O O
e e = =]
O = O = = O O

g

|

o O O O O O
O O O O = = O
= = O R O O O
= = O O O O O
= = = O O = O
o = O O O O ©
O = O = = O O
e e ]
O O R = O = O
= = O R~ = = O
= = O O O = O
= = O O O O O
O = = = O O O
O = = O O = O

(=R
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o 24:55 = (A1, Mo, A3), A1 € 2C A9 € 4C, A3 € 4D where

1 0 O
o 1 0
1 1 1
A= 0 0 0
1 1 0
o 0 O
0o 0 O

e = =]

S O O O O O
= O O O O O O

[}

o = O O O

0o 0 1
0O 1 0
1 1 1
1 0 1
1 1 0
1 0 1
1 0 1

o 1 1 0
0o 0 0 O
o 0 1 1
1 0 1 1
o o0 1 0
0O 0 o0 1
o o0 1 o0

A. L. Prins and R. L. Fray

o 1 1
0O 1 0
1 1 0
1 0 1
o 1 1
0o 0 1
0o 0 1

5. The Fusions of 21:S5 and Ss x 2 into Oy (2)

e )

1 0
0 0
1 0
0 1
1 1
0 1
0 0

B =

29

We obtain the fusion maps of the inertia factors 24:S5 and Sg x 2 into Og (2), by using direct matrix
conjugation in Oy (2) and the permutation characters of Oy (2) on 24:S5 and Sg x 2. MAGMA [3] was
used for the various computations. The fusion maps of the inertia factor groups into Og (2) are shown
in the Table 4 and Table 5.

TABLE 4. The fusion of 2*:S5 into Oy (2)

Watey — Blom o || Pty — Blo o) || Plate, — 6lom ) || Platis, —  Blo
14 14 2E 2C 4D 4D 6C 6E
24 2B 34 3B 4E ac 8A 8A
2B 2C 4A 44 54 5A 124 12B
2C 24 4B ac 6A 6F
2D 2D ac 4B 6B 6B

TABLE 5. The fusion of Sg x 2 into O (2)

[P]sgx2 — [g]ogm [Plsgx2 — [9]06—(2) []sgx2 — [g]og(z) [Plsgx2 — [9]06—(2)
14 14 2F 2D ac 4D 6D 6F
24 24 2G 2c 4D 4D 6E 6G
2B 2C 34 3B 54 5A 6F 6E
2C 2D 3B 3C 6A 6C 104 104
2D 24 4A ac 6B 6E
2E 2B 4B 4A 6C 6D

6. The Fischer-Clifford Matrices of 27:0; (2)

Having obtained the fusions of the inertia factor groups 24:S5 and Sg x 2 into Og (2), we are now able

to compute the Fischer-Clifford matrices of the group 27:06_ (2). We will use the properties discussed

in Section 5.2.2 (see Mpono [13]) to help us in the construction of these matrices. Note that all the

relations hold since 27 is an elementary abelian group. The reader is encouraged to consult [1], [2],
[6], [11], [12], [13], [16] and [17] for full details around the theory and computation of Fischer-Clifford

matrices.
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The following additional information are needed sometimes to compute these entries:

(1) For x a character of any group H and h € H, we have |x(h)| < x(1g), where 1 is the identity
element of .
(2) For x a character of any group H and h a p—singular element of H, where p is a prime, then

we have x(h) = x(h?)modp.

bix(hi)
x(1x)
integer, where C; is the ith conjugacy class of H and b; = |C;| = [H:Cg(h;)]. It is clear if

d; € Q, then d; € Z.

(3) For any irreducible character x of a group H and for h; € C; then d; =

is an algebraic

For each class representative g € Og (2), we construct a Fischer-Clifford matrix M (g) which are listed
in Table 6 .

TABLE 6. The Fischer-Clifford Matrices of 27:04 (2)

M(g) M(g)
1 11 1 1 1 1 1
1 11 1 11 1 -1 1 -1 -1 1 -1 1
1 -1 -1 1 1 -1 5 —-15 -5 5 -3 3 1 -1
27 -2 - - 1 15 -5 — -1 -1
MA) = 7 7 5 -5 3 -3 M(24) = 5 5 -5 -5 3 3
27 27 -5 -5 3 3 1 -1 -1 1 1 -1 -1 1
36 —36 -4 4 —4 4 5 —-15 5 -5 3 -3 1 -1
36 36 4 4 —4 —4 1 1 -1 -1 -1 -1 1 1
5 15 5 5 -3 -3 -1 -1
1 1 1 1 1 1 1 1 1 1
1 -1 -1 1 1 -1 1 -1 -1 1
1 101 1 1 1 1 -1 -1 1 1 -1 1 -1 1 -1
1 -1 1 -1 1 -1 6 -6 6 -6 2 -2 -2 2 0 0
3 -3 3 -3 -1 1 1 1 1 1 1 1 1 1 -1 -1
M(2B) = M(2C) =
3 3 3 3 -1 -1 6 6 -6 -6 2 2 -2 -2 0 0
12 —12 -4 4 0 0 2 -2 2 -2 -2 2 2 -2 0 0
12 12 -4 -4 0 0 6 -6 -6 6 -2 2 -2 2 0 0
2 2 -2 -2 -2 -2 2 2 0 0
6 6 6 -2 -2 -2 -2 0 0
1 1 1 1 1 1 1 1
1 -1 1 -1 1 1 -1 -1
3 -3 3 -3 -1 -1 1 1
3 3 3 3 -1 -1 -1 -1 1
M(2D) = M(3A) =
1 -1 -1 1 1 -1 1 -1 -1
3 -3 -3 3 -1 1 -1 1
1 1 -1 -1 1 -1 -1 1
3 3 -3 -3 -1 1 1 -1
11 1 1 1 1
1 -1 1 -1 -1 1 11 11
9 -9 -3 3 -1 1 1 -1 1 -1
M(3B) = M(3C) =
9 9 -3 -3 1 1 3 -3 -1 1
6 -6 2 -2 2 -2 3 3 -1 -1
6 6 2 2 -2 -2
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Table 6 (continued)
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7. Character Table of 27:0; (2)

The character table of 27:05 (2) was constructed through the above Fischer-Clifford matrices and the
character tables of the 6 inertia factors groups together with their respective fusion maps into Oy (2).
We used MAGMA [3] to compute the character tables of the inertia factor groups. We partitioned the
set of irreducible characters of 27:06_ (2) into 6 blocks By, Be, Bs, By, Bs and Bg corresponding to the
inertia factor groups Hiy, Ha, Hs, Hy, Hs and Hg respectively. Therefore Irr(27:04 (2)) = U?:l B;,
where By = {x;|1 <j <25}, By = {x;]26 < j <50}, By = {x;|561 < j <68}, By = {x;]69 < j <86},
Bs = {x;/87 < j <108} and Bg = {x;|109 < j <130}. For a thorough discussion around the con-
struction of a character table of a finite extension group of the type of 27:04 (2), through the use of
its Fischer-Clifford matrices, the reader is referred to [1], [2], [I1], [12], [I3] and [16]. The character
table of 27:05 (2) can be found in [14] or the reader can obtain it directly from the authors. The
consistency and accuracy of the character table of 27:0()? (2) have been tested by using Programme C
[14] written in GAP [15].

8. The Fusion of 27:0; (2) into 27:Sps(2)

We use the results of Section 3 to compute the power maps of the elements of 27:06_ (2) which are
listed in Table 7.

TABLE 7. The Power Maps of the Elements of 27:04 (2)

[g]og(z) [$]27:o6’(2) 2 3 5 7 [g]og(z) [x]27:06’(2) 2 3 5 7
1A 1A 2A 2F 1A
2A 1A 2G 1A
2B 1A 4A 2D
2C 1A 4B 2D
2D 1A 4C 2D
2F 1A 4D 2D
2H 1A
21 1A
2B 2J 1A 2C 2N 1A
2K 1A 20 1A
2L 1A 4G 2C
2M 1A 4H 2C
4F 2C 41 2C
4F 2C 4J 2C
2P 1A
2Q 14
4K 2D
4L 2D
2D 2R 1A 3A 3A 1A
25 1A 6A 3A 2A
4M 2D
4N 2D
40 2C
4P 2D
40 2D
4R 2C
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Table 7(continued)
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[g]oﬁ_(z) [:c]27:06_(2) 2 3 5 7 [9]06_(2) [x]27:06_(2) 2 3 5 7
3B 3B 1A 3C 3C 1A
6B 3B 2A 6G 3C 2A
6C 3B 2D 6H 3C 2D
6D 3B 2FE 61 3C 2F
6F 3B 2B
6F 3B 2C
4A 45 2N 4B 4w 2J
4T 2N 4X 2J
4U 2N 4Y 2L
4V 2N 4z 2L
8A 4H
8B 4H
4C 4AA 2N 4D 4AG 2N
4AB 2N 4AH 2N
4AC 2N 4AT1 2P
4AD 2N 4AJT 2P
4AFE 2N 8E a1
4AF 2N 8F a1
8C 41 8G 4H
8D 41 8H 4H
5A 5A 1A 6A 6J 3A 2J
10A 5A 2A 6K 3A 2K
10B 5A 2D
10C 5A 2F
10D 5A 2B
10F 5A 2C
6B 6L 3B 2J 6C 6N 3C 2F
6 M 3B 2K 12C 6H 4D
12A 6F 4F 12D 6H 4C
12B 6F 4F 60 3C 2G
6D 6P 3C 2J 6F 6T 3B 2F
6Q 3C 2K 6U 3B 2G
6R 3C 2L 12F 6C 4C
6S 3C 2M 12F 6C 4D
12G 6C 4A
12H 6C 4B
6V 3B 2H
(1174 3B 27
6F 6X 3B 2N 6G 67 3C 2R
6Y 3B 20 12M 6H AN
121 6F 4H 6AA 3C 25
12J 6F 4G 12N 6H 4M
12K 6C 4K
12L 6C 4L
8A 81 AW 9A 9A 3A
8J AW 18A 6A
8K 4Y
8L 4Y
10A 10F 5A 2F 12A 120 6J AW
10G 5A 2G 12P 6J 4X
20A 10B 4B
20B 10B 4A
12B 12Q 6X 4S8
24A 121 8A
24B 1271 8B
12R 6X 4T

33
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Let x(27:Sps(2)]27:04 (2) be the permutation character of degree 28 of 27:Spg(2) acting on 27:05 (2).
We obtain that x(27:Sps(2)[27:05 (2)) = la+27a. We are able to obtain the partial fusion of 27:05 (2)
into 27:Spg(2) by using the information provided by the conjugacy classes of the elements of 27:0; (2)
and 27:Spg(2), their power maps, together with the permutation character of 27:Spg(2) of degree 28
and the fusion map of Oy (2) into Sps(2). We used the technique of set intersections for characters to
restrict 63a, 63b, 36a, 36b, 28a, 28b € Irr(27:Sps(2)) to 27:04 (2) to determine fully the fusion of the
classes of 27:05 (2) into 27:Spg(2). We refer the reader for detailed information regarding the above set
intersections technique to Ali [I], Moori and Ali [2], Moori [I1], Moori and Mpono [12] and Mpono [13].

Let ¢ be the character afforded by the regular representation of Og (2). We obtain that ¢ = ¥25, 0, ®;,
where ®; € Irr(Og (2)) and o; = deg(®;). Then ¢ can be regarded as a character of 27:05 (2) which

contains 27 in its kernel such that

6 if x 7
C(x):{|o6<2>| foe?

0 otherwise .

If ¢ is a character of 27:Spg(2) than we have that

<0 >0 M{«mw(m) T ((24)9(24) + 27C(2B)9(2B) + 27¢(2C)(2C) +
M6
36¢(2D)0(2D) + 36(2E)0(2E)}
= oy 106 (G1A) + 6(24) + 276(25) + 270(2C) + 369(2D) + 366(2E)))
M6
= e {0(1L4) 1 6(24) + 276(2B) + 276(20) + 366(2D) + 366(28))

= < o, 1g7 > .
Here 147 is the identity character of 27 and ¢o7 is the restriction of ¢ to 27. We obtain that
¢or = a161 + az02 + a3l + asfy + as05 + agbs,

where a; € NU {0} and 6; are the sums of the irreducible characters of 27 which are in the same
orbit under the action of Oy (2) on Irr(27), for i € {1,2,3,4,5,6}. Let ¢; € Irr(27) , where
j€{1,2,3,...,130}. Then we obtain that
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I
—_

6 =1, deg(br)
O = @2, deg(62)

I
—

29
03 = Zcpj , deg(fs3) = 27
j=3

56
0y = Z w; , deg(0s) = 27
7=30

92
05 =) ¢, deg(f5)= 36

=57

128
O0s=> @, deg(fs)= 36.
=93
Hence
29 56 92 128
Po7r = a1p1 +a2@2+agzg@j+a4 Z ©j +as Z @j“‘aﬁz i,
Jj=3 j=30 j=5T =93
and therefore
(67, 097) = af + aj + 27a3 + 27a] + 3645 + 36ag
1
= g 19(14)0(14) + 6(24)$(24) + 276(2B)$(2B) + 27¢(2C)$(2C) +

360(2D)p(2D) + 36¢(2E)$(2E)}

where a1= < (, ¢ Z97.05 (2)°

We apply the above results to some of the irreducible characters of 27:Spg(2), which in this case
are ¢1 = 28a, ¢o = 28b, ¢p3 = 36a, ¢4 = 36b, ¢5 = 63a and ¢g = 63b . Their respective degrees are
28, 28, 36, 36, 63 and 63. For ¢ we calculate that

<6 P1 >910-(2)= %8{28 + (—28) +27(—4) +27(4) +36(—4) +36(4)} =0 .

Now a1 + ae + 27as + 27a4 + 36as +36ag = 28 , since degpy = 28. Since a; = 0 , we must have
either a0 = 1, a4 =a5 =ag = 0 and a3 = 1 or as = 1, a3 =as =ag = 0 and a4 = 1. Note that
27:05 (2) does not have irreducible characters of degree 28. We obtain that (¢1)27¢OE(2) = X26 + X51
if the partial fusion of 27:05 (2) into 27:Spg(2) is taken into consideration. Similarly for ¢o, @3, ¢4, @5
and ¢g we obtain that
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(¢2)q7. 05 (2) = X271 T X52
(¢3)27 .05 (2) = X8T
(¢ )270 (2) X90

(#5)a7.0- (2) = X69 + X109

(¢6)27:Og(2)— x70 + X110-

By making use of the values of ¢y, ¢2, ¢3, ¢4, 5 and ¢g on the classes of 27:Spg(2) and the values
of (Cbl)z? 105 (2)? (¢2)27 :Og (¢3)27 :05 (2)7 (¢4)27 05 (¢5)27 :05 (2) and (¢6)27 .05 (2) OB the classes of
27:04 (2) together with the partial fusmn, the complete fusion map of 27:0; (2) into 27:Sps(2) is given
in the Table 8.

TABLE 8. Fusion of 27:05 (2) into 27:Spg(2)

[9105(2) [1127:05*(2) —  Wlarispge [g]og(z) [x]fﬂ:og(z) — [Wlarispge)
1A 1A 1A 2A 2F 2D
2A 2A 2G 2F
2B 2C 4A 4B
2C 2B 4B 4A
2D 2C 4C 4B
2F 2B 4D 4A
2H 2F
21 2F
2B 2J 2G 2C 2N 2K
2K 2H 20 2L
2L 21 4G 4D
2M 2J 4H 4FE
4F 4C 41 4D
4F 4C 4J 4FE
2P 2M
20 oM
4K 4F
4L 4F
2D 2R 2N 3A 3A 3B
25 20 6A 6D
4M 4H
4N 4G
40 41
4P 4.J
40Q 47
4R 41
3B 3B 3A 3C 3C 3C
6B 6A 6G 6F
6C 6C 6H 6G
6D 6B 61 6F
6FE 6C
6F 6B
4A 45 4R 4B 4W 4K
4T 45 4X 4L
4U 4U 4Y 4M
4V 4T 47 4M
8A 8B
8B 8B
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Table 8 (continued)
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[9]06—(2) [x]27:oﬁ—(2) - [y]27zspe(2) [g]oﬁ—@) [x]27;06—(2) - [9]27:5%(2)
4C 4AA 4N 4D 4AG 47
4AB 40 4AH 4AA
4AC 4Q 4A1 4AC
4AD 4P 4AJT 4AB
4AE 4Q 8E 8C
4AF 4P 8F 8C
8C 8A 8G 8D
8D 8A 8H 8D
5A 5A 5A 6A 6J 6 M
10A 10A 6K 6N
10B 10B
10C 10C
10D 10B
10F 10C
6B 6L 6K 6C 6N 6U
6 M 6L 12C 12H
12A 12C 12D 12G
12B 12C 60 6V
6D 6P 60 6E 6T 6H
6Q 6R 6U 61
6R 6T 12F 12B
6S 6S 12F 12A
12G 12B
12H 12A
6V 6.J
6W 6.J
6F 6X 60 6G 672 6W
6Y 6P 12M 1271
1271 12F 6AA 6X
12J 12D 12N 12J
12K 12F
12L 12F
8A 81 8H 9A 9A 9A
8J 81 18A 18A
8K 8J
8L 8J
10A 10F 10D 12A 120 120
10G 10FE 12P 12P
20A 20A
20B 20B
12B 12Q 12M
24A 24B
24B 24B
12R 12N
Acknowledgements
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