An infinite family of finite ‎$‎2‎$‎-groups with deficiency zero

Document Type: Research Paper

Authors

University of Mohaghegh Ardabili

Abstract

‎‎We determine a new infinite sequence of finite $2$-groups with deficiency zero‎. ‎The groups have $2$ generators and $2$ relations‎, ‎they have coclass $3$‎ ‎and they are not metacyclic‎.

Keywords

Main Subjects


[1] H. Abdolzadeh and B. Eick, On efficient presentations for infinite sequences of 2-groups with fixed coclass, Algebra Colloq., 20 (2013) 561–572.

[2] M. J. Beetham and C. M. Campbell, A note on the Todd-Coxeter coset enumeration algorithm, P. Edinburgh Math. Soc., 20 (1976) 73–79.

[3] G. Havas, M. F. Newman and E. A. O’Brien, Groups of deficiency zero, DIMACS Ser. Discrete Math. Theoret.
Comput. Sci., 25 (1994) 53–67.

[4] D. L. Johnson, Topics in the theory of group presentations, London Mathematical Society Lecture Note Series, 42, Cambridge University Press, Cambridge, 1980.

[5] M. F. Newman, E.A. O’Brien, Classifying 2-groups by coclass, Trans. Amer. Math. Soc., 351 (1999) 131–169.

[6] R. G. Swan, Representations of polycyclic groups, Proc. Amer. Math. Soc., 18 (1967) 573 – 574.

[7] The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.4 (available from www.gap-system.org), 2005.