Some characterisations of groups in which normality is a‎ ‎transitive relation by means of subgroup embedding properties

Document Type: Ischia Group Theory 2016

Authors

1 Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, Camí de Vera, s/n, 46022 València, Spain

2 University of salerno

Abstract

‎In this survey we highlight the relations between some subgroup embedding properties that characterise groups in which normality is a transitive relation in‎ ‎certain universes of groups with some finiteness properties‎.

Keywords

Main Subjects


[1] A. Ballester-Bolinches and R. Esteban-Romero, On finite T -groups, J. Aust. Math. Soc., 75 (2003) 181–191.

[2] A. Ballester-Bolinches, R. Esteban-Romero and M. Asaad, Products of finite groups, de Gruyter Expositions in Mathematics, 53, Walter de Gruyter GmbH & Co. KG, Berlin, 2010.

[3] E. Best and O. Taussky, A class of groups, Proc. Roy. Irish Acad. Sect. A, 47 (1942) 55–62.

[4] M. Bianchi, A. Gillio Berta Mauri, M. Herzog and L. Verardi, On finite solvable groups in which normality is a
transitive relation, J. Group Theory, 3 (2000) 147–156.

[5] F. de Giovanni, A. Russo and G. Vincenzi, Groups with restricted conjugacy classes, Serdica Math. J., 28 (2002) 241–254.

[6] F. de Giovanni and G. Vincenzi, Pronormality in infinite groups, Math. Proc. R. Ir. Acad., 100A (2000) 189–203.

[7] F. de Giovanni and G. Vincenzi, Pseudonormal subgroups of groups, Ricerche Mat., 52 (2003) 91–101.

[8] K. Doerk, Minimal nicht überauflösbare, endliche Gruppen, Math. Z., 91 (1966) 198–205.

[9] R. Esteban-Romero and G. Vincenzi, A new characterisation of groups in which normality is a transitive relation, Preprint.

[10] , Characterisations of groups in which normality is a transitive relation by means of subgroup embedding
properties, poster at Ischia Group Theory 2016, March 29th–April 2nd, 2016, http://www.dipmat2.unisa.it/
ischiagrouptheory/poster_session_2016.pdf, April 2016.

[11] , On generalised FC-groups in which normality is a transitive relation, J. Aust. Math. Soc., 100 (2016)
192–198.

[12] W. Gaschütz, Gruppen, in denen das Normalteilersein transitiv ist, J. Reine Angew. Math., 198 (1957) 87–92.

[13] B. Huppert, Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967.

[14] G. Kaplan, On finite T-groups and the Wielandt subgroup, J. Group Theory, 14 (2011) 855–863.

[15] G. Kaplan, On T-groups, supersolvable groups, and maximal subgroups, Arch. Math. (Basel), 96 (2011) 19–25.

[16] G. Kaplan and G. Vincenzi, On the Wielandt subgroup of generalized FC-groups, Internat. J. Algebra Comput., 24 (2014) 1031–1042.

[17] L. G. Kovács, B. H. Neumann and H. de Vries, Some Sylow subgroups, Proc. Roy. Soc. Ser. A, 260 (1961) 304–316.

[18] L. A. Kurdachenko and I. Y. Subbotin, Transitivity of normality and pronormal subgroups, Combinatorial group theory, discrete groups, and number theory. A conference in honor of Gerhard Rosenberger’s sixtieth birthday, Fairfield, CT, USA, December 8–9, 2004 and the AMS special session on infinite groups, Bard College, Annandale-on-Hudson, NY, USA, October 8–9, 2005 (Providence, RI) (B. Fine et al., eds.), Contemporary Mathematics, vol. 421, American Mathematical Society (AMS), 2006, pp. 201–212.

[19] N. F. Kuzennyi and I. Y. Subbotin, Groups with pronormal primary subgroups, Ukr. Math. J., 41 (1989) 286–289.

[20] S. Li, On minimal non-PE-groups, J. Pure Appl. Algebra, 132 (1998) 149–158.

[21] Y. Li, Finite groups with NE-subgroups, J. Group Theory, 9 (2006) 49–58.

[22] V. D. Mazurov and E. I. Khukhro and eds., Unsolved problems in group theory: The Kourovka notebook, 18 ed., Russian Academy of Sciences, Siberian Branch, Institute of Mathematics, Novosibirsk, Russia, 2014.

[23] K. H. Müller, Schwachnormale Untergruppen: Eine gemeinsame Verallgemeinerung der normalen und normalisat-orgleichen Untergruppen, Rend. Sem. Mat. Univ. Padova, 36 (1966) 129–157.

[24] V. I. Mysovskikh, Investigation of subgroup embeddings by the computer algebra package GAP, Computer algebra in scientific computing—CASC’99 (Munich) Berlin, Springer, 1999 309–315.

[25] T. A. Peng, Finite groups with pronormal subgroups, Proc. Amer. Math. Soc., 20 (1969) 232–234.

[26] T. A. Peng, Pronormality in finite groups, J. London Math. Soc. (2), 3 (1971) 301–306.

[27] D. J. S. Robinson, Groups in which normality is a transitive relation, Math. Proc. Camb. Phil. Soc., 60 (1964) 21–38.

[28] D. J. S. Robinson, A. Russo and G. Vincenzi, On groups which contain no HNN-extensions, Int. J. Algebra Comput., 17 (2007) 1377–1387.

[29] E. Romano and G. Vincenzi, Pronormality in generalized FC-groups, Bull. Austral. Math. Soc., 83 (2011) 220–230.

[30] E. Romano and G. Vincenzi, Groups in which normality is a weakly transitive relation, J. Algebra Appl., 14 (2015) 12 pp.

[31] A. Russo, On groups in which normality is a transitive relation, Comm. Algebra, 40 (2012) 3950–3954.

[32] G. Vincenzi, A characterization of soluble groups in which normality is a transitive relation, Int. J. Group Theory, 6 (2017) 21–27.