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Abstract. In this survey we highlight the relations between some subgroup embedding properties

that characterise groups in which normality is a transitive relation in certain universes of groups with

some finiteness properties.

1. Introduction

We begin by recalling the definition of the groups in which normality is a transitive relation, or, in
short, T-groups.

Definition 1.1. A group G is said to be a T-group if H ⊴ K ⊴ G implies H ⊴ G.

This is equivalent to stating that all subnormal subgroups are normal. The first explicit mention we
have found of T-groups in the literature corresponds to a paper of Best and Taussky [3]. Chapter 2 of
[2] summarises some basic results about T-groups in finite groups. The description of T-groups in the
infinite case is more complex and can be found in the celebrated paper of D. J. S. Robinson [27].

It is well known that the class of T-groups is not closed under taking subgroups. A typical example
of a T-groups with subgroups that are not T-groups is the alternating group A5 of degree 5, that is
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obviously a T-group since it is simple and its only subnormal subgroups are 1 and A5, but that has
a subgroup isomorphic to A4 which is not a T-group, since the cyclic subgroups in the Klein 4-group
are subnormal, but not normal in A4. This motivates the following definition.

Definition 1.2. We say that a group G is a T̄-group if every subgroup of G is a T-group.

In the finite soluble universe, the following classical characterisation of Gaschütz characterises finite
soluble T-groups. Recall that a Dedekind group is a group with all subgroups normal and that a power
automorphism of a group X is an automorphism of X that stabilises all subgroups of X.

Theorem 1.3. [12, Gaschütz] A finite soluble group G is a T-group if and only if G has a normal
abelian Hall subgroup L of odd order such that G/L is a Dedekind group and L is acted upon by
conjugation as a group of power automorphisms by G.

This result has the virtue of showing that a finite soluble T-group is supersoluble. Moreover, a finite
T̄-group must be soluble, since, otherwise, if we have an insoluble T̄-group whose proper subgroups
are soluble, then it is a minimal-non-supersoluble group and so it is soluble by a theorem of Doerk [8,
Satz A] (see also [13, Kapitel VI, Satz 9.6]). Therefore we have the following result.

Theorem 1.4. Let G be a finite group.

(1) If G is a soluble T-group, then G is a T̄-group.
(2) If G is a T̄-group, then G is soluble.

Examples of infinite soluble T-groups that are not T̄-groups are constructed in [27] and [19].
The first class of infinite groups we will consider is the class of FC∗-groups, that generalise the class

of groups of FC-groups or groups in which every conjugacy class is finite. Recall that if H is a subgroup
of G, then HG denotes the normal closure of H in G.

Definition 1.5. We say that a group G is an FC0-group if G is finite. By induction, we say that a
group G is an FCn+1-group if G/CG(⟨x⟩G) is an FCn-group for all x ∈ G. Then G is an FC∗-group if
G is an FCn-group for some n ≥ 0.

Theorem 1.6. [11, Theorem 2.3] Let G be an FC∗-group. Then the following statements are equivalent:

(1) G is a soluble T-group.
(2) G is a T̄-group.

The following property, introduced by Kaplan in [15], is not exactly a subgroup embedding property
per se, but describes a class of groups in which the non-normal subgroups are embedded in the group
in a particular way.

Definition 1.7. [15] A group G is said to be an NNM-group (for “non-normal maximal”) if each
non-normal subgroup of G is contained in a non-normal maximal subgroup of G.
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Theorem 1.8. [15, Theorem 1] Let G be a finite soluble group. Then the following statements are
equivalent:

(1) G is a T-group.
(2) All subgroups of G are NNM-groups.

This result can be also extended to FC∗-groups.

Theorem 1.9. [11, Theorem 2.5] Let G be a FC∗-group. Then the following statements are equivalent:

(1) G is a soluble T-group.
(2) All subgroups of G are NNM-groups.

We remark that there exist examples of T-groups that are hyperfinite and FC-nilpotent, but that
are not NNM-groups [11, Example 2.6].

The other class of groups we are interested in is the class of groups without infinite simple sections.
This class contains every FC∗-group and it is in fact a subclass of the class of locally graded groups.

Definition 1.10. We say that a group G is locally graded if every non-trivial finitely generated sub-
group of G has a non-trivial finite homomorphic image.

Theorem 1.11. [6, Theorem 3.6]

(1) Let G be a group without infinite simple sections. Then:
(a) G is locally graded.
(b) If G is a T̄-group, then G is metabelian.

(2) Let G be a soluble group. Then G is a T̄-group if and only if every ascendant subgroup of G is
normal in G.

The following question is open in the Kourovka Notebook (see [22, Question 14.36]).

Question 1.12. Are non-periodic locally graded T̄-groups soluble?

In [9], this question is reduced to the following one.

Question 1.13. Let G be a locally graded T̄-group. If G is torsion-free, can we say that it is abelian?

2. Subgroup embedding properties

In this section we present some subgroup embedding properties that have been used to characterise
T-groups.

2.1. Pseudonormal and pronormal subgroups. The following subgroup embedding property ap-
pears in a natural way in the scope of T̄-groups. The first appearance of this property known to us is
due to Peng [26].
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Definition 2.1. A subgroup X of a group G is said to be pseudonormal [7] or transitively normal [18]
or to satisfy the subnormaliser condition [24] if NG(H) ≤ NG(X), for each subgroup H of G such that
X ≤ H ≤ NG(X).

This is equivalent to affirming that if H ≤ L ≤ G and H is subnormal in L, then H ⊴ L (see [7,
Theorem 2.1]).

Pronormality is a well-known subgroup embedding property introduced by Hall in his Cambridge
lectures.

Definition 2.2. A subgroup X of a group G is said to be pronormal if X and Xg are conjugate in
⟨X,Xg⟩, for every element g ∈ G.

For instance, we have the following result for finite groups.

Theorem 2.3. [1, Theorem A] Let G be a finite group, then the following statements are equivalent:

(1) G is a T̄-group.
(2) Every subgroup of G is pronormal.
(3) Every subgroup of G is pseudonormal.

Theorem 2.3 admits an extension to FC∗-groups.

Theorem 2.4. Let G be an FC∗-group, then the following statements are equivalent:

(1) G is a T̄-group.
(2) Every subgroup of G is pronormal.
(3) Every subgroup of G is pseudonormal.

This result follows by [7, Theorem 3.1 and Corollary 3.5] and [5, Theorem 4.6] or [29, Theorem 3.3].
In general, we have the following result.

Theorem 2.5. [7, Theorem 3.1] A group G is a T̄-group if and only if all its subgroups are pseud-
onormal.

With respect to pronormality, we have the next result.

Theorem 2.6. [25] Let G be a finite soluble group. Then the following statements are equivalent:

(1) G is a T-group.
(2) G is a T̄-group.
(3) X is pronormal in G for all X ≤ G.

The theorem of Peng can be extended to FC∗-groups.

Theorem 2.7. [6, Theorem 3.9] Let G be a soluble FC∗-group. Then the following statements are
equivalent:

(1) G is a T-group.

http://dx.doi.org/10.22108/ijgt.2017.21214

http://dx.doi.org/10.22108/ijgt.2017.21214


Int. J. Group Theory 7 no. 2 (2018) 9-16 R. Esteban-Romero and G. Vincenzi 13

(2) X is pronormal in G for all X ≤ G.

Combining the above Theorems 2.6 and 1.11 with [6, Lemma 3.5] we have the following character-
isation.

Theorem 2.8. Let G be a group without infinite simple sections. Then G is a T̄-group if and only if
every cyclic subgroup is pronormal.

Kovács, Neumann, and de Vries [17, Theorem 2.1] show the existence of a metabelian T̄-group that
contains some non-pronormal Sylow subgroups (see also the comments after [6, Lemma 2.7] for more
details). Kuzennyi and Subbotin [19, Example 2] present an example of a group with all primary
subgroups pronormal, but with some non-pronormal subgroups.

2.2. Weakly normal subgroups. The following concept was introduced by Müller [23].

Definition 2.9. [23] A subgroup X of a group G is said to be weakly normal if Xg ≤ NG(X) implies
g ∈ NG(X).

Theorem 2.10. [1, Theorem A] Let G be a finite soluble group. Then the following statements are
equivalent:

(1) G is a T-group.
(2) Every subgroup of G is weakly normal.

Theorem 2.11. [31, Corollary 4], [30, Theorem 2.8] Let G be a group. Then the following statements
are equivalent:

(1) G is a T̄-group without infinite simple sections.
(2) G is a locally graded group whose subgroups are weakly normal.

2.3. H-subgroups. The notion of H-subgroup is due to Bianchi, Gillio Berta Mauri, Herzog, and
Verardi [4].

Definition 2.12. [4] A subgroup X of a group G is said to be an H-subgroup or that it has the
H-property in G if NG(X) ∩Xg ≤ X for all elements g of G.

Theorem 2.13. [4, Theorem 10] Let G be a finite soluble group. Then the following statements are
equivalent:

(1) G is a T-group.
(2) G is a T̄-group.
(3) Every subgroup of G is an H-subgroup.

The previous theorem also holds for groups without infinite simple sections.

Theorem 2.14. [32, Theorem 3.2] Let G be a group without infinite simple sections. Then the following
statements are equivalent:
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(1) G is a T̄-group.
(2) Every subgroup of G has the property H.

2.4. NE-subgroups. The notion of NE-subgroup is due to Li.

Definition 2.15. [20] A subgroup H of a finite group G is called an NE-subgroup if it satisfies
NG(H) ∩HG = H.

Theorem 2.16. [21, Theorem 3.1] Let G be a finite soluble group. Then the following statements are
equivalent:

(1) G is a T-group.
(2) Every subgroup of G is an NE-subgroup of G.

Theorem 2.17. [9] Let G be a group without infinite simple sections. Then the following statements
are equivalent:

(1) G is a soluble T̄-group.
(2) Every subgroup of G is an NE-subgroup of G.

2.5. φ-subgroups and cr-subgroups. The following subgroup embedding properties were intro-
duced by Kaplan [14].

Definition 2.18. [14] A subgroup H of a group G is said to be a φ-subgroup of G if, for all K, L
maximal in H, if it is the case that if K, L are conjugate in G, then K, L are conjugate in H.

Definition 2.19. [14] A subgroup K of a group G is said to be a cr-subgroup (for “conjugation
restricted”) of G if there are no A < K, g ∈ G such that K = AAg.

Theorem 2.20. [14, Theorem 7] Let G be a finite soluble group. Then the following statements are
equivalent:

(1) G is a T-group.
(2) Every subgroup of G has the property φ.
(3) Every subgroup of G is a cr-subgroup.

This result admits an extension to FC∗-groups.

Theorem 2.21. [16, Theorem 5.2] Let G be a soluble FC∗-group. Then the following statements are
equivalent:

(1) G is a T-group.
(2) Every subgroup of G has the property φ.
(3) Every subgroup of G is a cr-subgroup.

2.6. Relations between subgroup embedding properties. Now we will investigate the relations
between these subgroup embedding properties. Figure 1 shows the relations between some of the
subgroup embedding properties considered in this survey.
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Figure 1. Relations between subgroup embedding properties
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The broken arrows mean implications that are only known to hold in HNN-free groups (in particular,
in finite groups), but whose validity in the general case is not known. We recall that G is HNN-free if
Hg ≤ H implies that g ∈ NG(H) (see [28]).

The following comments show that no other general implications between the subgroup embedding
properties presented in Figure 1 hold, although some partial results have been obtained.

In [1, Remark 1], an example of a weakly normal subgroup that is not pronormal is presented. It is
constructed from an irreducible and faithful Σ3-module V7 over the field of 7 elements whose restriction
to the alternating group A3 of degree 3 is a direct sum of two irreducible modules V7 = W1 ⊕W2 of
dimension 1. Let G = Σ3 ⋉ V7. Then H = A3W1 is weakly normal, but not pronormal in G. The fact
that pronormal subgroups are weakly normal has been proved in [1, Proposition 1]. This proof is also
valid in the infinite case.

In [1, Lemma 1], it is shown that weakly normal subgroups satisfy the subnormaliser condition. This
proof is also valid for infinite groups. An example of Mysovskikh [24] (see also [2, Example 1.5.16])
shows that the converse is false. It consists of a semidirect product G = A4⋉W of A4 by an irreducible
and faithful module of dimension 3 over the field of 3 elements obtained by considering the A4-invariant
subgroup W = ⟨w4w

−1
1 , w4w

−1
2 , w4w

−1
3 ⟩ of the base subgroup of the natural wreath product C3 ≀ A4.

Then D = ⟨(1, 2)(3, 4)⟩W is pseudonormal, but not weakly normal in G.
Suppose that HG ∩ NG(H) = H, then Hg ∩ NG(H) ≤ HG ∩ NG(H) = H and so all NE-subgroups

are H-subgroups. The converse is false, because in SL2(3), a Sylow 3-subgroup H is an H-subgroup
that is not an NE-subgroup.

In [4, Lemma 5], it is shown that H-subgroups are pseudonormal in finite groups. For infinite groups,
the result also holds, we have to modify slightly the argument: if H ≤ K ≤ NG(H) and g ∈ NG(K),
then Kg = Kg−1

= K and so Hg, Hg−1 ≤ K ≤ NG(H). Therefore Hg = Hg ∩ NG(H) ≤ H and
Hg−1

= Hg−1 ∩ NG(H) ≤ H, that is, H ≤ Hg. Consequently Hg = H and g ∈ NG(H). The previous
example of Mysovskikh gives a pseudonormal subgroup that is not an H-subgroup.

The fact that H-subgroups are weakly normal in finite groups was indicated in [1]: if Hg ≤ NG(H)

and H is an H-subgroup, then Hg ≤ Hg ∩NG(H) = H. This gives that g ∈ NG(H) if G is HNN-free.
A similar argument shows that for HNN-free groups, NE-subgroups are weakly normal. However, we
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do not know whether these implications hold in the general case. This is left open in [32, Question 2].
Conversely, the subgroup ⟨(1, 2, 3, 4)⟩ of the symmetric group Σ4 of degree 4 is an example of a weakly
normal subgroup that is not an H-subgroup (see [1, Example 1]) and, hence, not an NE-subgroup. In
[1, Theorems 4 and 5], some sufficient conditions for a weakly normal subgroup H of a supersoluble
group to be an H-subgroup are considered, namely H being a p-group or H having all its subgroups
weakly normal.

The above presented group of [1, Remark 1] is also an example of an H-subgroup that is not
pronormal.

The subgroup ⟨(1, 2, 3, 4)⟩ of Σ4 of [1, Example 1] is also a pronormal subgroup, but not an H-
subgroup and, consequently, not an NE-subgroup.

Finally, in [9], we prove that the T̄-groups with no infinite simple sections coincide with the locally
graded groups whose subgroups are NE-subgroups. Based on this result, we see that the constructions of
Kovács, Neumann, and de Vries and Kuzennyi and Subbotin that we have mentioned after Theorem 2.8
give examples of NE-subgroups that are not pronormal.

On the other hand, the properties of being φ-subgroups and cr-subgroups seem to be essentially
different from the other properties we have considered before. We know by [14, Theorem 4.1] that φ-
subgroups that are normal are cr-subgroups and that soluble cr-subgroups are φ-subgroup, with some
counterexamples given when the hypothesis of normality or solubility of the corresponding subgroup
is removed. It is clear that all subgroups of prime order are both φ-subgroups and cr-subgroups,
but K = ⟨(1, 2)(3, 4)⟩ is not pseudonormal in the alternating group A4. Moreover, the fact that
V = ⟨(1, 2)(3, 4), (1, 3)(2, 4)⟩ has two subgroups ⟨(1, 2)(3, 4)⟩, ⟨(1, 3)(2, 4)⟩ that are not conjugate in G,
shows that normal subgroups are not necessarily φ-subgroups nor cr-subgroups.

3. Systems of subgroups satisfying embedding properties and T̄-groups

We can summarise the previous characterisations of T̄-groups by means of subgroup embedding
properties, as well as other characterisations presented in [7, 9, 32], in the following results.

Theorem 3.1. Let G be a periodic, locally graded group. The following statements are pairwise equi-
valent.

(1) G is a T̄-group.
(2) G is locally finite and all cyclic subgroups of G are pronormal.
(3) All subgroups of G are H-subgroups.
(4) G is locally finite and all cyclic subgroups of G are H-subgroups (see [32, Theorem 3.1]).
(5) All subgroups of G are weakly normal.
(6) G is locally finite and all cyclic subgroups of G are weakly normal (see [7, Lemma 3.2]).
(7) All subgroups of G are NE-subgroups.
(8) G is locally finite and all cyclic subgroups of G are NE-subgroups (see [9]).
(9) All subgroups of G are pseudonormal.
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(10) G is locally finite and all cyclic subgroups of G are pseudonormal (see [7, Lemma 3.2]).

Moreover, if one of the above conditions hold, then G is metabelian.

Theorem 3.2. Let G be a non-periodic group without infinite simple sections. The following statements
are pairwise equivalent.

(1) All subgroups of G are pronormal.
(2) All cyclic subgroups of G are pronormal.
(3) All subgroups of G are NE-subgroups.
(4) All subgroups of G are weakly normal.
(5) All subgroups of G are H-subgroups.
(6) G is abelian.

In the comment after [32, Theorem 3.1] it is shown that the dihedral infinite group D∞ is an example
of a group with all cyclic subgroups H-subgroups, but with a non-H-subgroup. In [9] we also show
that this group has all cyclic subgroups NE-subgroups, but it contains a subgroup which is not an
NE-subgroup.

We do not know whether a non-periodic soluble group with all cyclic subgroups weakly normal is
abelian.

We conclude by summarising the characterisations for T̄-groups that hold in the universe of all
FC∗-groups.

Theorem 3.3. Let G be a soluble FC∗-group. The following statements are pairwise equivalent.

(1) G is a T-group.
(2) G is a T̄-group.
(3) All subgroups of G are NNM-groups.
(4) All subgroups of G are cr-subgroups.
(5) All subgroups of G are φ-subgroups.

A scheme of the characterisations contained in this section can be found in [10].
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