Conjugacy classes contained in normal subgroups: an overview

Document Type: Ischia Group Theory 2016

Authors

1 Universitat Jaume I

2 Universitat Politécnica de València

Abstract

We survey known results concerning how the conjugacy classes contained in a normal subgroup and their sizes exert an influence on the normal structure of a finite group. The approach is mainly presented in the framework of graphs associated to the conjugacy classes, which have been introduced and developed in the past few years. We will see how the properties of these graphs, along with some extensions of the classic Landau's Theorem on conjugacy classes for normal subgroups, have been used in order to classify groups and normal subgroups satisfying certain conjugacy class numerical conditions.

Keywords

Main Subjects


[1] Z. Akhlaghi, A. Beltrán, M. J. Felipe and M. Khatami, Structure of normal subgroups with three G-class sizes, Monatsh. Math., 167 (2012) 1–12.

[2] Z. Akhlaghi, A. Beltrán, M. J. Felipe and M. Khatami, Normal sections, class sizes and solvability of finite gorups, J. Algebra, 399 (2014) 220–231.

[3] E. Alemany, A. Beltrán and M. J. Felipe, Nilpotency of normal subgroups having two G-class sizes, Proc. Amer. Math. Soc., 138 (2011) 2663–2669.

[4] A. Beltrán and M. J. Felipe, The influence of class sizes on normal subgroups, Proceeding of the “Meeting on Group Theory and its applications, on the occasion of Javiel Otal’s 60 th birthday ”, Biblioteca Rev. Mat. Iberoam., (2011) 45–55.

[5] A. Beltrán and M. J. Felipe, A generalization on the solvability of finite groups with three class sizes for normal subgroups, London Mathematical Society Lecture Notes, 422 (2013) 173–182.

[6] A. Beltrán, M. J. Felipe and C. Melchor, Graphs associated to conjugacy classes of normal subgroups in finite groups, J. Algebra, 443 (2015) 335–348.

[7] A. Beltrán, M. J. Felipe and C. Melchor, Landau’s Theorem on conjugacy classes for normal subgroups, Int. J. Algebra Comput., 26 (2016).

[8] A. Beltrán, M. J. Felipe and C. Melchor, Normal subgroups whose conjugacy class graph has diameter three, Bull. Aust. Math. Soc., 94 (2016) 266–272.

[9] A. Beltrán, M. J. Felipe and C. Melchor, Triangles in the graph of conjugacy classes of normal subgroups,
Monatshefte für Mathematik, 182 (2017) 5--21.

[10] A. Beltrán, M. J. Felipe and C. Shao, p-divisibility of conjugacy class sizes and normal p-complements, J. Group Theory, 18 (2015) 133–141.

[11] H. U. Besche, B. Eick and E. A. O’Brien, A millennium project: constructing small groups, Internat. J. Algebra Comput., 12 (2002) 623--644.

[12] E. A. Bertram, M. Herzog and A. Mann, On a graph related to conjugacy classes of groups, Bull. London Math. Soc., 22 (1990) 569–575.

[13] A. R. Camina and R. D. Camina, The influence of conjugacy class sizes on the structure of finite groups: a survey, Asian-Eur. J. Math., 4 (2011) 559–588.

[14] M. Cartwright, A bound on the number of conjugacy classes of a finite soluble group, J. London Math. Soc., 2 (1987) 229–244.

[15] M. Cartwright, The number of conjugacy classes of certain finite groups, Quart. J. Math. Oxford Ser., 36 (1985) 393–404.

[16] C. Casolo and S. Dolfi, The diameter of a conjugacy class graph of finite groups, Bull. London Math. Soc., 28 (1996) 141–148.

[17] C. Casolo, S. Dolfi and E. Jabara, Finite groups whose noncentral class sizes have the same p-part for some prime p, Isr. J. Math., 192 (2012) 197–219.

[18] D. Chillag, M. Herzog and A. Mann, On the diameter of a graph related to conjugacy classes of groups, Bull. London Math. Soc., 25 (1993) 255–262.

[19] S. Dolfi, Arithmetical conditions of the length of the conjugacy classes in finite groups, J. Algebra, 174 (1995) 753–771.

[20] M. Fang and P. Zhang, Finite groups with graphs containing no triangles, J. Algebra, 264 (2003) 613–619.

[21] The GAP Group, GAP-Groups, Algorithms and Programming, 2015, www.gap-system.org.

[22] X. Guo and X. Zhao, On the normal subgroup with exactly two G-conjugacy class sizes, Chin. Ann. Math. B., 30 (2009) 427–432.

[23] L. S. Kazarin, On groups with isolated conjugacy classes, Izv. Vyssh. Uchebn. Zaved. Mat., 7 (1981) 40–45.

[24] L. Héthelyi and B. Külshammer. Elements of prime-power order and their conjugacy classes in finite groups, J. Aust. Math. Soc., 78 (2005) 291–295.

[25] E. Landau,Über die Klassenzahl der binären quadratischen Formen von negativer Diskriminante, Math. Ann., 56 (1903) 671–676.

[26] M. L. Lewis, An overview of graphs associated with character degrees and conjugacy class sizes in finite groups, Rocky Mountain J. Math., 38 (2008) 175–211.

[27] A. Moretó and H. N. Nguyen, Variations of Landau’s theorem for p-regular and p-singular conjugacy classes, Israel J. Math., 212 (2016) 961–987.

[28] M. Newman, A bound for the number of conjugacy classes in a group, J. London Math. Soc., 43 (1968) 108–110.

[29] U. Riese and M. A. Shahabi, Subgroups which are the union of four conjugacy classes, Comm. Algebra., 29 (2001) 695–701.

[30] M. Shahryari and M. A. Shahabi, Subgroups which are the union of three conjugate classes, J. Algebra., 207 (1998) 326–332.