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ON GROUPS WITH TWO ISOMORPHISM CLASSES OF CENTRAL FACTORS
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Communicated by Patrizia Longobardi

Abstract. The structure of groups which have at most two isomorphism classes of central factors

(B2-groups) are investigated. A complete description of B2-groups is obtained in the locally finite case

and in the nilpotent case. In addition detailed information is obtained about soluble B2-groups. Also

structural information about insoluble B2-groups is given, in particular when such a group has the

derived subgroup satisfying the minimal condition.

1. Introduction

Given a group G, a subgroup K of G is said to be a derived subgroup or a commutator subgroup in

G if K = H ′ for some subgroup H of G, where H ′ denotes the derived subgroup of H.

Let C(G) denote the set of all derived subgroups in G:

C(G) = {H ′|H ≤ G}.

The influence of C(G) on the structure of the group G has been studied by many authors. For example,

F. de Giovanni and D. J. S. Robinson in [1] and M. Herzog, P. Longobardi and M. Maj in [2], have

investigated the case C(G) finite. In particular, they proved that if G is locally graded, C(G) is finite

if and only if G′ is finite.

Let n be a positive integer and let Dn denote the class of all groups with at most n isomorphism

types of derived subgroups. Clearly D1 is the class of abelian groups and a non-abelian group G

belongs to D2 if and only if H ′ ≃ G′ whenever H is a non-abelian subgroup of G. P. Longobardi, M.
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Maj, D. J. S. Robinson and H. Smith in [4] focused their attention on groups in D2 and described in

a precise way some large classes of D2-groups.

Some additional information about these classes of groups can be founded in [5], [6].

In this paper we are concerned with groups G for which the set of isomorphism types of elements

in { H
Z(H) |H ≤ G} is very small.

If n is a positive integer, let Bn denote the class of groups G such that the factor groups in

{ H
Z(H) |H ≤ G} fall into at most n isomorphism classes.

Of course, B1 is the class of abelian groups, while a non-abelian group G belongs to B2 if and only

if H
Z(H) ≃

G
Z(G) whenever H is a non-abelian subgroup of G.

We give a characterization of nilpotent B2-groups. In particular we prove, for a non-abelian group

G, that G is nilpotent and belongs to B2, if and only if either G
Z(G) is elementary abelian of order p2

(p a prime) or G
Z(G) ≃ Z× Z.

In addition, we show that if G is a locally finite group, then G ∈ B2 if and only if G = Z(G)H,

where H is a finite minimal non-abelian subgroup of G.

In the soluble case we prove that, if G is a soluble non-nilpotent B2-group, then

i) Z( G
Z(G)) = 1.

ii) G = A < x >, where A is a normal abelian sugroup of G.

iii) Every non-abelian subgroup of G
Z(G) is isomorphic to G

Z(G) .

Moreover we show that locally graded B2-groups are soluble.

Finally we analyze the insoluble case and we prove that if G is an insoluble B2-group, then G cannot

satisfy the so-called Tits alternative. Moreover, if G′ satisfies the minimal condition, then G
Z(G) is a

Tarski group.

2. Elementary results

If G is a minimal non-abelian group, then obviously G is in B2.

The following proposition gives more examples of groups in B2.

Proposition 2.1. Let G be a group such that G = TZ(G), where T ≤ G is minimal non-abelian.

Then G ∈ B2.

Proof. Assume that G = TZ(G). Then Z(T ) = T∩Z(G). Let H ≤ G, H non abelian. Thus HZ(G) =

HZ(G) ∩ G = Z(G)(T ∩ HZ(G)). Suppose that T ∩ HZ(G) < T . Since T is minimal non abelian,

T ∩HZ(G) is abelian, so Z(G)(T ∩HZ(G)) is also abelian. Hence HZ(G) is abelian, which gives the

contradiction H abelian. Thus T ∩HZ(G) = T , so that T ⊆ HZ(G) and TZ(G) ⊆ HZ(G) ⊆ G. Then

HZ(G) = G and so Z(H) = H ∩ Z(G). Therefore G
Z(G) =

HZ(G)
Z(G) ≃ H

H∩Z(G) =
H

Z(H) , as required. □

Proposition 2.2. Let G be a group and suppose that either G
Z(G) is elementary abelian of order p2 (p

a prime) or G
Z(G) ≃ Z× Z. Then G ∈ B2.

Proof. First suppose that G
Z(G) is elementary abelian, with

∣∣∣ G
Z(G)

∣∣∣ = p2, p a prime. Let H be a

non-abelian subgroup of G. Then HZ(G)
Z(G) ≤ G

Z(G) , where
HZ(G)
Z(G) ≃ H

H∩Z(G) . If HZ(G)
Z(G) < G

Z(G) then
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from H
H∩Z(G) cyclic it follows that H is abelian, a contradiction. Then we have HZ(G)

Z(G) = G
Z(G) , so

G = HZ(G); in particular Z(H) ≤ H ∩ Z(G), and H
Z(H) =

H
H∩Z(G) ≃

HZ(G)
Z(G) = G

Z(G) , as required.

Now suppose that G
Z(G) ≃ Z× Z. Then G is nilpotent of class 2 and G = Z(G) < x, y > for some

x, y ∈ G \ Z(G). Obviously G′ =< x, y >′=< [x, y] >. If o([x, y]) = n, then [xn, y] = [x, y]n = 1

and xn ∈ Z(G), a contradiction. Therefore G′ is an infinite cyclic group. If H is a non-abelian

subgroup of G, then H
Z(H) ≃

H
Z(G)∩H
Z(H)

Z(G)∩H

cannot be cyclic, therefore it is 2-generated being a quotient of

H
Z(G)∩H ≃ Z(G)H

Z(G) ≤ G
Z(G) . Moreover it is torsion-free, in fact if hn ∈ Z(H) for some h ∈ H,n > 0, then

[h, k]n = [hn, k] = 1 for every k ∈ H, then h ∈ Z(H) since G′ is torsion-free. Hence H
Z(H) ≃ Z× Z ≃

G
Z(G) , as required. □

We continue by assembling some elementary facts about the class B2.

Lemma 2.3. i) The class B2 is subgroup closed.

ii) If G ∈ B2, then
G

Z(G) is 2-generated.

iii) If G is a nilpotent group and G ∈ B2, then
G

Z(G) is abelian.

iv) If G is a non-nilpotent group in B2, then every locally nilpotent subgroup of G is abelian.

v) If G is soluble non-nilpotent group in B2, then G is metabelian.

vi) If G is a non soluble group in B2, then every soluble subgroup of G is abelian.

vii) If G is non soluble group in B2, then every normal soluble subgroup of G is contained in Z(G).

Proof. The first statement is obvious. In order to prove ii) consider a, b ∈ G, with [a, b] ̸= 1, then
G

Z(G) ≃ <a,b>
Z(<a,b>) as required. Now assume G nilpotent non-abelian in B2 and let x ∈ Z2(G) \ Z(G).

Then [x, g] ̸= 1 for some g ∈ G and we have < x, g > nilpotent of class 2 since [x, g] ∈ Z(G); thus
G

Z(G) ≃
<x,g>

Z(<x,g>) is abelian and iii) holds. In order to prove iv), assume G soluble non-nilpotent in B2

and consider a locally nilpotent subgroup F of G. Let a, b ∈ F , with [a, b] ̸= 1. Then G
Z(G) ≃

<a,b>
Z(<a,b>) ,

thus G
Z(G) is nilpotent and G is nilpotent, a contradiction. Therefore F is abelian. In order to prove

v), suppose that G is a soluble non-nilpotent group in B2. Write F = FittG, the Fitting subgroup of

G. Then F is abelian by iv). Moreover CG(F ) ⊆ F , (see for instance 5.4.4(ii) in [8]). Let x ∈ G \ F
and write H = F < x >. Then H is not abelian and H ′ ≤ F is abelian. Therefore G

Z(G) ≃ H
Z(H) is

metabelian. In addition G′

G′∩Z(G) ≃ G′Z(G)
Z(G) = ( G

Z(G))
′ ≃ ( H

Z(H))
′ is abelian, hence G′ is nilpotent and

G′ ≤ F . But F is abelian, thus G′ is abelian and G is metabelian. Therefore v) holds. If G is non

soluble in B2 and S is a soluble subgroup of G, then S is abelian, otherwise G
Z(G) ≃

S
Z(S) is soluble and

so is G. Therefore vi) holds. Finally if G ∈ B2 is non soluble and N ⊴G is soluble, then N is abelian

by vi) and N < g > is soluble, hence abelian, for every g ∈ G. Then N ≤ Z(G) and vii) holds. □

As we will see, the class B2 is not closed under homomorphic images, but we have the following

useful result.

Proposition 2.4. Let G be a non-nilpotent group in B2. If S ≤ Z(G), then G
S ∈ B2.

Proof. Let H
S ≤ G

S . First we show that Z(HS ) = Z(H)
S . In fact obviously Z(H)

S ≤ Z(HS ). Write
V
S = Z(HS ). Then V ≤ Z2(H). If V ̸≤ Z(H), then there exists h ∈ H such that V ̸⊆ CG(h). Then
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the subgroup V < h > is nilpotent and non-abelian, a contradiction by Lemma 2.3 iv). Therefore

Z(HS ) =
Z(H)
S for every non-abelian subgroup H

S of G
S . In particular we have Z(GS ) =

Z(G)
S . Hence, for

every non-abelian subgroup H
S of G

S , we have
G
S

Z(G
S
)
=

G
S

Z(G)
S

≃ G
Z(G) ≃

H
Z(H) ≃

H
S

Z(H)
S

=
H
S

Z(H
S
)
. Therefore

G
S ∈ B2. □

Of course our aim is to study non-abelian B2-groups, and it is natural to look first at nilpotent

B2-groups: these admit a very easy description.

Theorem 2.5. Let G be a non-abelian group. Then G is nilpotent and belongs to B2, if and only if

either G
Z(G) is elementary abelian of order p2 (p a prime) or G

Z(G) ≃ Z× Z.

Proof. Assume that either G
Z(G) is elementary abelian of order p2 (p a prime) or G

Z(G) ≃ Z× Z. Then
G is obviously nilpotent and G ∈ B2 by Proposition 2.2.

Now assume that G ∈ B2 is nilpotent and put Zi = Zi(G). Then G
Z1

is 2-generated and abelian by

Lemma 2.3. There exist a ∈ Z2 \ Z1 and b ∈ G such that [a, b] ̸= 1.

Put H =< a, b >, then H ′ =< [a, b] > and H
Z(H) ≃

G
Z(G) .

If [a, b] is torsion-free, then H
Z(H) ≃ Z× Z, as required. Assume [a, b] periodic, then H ′ is finite.

Since H is finitely generated, we have H
Z(H) finite. Let cZ(H) ∈ H

Z(H) , c /∈ Z(H), of order p for some

prime p. There exists x ∈ H such that [c, x] ̸= 1 but [c, x]p = [cp, x] = 1. Now it is easy to see that
G

Z(G) has order p2, as claimed. □

Using Theorem 2.5, it is now possible to show that the class B2 is not closed under homomorphic

images.

For, let G be the free 2-generated nilpotent of class 2 group. Then G ∈ B2. Let A be a 2-generated

nilpotent p-group of class 2 and let B be a 2-generated q-group nilpotent of class 2, where p, q are

distinct primes. Finally, put H = A×B. There exists N ⊴G such that G
N ≃ H but H /∈ B2.

3. Locally finite B2-groups

In this section we will classify all locally finite B2-groups.

Theorem 3.1. Let G be a finite group. Then G ∈ B2 if and only if G = Z(G)H, where H is minimal

non-abelian.

Proof. Assume that G = Z(G)H where H is minimal non-abelian. Then G ∈ B2 by Proposition .

Now let G ∈ B2. Consider H ≤ G, with H non-abelian of minimal order. Then G
Z(G) ≃ H

Z(H) ≃
H

H∩Z(G)
Z(H)

H∩Z(G)

, thus
∣∣∣ G
Z(G)

∣∣∣ ≤ ∣∣∣ H
H∩Z(G)

∣∣∣ = ∣∣∣HZ(G)
Z(G)

∣∣∣ ≤ ∣∣∣ G
Z(G)

∣∣∣. Then HZ(G) = G as claimed. □

Corollary 3.2. Let G be a locally finite group. Then G ∈ B2 if and only if G = Z(G)H, where H is

a finite minimal non-abelian subgroup of G.

Proof. Suppose that G is a locally finite B2-group. Then there exist a, b ∈ G such that G
Z(G) =<

aZ(G), bZ(G) > and so G =< a, b > Z(G). Since G is locally finite, < a, b > is finite. By Theorem 3.1
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we have < a, b >= Z(< a, b >)H, where H is minimal non-abelian and so, since Z(< a, b >) ≤ Z(G),

G = Z(G) < a, b >= Z(G)H.

Now suppose that G = Z(G)H, where H is finite and minimal non-abelian, then G ∈ B2 by

Proposition . □

Corollary 3.3. Let G be a B2-group. Then G is locally finite if and only if G is a soluble torsion

group.

Proof. Suppose that G is a soluble torsion group. Then G is locally finite (see for instance Proposition

5.4.11 in [8]).

Now suppose that G is a locally finite B2-group. By Corollary , there exists H ≤ G finite and

minimal non-abelian such that G = Z(G)H. Then H is soluble by a classical theorem of Miller and

Moreno [7] and so G is soluble and torsion, as required. □

4. Soluble B2-groups

In this section we will analyze the structure of infinite soluble B2-groups.

Every soluble non-nilpotent B2 group is metabelian, by Lemma 2.3 v).

Moreover G
Z(G) ∈ B2 by Proposition . More information is collected in the following theorem.

Theorem 4.1. Let G be a soluble non-nilpotent B2-group. Then

i) Z( G
Z(G)) = 1.

ii) G = A < x >, where A is a normal abelian sugroup of G.

iii) Every non-abelian subgroup of G
Z(G) is isomorphic to G

Z(G) .

Proof. i) Write as usual Z2(G)
Z(G) = Z( G

Z(G)). For every g ∈ G, the group Z2(G) < g > is nilpotent and

so it is abelian by Lemma 2.3 iv). Then Z2(G) ⊆ CG(g) for every g ∈ G and Z2(G) ≤ Z(G). Thus

Z2(G) = Z(G).

ii) By Lemma 2.3 v), G is metabelian. Let B be a maximal normal abelian subgroup of G such that

G′ ⊆ B. If B ≤ Z(G) then G′ ⊆ B ⊆ Z(G) and so G is nilpotent of class 2, a contradiction. Therefore

there exists g ∈ G such that B ̸⊆ CG(g). Now consider H = B < g >. Since H is non-abelian,

it follows that H
Z(H) ≃ G

Z(G) and so G
Z(G) is abelian-by-cyclic. Then there exists A

Z(G) ⊴
G

Z(G) such

that A
Z(G) is abelian and G

A is cyclic. Thus A is nilpotent. By Lemma 2.3 iv), A is abelian and G is

abelian-by-cyclic.

iii) Let H
Z(G) be a non-abelian subgroup of G

Z(G) . Then H is non-abelian, thus G
Z(G) ≃

H
Z(H) ≃

H
Z(G)
Z(H)
Z(G)

so it suffices to prove that Z(H) ⊆ Z(G). Now G = A < x >, where A is a normal abelian subgroup

of G by ii). Obviously we can suppose that A is maximal for these conditions.

Firstly suppose that G
A is finite. Consider yA ∈ G

A of order p, a prime. Then A < y > is non-abelian

and A<y>
Z(A<y>) ≃ G

Z(G) is abelian-by-prime order. Therefore there exists B
Z(G) ⊴

G
Z(G) such that B

Z(G) is

abelian and |GB | = p and so B is nilpotent and then abelian by Lemma 2.3 iv). So |GA | = p, where p

is a prime. Therefore xp ∈ A. Suppose that there exists an element h = axr ∈ Z(H) with a ∈ A and

r, p coprime. Then G = A < axr > and so H =< axr > (A ∩H) which is abelian, a contradiction.
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Thus Z(H) ⊆ A. Since H is non-abelian, there exists an element cxs ∈ H where s and p are coprime,

c ∈ A. It follows that G = A < cxs > and then Z(H) ⊆ Z(G).

Now suppose that G = A < x >, with G
A infinite. Use the bar notation to denote elements and

subgroups of G/Z(G). Suppose that D = CA(x̄
r) ̸= 1, for some r ̸= 0. Then D < x̄ > is non-abelian,

since Z(G) = 1 by i) , and x̄r ∈ Z(D < x̄ >). Therefore D<x̄>
Z(D<x̄>)

≃ G is abelian-by-finite, which is a

contradiction since G
A

is infinite cyclic.

Obviously H ̸⊆ A and H ̸⊆< x̄ >. Consider an element h = āx̄s ∈ H, where s ̸= 0 and suppose that

Z(H) ̸= 1. Thus there exists an element b̄x̄r, with bxr ̸∈ Z(G), which commutes with every element

of H ∩ A which is non-trivial, since H is not cyclic. Therefore CA(x̄
r) ̸= 1. It follows that r = 0 and

so b̄x̄r = b̄ commutes with āx̄s. Then x̄s commutes with b̄ and so s = 0, the final contradiction. □

Notice that groups satisfying iii) of Theorem 4.1, i.e. groups isomorphic to every non-abelian

subgroup have been investigated by H. Smith and J. Wiegold in [10].

5. Insoluble B2-groups

We start with the followingresult.

Theorem 5.1. Let G be a group such that G
Z(G) has a proper subgroup of finite index. If G ∈ B2,

then G is soluble.

Proof. Suppose that G is non soluble. Then G
Z(G) is infinite, since it is in B2 by Proposition , and a

finite group in B2 is soluble by Corollary . Moreover it is 2-generated. We show that N
Z(G) ≃

G
Z(G) for

every non-trivial normal subgroup of G
Z(G) .

First notice that M ∩ Z(G) = Z(M) for every M ⊴ G. In fact obviously M ∩ Z(G) ≤ Z(M).

Let g ∈ G, then Z(M) < g > is soluble, therefore Z(M) < g > is abelian by Lemma 2.3 vi), thus

Z(M) ⊆ CG(g); that holds for every g ∈ G, hence Z(M) ≤ Z(G).

Now suppose N
Z(G) ⊴

G
Z(G) , N

Z(G) ̸= 1. Then N ⊴G and Z(G) ≤ N , therefore Z(G) = Z(G) ∩N =

Z(N), by the previous remark. If N is abelian, then N ≤ Z(G) and N
Z(G) = 1, which is not the case.

Then N is not abelian, therefore N
Z(G) =

N
Z(N) ≃

G
Z(G) , as required.

Therefore G
Z(G) is a finitely generated infinite group that is isomorphic to all its non-trivial normal

subgroups and that contains a proper normal subgroup of finite index. Then, by a theorem in [3],
G

Z(G) is cyclic and G is soluble, a contradiction. □

Corollary 5.2. Let G ∈ B2 locally graded. Then G is soluble.

Proof. The group G
Z(G) is 2-generated by Lemma 2.3 ii). It is also locally graded by [9]. Then it has

a proper normal subgroup of finite index. By Theorem 5.1, G is soluble. □

Let T denote the class of groups that satisfy the Tits alternative, i.e., G ∈ T if and only if either

G is soluble-by-finite or G contains a free subgroup of rank 2.

Theorem 5.3. Let G be an insoluble B2-group. Then G is not a T -group.
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Proof. First assume that G has a free subgroup F of rank 2. Then Z(F ) = 1. Moreover H is free

for every non-abelian subgroup H of F . Then F ≃ F
Z(F ) ≃

H
Z(H) ≃ H. This is impossible since a free

group of rank 2 contains a free subgroup of infinite rank [8].

Now assume G soluble-by-finite. Then there exists N ⊴G, N soluble with G
N finite. By Lemma 2.3

vii), N ≤ Z(G). Therefore G
Z(G) is finite, so G′ is finite by Schur’s Lemma. Thus, by Corollary , G is

soluble, a contradiction. □

Up to this point none of the special types of B2-groups we have studied has involved a Tarski group,

yet Tarski groups certainly belong to B2. Our next result shows that every insoluble B2 group whose

derived subgroup satisfies the minimal condition has G
Z(G) of Tarski type.

Theorem 5.4. Let G be an insoluble B2-group such that G′ satisfies the minimal condition. Then G

has the following properties:

i) G
Z(G) is a simple, minimal non-abelian group.

ii) Soluble subgroups of G are abelian.

iii) If N ◁G, then N ≤ Z(G) or G′ ≤ N .

In particular, G
Z(G) is a Tarski group.

Proof. i) If G′ is soluble, then G is soluble, which is not the case. Then there exists a minimal non

soluble subgroup S ≤ G′. Then G
Z(G) ≃ S

Z(S) since G ∈ B2, thus
G

Z(G) is minimal non soluble. Let
H

Z(G) < G
Z(G) , then

H
Z(G) is soluble. Therefore H is soluble. From Lemma 2.3 vi), H is abelian and

hence H
Z(G) is abelian.

Now we prove that G
Z(G) is simple. Let N

Z(G) ◁
G

Z(G) , then N is abelian. Thus N ≤ Z(G), otherwise

there exists x ∈ G such that N<x>
Z(N<x>) ≃

G
Z(G) so that G is soluble, a contradiction.

ii) It follows from Lemma 2.3 vi).

iii) If N ◁G, from i) it follows that either NZ(G)
Z(G) = 1 or NZ(G)

Z(G) = G
Z(G) . Then either N ≤ Z(G) or

G′ ≤ N . □

Conversely, we have:

Proposition 5.5. Let G be an insoluble group such that every nilpotent subgroup is abelian and G
Z(G)

is simple, minimal non-abelian. Then G is a B2-group.

Proof. Let H be a non-abelian subgroup of G. Now consider HZ(G)
Z(G) ≤ G

Z(G) . If HZ(G)
Z(G) < G

Z(G) ,

then HZ(G)
Z(G) is abelian and hence H is nilpotent. Then H is abelian, which is a contradiction. Thus

HZ(G)
Z(G) = G

Z(G) and G
Z(G) ≃

H
H∩Z(G) . Since

G
Z(G) is simple, H ∩ Z(G) = Z(H). Therefore G

Z(G) ≃
H

Z(H) ,

and we have the result. □
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