

International Journal of Group Theory

ISSN (print): 2251-7650, ISSN (on-line): 2251-7669 Vol. x No. x (201x), pp. xx-xx. © 201x University of Isfahan

www.ui.ac.ir

ON GROUPS WITH TWO ISOMORPHISM CLASSES OF CENTRAL FACTORS

SERENA SIANI

Communicated by Patrizia Longobardi

ABSTRACT. The structure of groups which have at most two isomorphism classes of central factors $(B_2$ -groups) are investigated. A complete description of B_2 -groups is obtained in the locally finite case and in the nilpotent case. In addition detailed information is obtained about soluble B_2 -groups. Also structural information about insoluble B_2 -groups is given, in particular when such a group has the derived subgroup satisfying the minimal condition.

1. Introduction

Given a group G, a subgroup K of G is said to be a derived subgroup or a commutator subgroup in G if K = H' for some subgroup H of G, where H' denotes the derived subgroup of H.

Let C(G) denote the set of all derived subgroups in G:

$$C(G) = \{H' | H \le G\}.$$

The influence of C(G) on the structure of the group G has been studied by many authors. For example, F. de Giovanni and D. J. S. Robinson in [1] and M. Herzog, P. Longobardi and M. Maj in [2], have investigated the case C(G) finite. In particular, they proved that if G is locally graded, C(G) is finite if and only if G' is finite.

Let n be a positive integer and let D_n denote the class of all groups with at most n isomorphism types of derived subgroups. Clearly D_1 is the class of abelian groups and a non-abelian group G belongs to D_2 if and only if $H' \simeq G'$ whenever H is a non-abelian subgroup of G. P. Longobardi, M.

MSC(2000): Primary: 20F14.

Keywords: Center, Isomorphism types, locally finite groups, locally graded groups.

Received: 24 August 2016, Accepted: 01 December 2016.

Maj, D. J. S. Robinson and H. Smith in [4] focused their attention on groups in D_2 and described in a precise way some large classes of D_2 -groups.

Some additional information about these classes of groups can be founded in [5], [6].

In this paper we are concerned with groups G for which the set of isomorphism types of elements in $\{\frac{H}{Z(H)}|H\leq G\}$ is very small.

If n is a positive integer, let B_n denote the class of groups G such that the factor groups in $\{\frac{H}{Z(H)}|H\leq G\}$ fall into at most n isomorphism classes.

Of course, B_1 is the class of abelian groups, while a non-abelian group G belongs to B_2 if and only if $\frac{H}{Z(H)} \simeq \frac{G}{Z(G)}$ whenever H is a non-abelian subgroup of G.

We give a characterization of nilpotent B_2 -groups. In particular we prove, for a non-abelian group G, that G is nilpotent and belongs to B_2 , if and only if either $\frac{G}{Z(G)}$ is elementary abelian of order p^2 (p a prime) or $\frac{G}{Z(G)} \simeq \mathbb{Z} \times \mathbb{Z}$.

In addition, we show that if G is a locally finite group, then $G \in B_2$ if and only if G = Z(G)H, where H is a finite minimal non-abelian subgroup of G.

In the soluble case we prove that, if G is a soluble non-nilpotent B_2 -group, then

- i) $Z(\frac{G}{Z(G)}) = 1$.
- ii) G = A < x >, where A is a normal abelian sugroup of G.
- iii) Every non-abelian subgroup of $\frac{G}{Z(G)}$ is isomorphic to $\frac{G}{Z(G)}$.

Moreover we show that locally graded B_2 -groups are soluble.

Finally we analyze the insoluble case and we prove that if G is an insoluble B_2 -group, then G cannot satisfy the so-called Tits alternative. Moreover, if G' satisfies the minimal condition, then $\frac{G}{Z(G)}$ is a Tarski group.

2. Elementary results

If G is a minimal non-abelian group, then obviously G is in B_2 .

The following proposition gives more examples of groups in B_2 .

Proposition 2.1. Let G be a group such that G = TZ(G), where $T \leq G$ is minimal non-abelian. Then $G \in B_2$.

Proof. Assume that G = TZ(G). Then $Z(T) = T \cap Z(G)$. Let $H \leq G$, H non abelian. Thus $HZ(G) = HZ(G) \cap G = Z(G)(T \cap HZ(G))$. Suppose that $T \cap HZ(G) < T$. Since T is minimal non abelian, $T \cap HZ(G)$ is abelian, so $Z(G)(T \cap HZ(G))$ is also abelian. Hence HZ(G) is abelian, which gives the contradiction H abelian. Thus $T \cap HZ(G) = T$, so that $T \subseteq HZ(G)$ and $TZ(G) \subseteq HZ(G) \subseteq G$. Then HZ(G) = G and so $Z(H) = H \cap Z(G)$. Therefore $\frac{G}{Z(G)} = \frac{HZ(G)}{Z(G)} \simeq \frac{H}{H \cap Z(G)} = \frac{H}{Z(H)}$, as required. \square

Proposition 2.2. Let G be a group and suppose that either $\frac{G}{Z(G)}$ is elementary abelian of order p^2 (p a prime) or $\frac{G}{Z(G)} \simeq \mathbb{Z} \times \mathbb{Z}$. Then $G \in B_2$.

Proof. First suppose that $\frac{G}{Z(G)}$ is elementary abelian, with $\left|\frac{G}{Z(G)}\right|=p^2$, p a prime. Let H be a non-abelian subgroup of G. Then $\frac{HZ(G)}{Z(G)}\leq \frac{G}{Z(G)}$, where $\frac{HZ(G)}{Z(G)}\simeq \frac{H}{H\cap Z(G)}$. If $\frac{HZ(G)}{Z(G)}<\frac{G}{Z(G)}$ then

from $\frac{H}{H\cap Z(G)}$ cyclic it follows that H is abelian, a contradiction. Then we have $\frac{HZ(G)}{Z(G)}=\frac{G}{Z(G)}$, so G = HZ(G); in particular $Z(H) \le H \cap Z(G)$, and $\frac{H}{Z(H)} = \frac{H}{H \cap Z(G)} \simeq \frac{HZ(G)}{Z(G)} = \frac{G}{Z(G)}$, as required.

Now suppose that $\frac{G}{Z(G)} \simeq \mathbb{Z} \times \mathbb{Z}$. Then G is nilpotent of class 2 and G = Z(G) < x, y >for some $x,y \in G \setminus Z(G)$. Obviously $G' = \langle x,y \rangle' = \langle [x,y] \rangle$. If o([x,y]) = n, then $[x^n,y] = [x,y]^n = 1$ and $x^n \in Z(G)$, a contradiction. Therefore G' is an infinite cyclic group. If H is a non-abelian subgroup of G, then $\frac{H}{Z(H)} \simeq \frac{\frac{H}{Z(G) \cap H}}{\frac{Z(G)}{Z(G) \cap H}}$ cannot be cyclic, therefore it is 2-generated being a quotient of $\frac{H}{Z(G)\cap H}\simeq \frac{Z(G)H}{Z(G)}\leq \frac{G}{Z(G)}$. Moreover it is torsion-free, in fact if $h^n\in Z(H)$ for some $h\in H, n>0$, then $[h,k]^n = [h^n,k] = 1$ for every $k \in H$, then $h \in Z(H)$ since G' is torsion-free. Hence $\frac{H}{Z(H)} \simeq \mathbb{Z} \times \mathbb{Z} \simeq \mathbb{Z}$ $\frac{G}{Z(G)}$, as required.

We continue by assembling some elementary facts about the class B_2 .

i) The class B_2 is subgroup closed.

- ii) If $G \in B_2$, then $\frac{G}{Z(G)}$ is 2-generated.
- iii) If G is a nilpotent group and $G \in B_2$, then $\frac{G}{Z(G)}$ is abelian.
- iv) If G is a non-nilpotent group in B_2 , then every locally nilpotent subgroup of G is abelian.
- v) If G is soluble non-nilpotent group in B_2 , then G is metabelian.
- vi) If G is a non soluble group in B_2 , then every soluble subgroup of G is abelian.
- vii) If G is non soluble group in B_2 , then every normal soluble subgroup of G is contained in Z(G).

Proof. The first statement is obvious. In order to prove ii) consider $a, b \in G$, with $[a, b] \neq 1$, then $\frac{G}{Z(G)} \simeq \frac{\langle a,b \rangle}{Z(\langle a,b \rangle)}$ as required. Now assume G nilpotent non-abelian in B_2 and let $x \in Z_2(G) \setminus Z(G)$. Then $[x,g] \neq 1$ for some $g \in G$ and we have $\langle x,g \rangle$ nilpotent of class 2 since $[x,g] \in Z(G)$; thus $\frac{G}{Z(G)} \simeq \frac{\langle x,g \rangle}{Z(\langle x,g \rangle)}$ is abelian and iii) holds. In order to prove iv), assume G soluble non-nilpotent in B_2 and consider a locally nilpotent subgroup F of G. Let $a, b \in F$, with $[a, b] \neq 1$. Then $\frac{G}{Z(G)} \simeq \frac{\langle a, b \rangle}{Z(\langle a, b \rangle)}$, thus $\frac{G}{Z(G)}$ is nilpotent and G is nilpotent, a contradiction. Therefore F is abelian. In order to prove v), suppose that G is a soluble non-nilpotent group in B_2 . Write F = FittG, the Fitting subgroup of G. Then F is abelian by iv). Moreover $C_G(F) \subseteq F$, (see for instance 5.4.4(ii) in [8]). Let $x \in G \setminus F$ and write H = F < x >. Then H is not abelian and $H' \le F$ is abelian. Therefore $\frac{G}{Z(G)} \simeq \frac{H}{Z(H)}$ is metabelian. In addition $\frac{G'}{G'\cap Z(G)}\simeq \frac{G'Z(G)}{Z(G)}=(\frac{G}{Z(G)})'\simeq (\frac{H}{Z(H)})'$ is abelian, hence G' is nilpotent and $G' \leq F$. But F is abelian, thus G' is abelian and G is metabelian. Therefore v) holds. If G is non soluble in B_2 and S is a soluble subgroup of G, then S is abelian, otherwise $\frac{G}{Z(G)} \simeq \frac{S}{Z(S)}$ is soluble and so is G. Therefore vi) holds. Finally if $G \in B_2$ is non soluble and $N \subseteq G$ is soluble, then N is abelian by vi) and N < g > is soluble, hence abelian, for every $g \in G$. Then $N \le Z(G)$ and vii) holds.

As we will see, the class B_2 is not closed under homomorphic images, but we have the following useful result.

Proposition 2.4. Let G be a non-nilpotent group in B_2 . If $S \leq Z(G)$, then $\frac{G}{S} \in B_2$.

Proof. Let $\frac{H}{S} \leq \frac{G}{S}$. First we show that $Z(\frac{H}{S}) = \frac{Z(H)}{S}$. In fact obviously $\frac{Z(H)}{S} \leq Z(\frac{H}{S})$. Write $\frac{V}{S} = Z(\frac{H}{S})$. Then $V \leq Z_2(H)$. If $V \not\leq Z(H)$, then there exists $h \in H$ such that $V \not\subseteq C_G(h)$. Then

the subgroup V < h > is nilpotent and non-abelian, a contradiction by Lemma 2.3 iv). Therefore $Z(\frac{H}{S}) = \frac{Z(H)}{S}$ for every non-abelian subgroup $\frac{H}{S}$ of $\frac{G}{S}$. In particular we have $Z(\frac{G}{S}) = \frac{Z(G)}{S}$. Hence, for every non-abelian subgroup $\frac{H}{S}$ of $\frac{G}{S}$, we have $\frac{G}{Z(\frac{G}{S})} = \frac{\frac{G}{S}}{\frac{Z(G)}{S}} \simeq \frac{G}{Z(G)} \simeq \frac{H}{Z(H)} \simeq \frac{\frac{H}{S}}{\frac{Z(H)}{S}} = \frac{H}{Z(\frac{H}{S})}$. Therefore $\frac{G}{S} \in B_2$.

Of course our aim is to study non-abelian B_2 -groups, and it is natural to look first at nilpotent B_2 -groups: these admit a very easy description.

Theorem 2.5. Let G be a non-abelian group. Then G is nilpotent and belongs to B_2 , if and only if either $\frac{G}{Z(G)}$ is elementary abelian of order p^2 (p a prime) or $\frac{G}{Z(G)} \simeq \mathbb{Z} \times \mathbb{Z}$.

Proof. Assume that either $\frac{G}{Z(G)}$ is elementary abelian of order p^2 (p a prime) or $\frac{G}{Z(G)} \simeq \mathbb{Z} \times \mathbb{Z}$. Then G is obviously nilpotent and $G \in B_2$ by Proposition 2.2.

Now assume that $G \in B_2$ is nilpotent and put $Z_i = Z_i(G)$. Then $\frac{G}{Z_1}$ is 2-generated and abelian by Lemma 2.3. There exist $a \in Z_2 \setminus Z_1$ and $b \in G$ such that $[a, b] \neq 1$.

Put
$$H = \langle a, b \rangle$$
, then $H' = \langle [a, b] \rangle$ and $\frac{H}{Z(H)} \simeq \frac{G}{Z(G)}$.

If [a,b] is torsion-free, then $\frac{H}{Z(H)} \simeq \mathbb{Z} \times \mathbb{Z}$, as required. Assume [a,b] periodic, then H' is finite. Since H is finitely generated, we have $\frac{H}{Z(H)}$ finite. Let $cZ(H) \in \frac{H}{Z(H)}$, $c \notin Z(H)$, of order p for some prime p. There exists $x \in H$ such that $[c,x] \neq 1$ but $[c,x]^p = [c^p,x] = 1$. Now it is easy to see that $\frac{G}{Z(G)}$ has order p^2 , as claimed.

Using Theorem 2.5, it is now possible to show that the class B_2 is not closed under homomorphic images.

For, let G be the free 2-generated nilpotent of class 2 group. Then $G \in B_2$. Let A be a 2-generated nilpotent p-group of class 2 and let B be a 2-generated q-group nilpotent of class 2, where p, q are distinct primes. Finally, put $H = A \times B$. There exists $N \leq G$ such that $\frac{G}{N} \simeq H$ but $H \notin B_2$.

3. Locally finite B_2 -groups

In this section we will classify all locally finite B_2 -groups.

Theorem 3.1. Let G be a finite group. Then $G \in B_2$ if and only if G = Z(G)H, where H is minimal non-abelian.

Proof. Assume that G=Z(G)H where H is minimal non-abelian. Then $G\in B_2$ by Proposition .

Now let $G \in B_2$. Consider $H \leq G$, with H non-abelian of minimal order. Then $\frac{G}{Z(G)} \simeq \frac{H}{Z(H)} \simeq \frac{H}{H \cap Z(G)}$, thus $\left| \frac{G}{Z(G)} \right| \leq \left| \frac{H}{H \cap Z(G)} \right| = \left| \frac{HZ(G)}{Z(G)} \right| \leq \left| \frac{G}{Z(G)} \right|$. Then HZ(G) = G as claimed. \square

Corollary 3.2. Let G be a locally finite group. Then $G \in B_2$ if and only if G = Z(G)H, where H is a finite minimal non-abelian subgroup of G.

Proof. Suppose that G is a locally finite B_2 -group. Then there exist $a, b \in G$ such that $\frac{G}{Z(G)} = \langle aZ(G), bZ(G) \rangle$ and so $G = \langle a, b \rangle Z(G)$. Since G is locally finite, $\langle a, b \rangle$ is finite. By Theorem 3.1

we have $\langle a, b \rangle = Z(\langle a, b \rangle)H$, where H is minimal non-abelian and so, since $Z(\langle a, b \rangle) \leq Z(G)$, $G = Z(G) \langle a, b \rangle = Z(G)H$.

Now suppose that G = Z(G)H, where H is finite and minimal non-abelian, then $G \in B_2$ by Proposition .

Corollary 3.3. Let G be a B_2 -group. Then G is locally finite if and only if G is a soluble torsion group.

Proof. Suppose that G is a soluble torsion group. Then G is locally finite (see for instance Proposition 5.4.11 in [8]).

Now suppose that G is a locally finite B_2 -group. By Corollary, there exists $H \leq G$ finite and minimal non-abelian such that G = Z(G)H. Then H is soluble by a classical theorem of Miller and Moreno [7] and so G is soluble and torsion, as required.

4. Soluble B_2 -groups

In this section we will analyze the structure of infinite soluble B_2 -groups.

Every soluble non-nilpotent B_2 group is metabelian, by Lemma 2.3 v).

Moreover $\frac{G}{Z(G)} \in B_2$ by Proposition . More information is collected in the following theorem.

Theorem 4.1. Let G be a soluble non-nilpotent B_2 -group. Then

- i) $Z(\frac{G}{Z(G)}) = 1$.
- ii) G = A < x >, where A is a normal abelian sugroup of G.
- iii) Every non-abelian subgroup of $\frac{G}{Z(G)}$ is isomorphic to $\frac{G}{Z(G)}$.

Proof. i) Write as usual $\frac{Z_2(G)}{Z(G)} = Z(\frac{G}{Z(G)})$. For every $g \in G$, the group $Z_2(G) < g >$ is nilpotent and so it is abelian by Lemma 2.3 iv). Then $Z_2(G) \subseteq C_G(g)$ for every $g \in G$ and $Z_2(G) \leq Z(G)$. Thus $Z_2(G) = Z(G).$

- ii) By Lemma 2.3 v), G is metabelian. Let B be a maximal normal abelian subgroup of G such that $G' \subseteq B$. If $B \leq Z(G)$ then $G' \subseteq B \subseteq Z(G)$ and so G is nilpotent of class 2, a contradiction. Therefore there exists $g \in G$ such that $B \not\subseteq C_G(g)$. Now consider H = B < g >. Since H is non-abelian, it follows that $\frac{H}{Z(H)} \simeq \frac{G}{Z(G)}$ and so $\frac{G}{Z(G)}$ is abelian-by-cyclic. Then there exists $\frac{A}{Z(G)} \leq \frac{G}{Z(G)}$ such that $\frac{A}{Z(G)}$ is abelian and $\frac{G}{A}$ is cyclic. Thus A is nilpotent. By Lemma 2.3 iv), A is abelian and G is abelian-by-cyclic.
- iii) Let $\frac{H}{Z(G)}$ be a non-abelian subgroup of $\frac{G}{Z(G)}$. Then H is non-abelian, thus $\frac{G}{Z(G)} \simeq \frac{H}{Z(H)} \simeq \frac{\frac{H}{Z(G)}}{\frac{Z(H)}{Z(G)}}$ so it suffices to prove that $Z(H) \subseteq Z(G)$. Now G = A < x >, where A is a normal abelian subgroup of G by ii). Obviously we can suppose that A is maximal for these conditions.

Firstly suppose that $\frac{G}{A}$ is finite. Consider $yA \in \frac{G}{A}$ of order p, a prime. Then A < y > is non-abelian and $\frac{A < y>}{Z(A < y>)} \simeq \frac{G}{Z(G)}$ is abelian-by-prime order. Therefore there exists $\frac{B}{Z(G)} \leq \frac{G}{Z(G)}$ such that $\frac{B}{Z(G)}$ is abelian and $\left|\frac{G}{B}\right|=p$ and so B is nilpotent and then abelian by Lemma 2.3 iv). So $\left|\frac{G}{A}\right|=p$, where p is a prime. Therefore $x^p \in A$. Suppose that there exists an element $h = ax^r \in Z(H)$ with $a \in A$ and r, p coprime. Then $G = A < ax^r >$ and so $H = \langle ax^r > (A \cap H)$ which is abelian, a contradiction.

Thus $Z(H) \subseteq A$. Since H is non-abelian, there exists an element $cx^s \in H$ where s and p are coprime, $c \in A$. It follows that $G = A < cx^s >$ and then $Z(H) \subseteq Z(G)$.

Now suppose that G=A< x>, with $\frac{G}{A}$ infinite. Use the bar notation to denote elements and subgroups of G/Z(G). Suppose that $\overline{D}=C_{\overline{A}}(\bar{x}^r)\neq 1$, for some $r\neq 0$. Then $\overline{D}<\bar{x}>$ is non-abelian, since $Z(\overline{G})=1$ by i), and $\bar{x}^r\in Z(\overline{D}<\bar{x}>)$. Therefore $\frac{\overline{D}<\bar{x}>}{Z(\overline{D}<\bar{x}>)}\simeq \overline{G}$ is abelian-by-finite, which is a contradiction since $\frac{\overline{G}}{A}$ is infinite cyclic.

Obviously $\overline{H} \not\subseteq \overline{A}$ and $\overline{H} \not\subseteq \langle \bar{x} \rangle$. Consider an element $h = \bar{a}\bar{x}^s \in \overline{H}$, where $s \neq 0$ and suppose that $Z(\overline{H}) \neq 1$. Thus there exists an element $\bar{b}\bar{x}^r$, with $bx^r \not\in Z(G)$, which commutes with every element of $\overline{H} \cap \overline{A}$ which is non-trivial, since \overline{H} is not cyclic. Therefore $C_{\overline{A}}(\bar{x}^r) \neq 1$. It follows that r = 0 and so $\bar{b}\bar{x}^r = \bar{b}$ commutes with $\bar{a}\bar{x}^s$. Then \bar{x}^s commutes with \bar{b} and so s = 0, the final contradiction. \Box

Notice that groups satisfying iii) of Theorem 4.1, i.e. groups isomorphic to every non-abelian subgroup have been investigated by H. Smith and J. Wiegold in [10].

5. Insoluble B_2 -groups

We start with the following result.

Theorem 5.1. Let G be a group such that $\frac{G}{Z(G)}$ has a proper subgroup of finite index. If $G \in B_2$, then G is soluble.

Proof. Suppose that G is non soluble. Then $\frac{G}{Z(G)}$ is infinite, since it is in B_2 by Proposition , and a finite group in B_2 is soluble by Corollary . Moreover it is 2-generated. We show that $\frac{N}{Z(G)} \simeq \frac{G}{Z(G)}$ for every non-trivial normal subgroup of $\frac{G}{Z(G)}$.

First notice that $M \cap Z(G) = Z(M)$ for every $M \subseteq G$. In fact obviously $M \cap Z(G) \subseteq Z(M)$. Let $g \in G$, then Z(M) < g > is soluble, therefore Z(M) < g > is abelian by Lemma 2.3 vi), thus $Z(M) \subseteq C_G(g)$; that holds for every $g \in G$, hence $Z(M) \subseteq Z(G)$.

Now suppose $\frac{N}{Z(G)} \subseteq \frac{G}{Z(G)}$, $\frac{N}{Z(G)} \neq 1$. Then $N \subseteq G$ and $Z(G) \subseteq N$, therefore $Z(G) = Z(G) \cap N = Z(N)$, by the previous remark. If N is abelian, then $N \subseteq Z(G)$ and $\frac{N}{Z(G)} = 1$, which is not the case. Then N is not abelian, therefore $\frac{N}{Z(G)} = \frac{N}{Z(N)} \simeq \frac{G}{Z(G)}$, as required.

Therefore $\frac{G}{Z(G)}$ is a finitely generated infinite group that is isomorphic to all its non-trivial normal subgroups and that contains a proper normal subgroup of finite index. Then, by a theorem in [3], $\frac{G}{Z(G)}$ is cyclic and G is soluble, a contradiction.

Corollary 5.2. Let $G \in B_2$ locally graded. Then G is soluble.

Proof. The group $\frac{G}{Z(G)}$ is 2-generated by Lemma 2.3 ii). It is also locally graded by [9]. Then it has a proper normal subgroup of finite index. By Theorem 5.1, G is soluble.

Let \mathcal{T} denote the class of groups that satisfy the *Tits alternative*, i.e., $G \in \mathcal{T}$ if and only if either G is soluble-by-finite or G contains a free subgroup of rank 2.

Theorem 5.3. Let G be an insoluble B_2 -group. Then G is not a \mathcal{T} -group.

Proof. First assume that G has a free subgroup F of rank 2. Then Z(F)=1. Moreover H is free for every non-abelian subgroup H of F. Then $F\simeq \frac{F}{Z(F)}\simeq \frac{H}{Z(H)}\simeq H$. This is impossible since a free group of rank 2 contains a free subgroup of infinite rank [8].

Now assume G soluble-by-finite. Then there exists $N \subseteq G$, N soluble with $\frac{G}{N}$ finite. By Lemma 2.3 vii), $N \subseteq Z(G)$. Therefore $\frac{G}{Z(G)}$ is finite, so G' is finite by Schur's Lemma. Thus, by Corollary , G is soluble, a contradiction.

Up to this point none of the special types of B_2 -groups we have studied has involved a Tarski group, yet Tarski groups certainly belong to B_2 . Our next result shows that every insoluble B_2 group whose derived subgroup satisfies the minimal condition has $\frac{G}{Z(G)}$ of Tarski type.

Theorem 5.4. Let G be an insoluble B_2 -group such that G' satisfies the minimal condition. Then G has the following properties:

- i) $\frac{G}{Z(G)}$ is a simple, minimal non-abelian group.
- ii) Soluble subgroups of G are abelian.
- iii) If $N \triangleleft G$, then $N \leq Z(G)$ or $G' \leq N$.

In particular, $\frac{G}{Z(G)}$ is a Tarski group.

Proof. i) If G' is soluble, then G is soluble, which is not the case. Then there exists a minimal non soluble subgroup $S \leq G'$. Then $\frac{G}{Z(G)} \simeq \frac{S}{Z(S)}$ since $G \in B_2$, thus $\frac{G}{Z(G)}$ is minimal non soluble. Let $\frac{H}{Z(G)} < \frac{G}{Z(G)}$, then $\frac{H}{Z(G)}$ is soluble. Therefore H is soluble. From Lemma 2.3 vi), H is abelian and hence $\frac{H}{Z(G)}$ is abelian.

Now we prove that $\frac{G}{Z(G)}$ is simple. Let $\frac{N}{Z(G)} \triangleleft \frac{G}{Z(G)}$, then N is abelian. Thus $N \leq Z(G)$, otherwise there exists $x \in G$ such that $\frac{N < x >}{Z(N < x >)} \simeq \frac{G}{Z(G)}$ so that G is soluble, a contradiction.

ii) It follows from Lemma 2.3 vi).

iii) If $N \triangleleft G$, from i) it follows that either $\frac{NZ(G)}{Z(G)} = 1$ or $\frac{NZ(G)}{Z(G)} = \frac{G}{Z(G)}$. Then either $N \leq Z(G)$ or $G' \leq N$.

Conversely, we have:

Proposition 5.5. Let G be an insoluble group such that every nilpotent subgroup is abelian and $\frac{G}{Z(G)}$ is simple, minimal non-abelian. Then G is a B_2 -group.

Proof. Let H be a non-abelian subgroup of G. Now consider $\frac{HZ(G)}{Z(G)} \leq \frac{G}{Z(G)}$. If $\frac{HZ(G)}{Z(G)} < \frac{G}{Z(G)}$, then $\frac{HZ(G)}{Z(G)}$ is abelian and hence H is nilpotent. Then H is abelian, which is a contradiction. Thus $\frac{HZ(G)}{Z(G)} = \frac{G}{Z(G)}$ and $\frac{G}{Z(G)} \simeq \frac{H}{H \cap Z(G)}$. Since $\frac{G}{Z(G)}$ is simple, $H \cap Z(G) = Z(H)$. Therefore $\frac{G}{Z(G)} \simeq \frac{H}{Z(H)}$, and we have the result.

References

- [1] F. de Giovanni and D. J. S. Robinson, Groups with finitely many derived subgroups, J. London Math. Soc. (2), 71 (2005) 658–668.
- [2] M. Herzog, P. Longobardi and M. Maj, On the number of commutators in groups, Ischia Group Theory 2004, Amer. Math. Soc., Providence, RI, 402 (2006) 181-192.
- [3] J. C. Lennox, H. Smith and J. Wiegold, A problem about normal subgroups, J. Pure Appl. Algebra, 88 (1993) 169–171.
- [4] P. Longobardi, M. Maj, D. J. S. Robinson and H. Smith, On groups with two isomorphism classes of derived subgroups, Glasgow Math. J., 55 (2013) 655–668.
- [5] P. Longobardi, M. Maj and D. J. S. Robinson, Recent results on groups with few isomorphism classes of derived subgroups, Proc. of "Group Theory, Combinatorics, and Computing", Boca Raton-Florida, Contemp. Math., 611 (2014) 121–135.
- [6] P. Longobardi, M. Maj and D. J. S. Robinson, Locally finite groups with finitely many isomorphism classes of derived subgroups, J. Algebra, 393 (2013) 102–119.
- [7] G. A. Miller and H. C. Moreno, Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc., 4 (1903) 398-404.
- [8] D. J. S. Robinson, A course in the theory of groups, Springer-Verlag, 1996.
- [9] H. Smith, On homomorphic images of locally graded groups, Rend. Sem. Mat. Univ. Padova, 91 (1994) 53-60.
- [10] H. Smith, J. Wiegold, Groups which are isomorphic to their non-abelian subgroups, Rend. Sem. Mat. Univ. Padova, 97 (1997) 7–16.

Serena Siani

Department of Mathematics, University of Salerno, Italy

Email:ssiani@unisa.it