Document Type: Research Paper

**Author**

**Abstract**

The set of element orders of a finite group $G$ is called the {\em spectrum}. Groups with coinciding spectra are said to be {\em isospectral}. It is known that if $G$ has a nontrivial normal soluble subgroup then there exist infinitely many pairwise non-isomorphic groups isospectral to $G$. The situation is quite different if $G$ is a nonabelain simple group. Recently it was proved that if $L$ is a simple classical group of dimension at least 62 and $G$ is a finite group isospectral to $L$, then up to isomorphism $L\leq G\leq\Aut L$. We show that the assertion remains true if 62 is replaced by 38.

**Keywords**

- Simple classical groups,
- Element orders,
- Prime graph of a finite group,
- Almost recognizable group,

**Main Subjects**

[1] A. A. Buturlakin, Sp ectra of nite linear and unitary groups, *Algebra Logic*, **47** no. 2 (2008) 91-99.

[2] A. A. Buturlakin, Sp ectra of nite symplectic and orthogonal groups, *Siberian Adv. Math.*, **21** no. 3 (2011) 176-210.

[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, *Atlas of nite groups*, Clarendon Press, Oxford, 1985.

[4] P. Erdos, On the co eﬃcients of the cyclotomic p olynomial, *Bull. Amer. Math. Soc.*, **52** (1946) 179-184.

[5] M. A. Grechkoseeva, On element orders in covers of nite simple groups of Lie type, *J. Algebra Appl*, **14** (2015) 16 pages.

[6] M. A. Grechkoseeva and A. V. Vasil ′ ev, On the structure of nite groups isosp ectral to nite simple groups, *J. Group Theory*, **18** no. 5 (2015) 741-759.

[7] A. S. Kondrat ′ ev, On prime graph comp onents of nite simple groups, *Math. USSR-Sb.*, **67** no. 1 (1990) 235-247.

[8] A. S. Kondrat ′ ev and V. D. Mazurov, Recognition of alternating groups of prime degree from the orders of their elements, *Siberian Math. J.*, **41** no. 2 (2000) 294-302.

[9] V. D. Mazurov, Recognition of nite groups by a set of orders of their elements, *Algebra Logic*, **37** no. 6 (1998) 371-379.

[10] M. Roitman, On Zsigmondy primes, *Proc. Amer. Math. Soc.*, **125** no. 7 (1997) 1913-1919.

[11] W. J. Shi, The characterization of the sp oradic simple groups by their element orders, *Algebra Col loq.*, **1** no. 2 (1994) 156-166.

[12] A. V. Vasil ′ ev, On nite groups isosp ectral to simple classical groups, *J. Algebra*, **423** (2015) 318-374.

[13] A. V. Vasil ′ ev, On connection b etween the structure of a nite group and the prop erties of its prime graph, *Siberian Math. J.*, **46** no. 3 (2005) 396-404.

[14] A. V. Vasil ′ ev and I. B. Gorshkov, On recognition of nite simple groups with connected prime graph, *Siberian Math. J.*, **50** no. 2 (2009) 233-238.

[15] A. V. Vasil′ev, I. B. Gorshkov, M. A. Grechkoseeva, A. S. Kondrat′ev and A. M. Staroletov, On recognizability by sp ectrum of nite simple groups of typ es *B*_{n}, *C*_{n}, and ^{2}D_{n} for *n=2*^{k} , *Proc. Steklov Inst. Math.*, **267** suppl 1 (2009) 218-233.

[16] A. V. Vasil ′ ev and M. A. Grechkoseeva, Recognition by sp ectrum for simple classical groups in characteristic *2*, *Siberian **Math. J.*, **56** no. 6 (2015) 1009-1018.

[17] A. V. Vasil ′ ev, M. A. Grechkoseeva and V. D. Mazurov, Characterization of the nite simple groups by sp ectrum and order, *Algebra Logic*, **48** no. 6 (2009) 385-409.

[18] A. V. Vasil ′ ev, M. A. Grechkoseeva and V. D. Mazurov, On nite groups isosp ectral to simple symplectic and orthogonal groups, *Siberian Math. J.*, **50** no. 6 (2009) 965-981.

[19] A. V. Vasil ′ ev, M. A. Grechkoseeva and A. M. Staroletov, On nite groups isosp ectral to simple linear and unitary groups, *Siberian Math. J.*, **52** no. 1 (2011) 30-40.

[20] A. V. Vasil ′ ev and E. P. Vdovin, An adjacency criterion for the prime graph of a nite simple group, *Algebra Logic*, **44** no. 6 (2005) 381-406.

[21] A. V. Vasil ′ ev and E. P. Vdovin, Co cliques of maximal size in the prime graph of a nite simple group, *Algebra Logic*, **50** no. 4 (2011) 291-322.

[22] J. S. Williams, Prime graph comp onents of nite groups, *J. Algebra*, **69** (1981) 487-513.

[23] A. V. Zavarnitsine, Prop erties of element orders in covers for *L*_{n}(q) and *U*_{n}(q), *Siberian Math. J.*, **49** no. 2 (2008) 246-256.

[24] K. Zsigmondy, Zur Theorie der Potenzreste,* Monatsh. Math. Phys.*, **3** (1892) 265-284.

Volume 6, Issue 4

December 2017

Pages 7-33