Right amenable left group sets and the Tarski-FØlner theorem

Document Type: Research Paper

Author

Karlsruhe Institute of Technology

Abstract

‎We introduce right amenability‎, ‎right FØlner nets‎, ‎and right paradoxical decompositions for left homogeneous spaces and prove the Tarski-FØlner theorem for left homogeneous spaces with finite stabilisers‎. ‎It states that right amenability‎, ‎the existence of right FØlner nets‎, ‎and the non-existence of right paradoxical decompositions are equivalent‎.

Keywords

Main Subjects


[1] T. Ceccherini-Silberstein and M. Coornaert, Cellular Automata and Groups, 1-6, Computational complexity,
Springer, New York, 2010 336–349.

[2] E. Følner, On groups with full Banach mean value., Math. Scand., 3 (1955) 245–254.

[3] J. Neumann, Zur allgemeinen Theorie des Mas, Fund. Math., 13 (1929) 73–116.

[4] A. Tarski, Algebraische Fassung des Maßproblems, Fund. Math., 31 (1938) 207–223.

[5] S. Wacker, Cellular Automata on Group Sets and the Uniform Curtis-Hedlund-Lyndon Theorem, 1, Cellular Auto-mata and Discrete Complex Systems, (2016) 185–198.

[6] S. Wacker, The Garden of Eden Theorem for Cellular Automata on Group Sets, Cellular Automata, (2016) 66–78.