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Abstract. Let G be a finite group and let P = P1, . . . , Pm be a sequence of Sylow pi-subgroups of G,

where p1, . . . , pm are the distinct prime divisors of |G|. The Sylow multiplicity of g ∈ G in P is the

number of distinct factorizations g = g1 · · · gm such that gi ∈ Pi. We review properties of the solvable

radical and the solvable residual of G which are formulated in terms of Sylow multiplicities, and discuss

some related open questions.

1. Introduction

Sylow subgroups play a fundamental role in finite group theory, and their special properties are closely

related to the fact that their orders are the maximal prime power divisors of the group’s order. It is

therefore natural to consider, for a general finite group, products of Sylow subgroups, one for each prime

divisor of the group’s order.

The following definitions and notations will be used ([9]-[11],[13]). Let G be a group and let π (G) =

{p1, . . . , pm} denote the set of all distinct prime divisors of |G|. For p ∈ π (G), the set of all Sylow

p-subgroups of G is denoted Sylp (G). With each permutation τ of 1, . . . ,m we associate, in a natural

manner, an ordering of π (G). A complete Sylow sequence of G of type τ is a sequence of the form P =

Pτ(1), . . . , Pτ(m), where Pj ∈ Sylpj (G). The corresponding setwise product Π (P) = Pτ(1) · · ·Pτ(m) ={
gτ(1) · · · gτ(m)|gi ∈ Pi, 1 ≤ i ≤ m

}
, which is a subset of G, is called a complete Sylow product of G of

type τ . Whenever we wish to discuss some unspecified general ordering τ , we simplify the notation

and let P = P1, . . . , Pm represent a fixed but otherwise arbitrary ordering of the primes. The set of all
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complete Sylow sequences of G (of type τ) is denoted CSS(G) (CSSτ (G)). A factorization of g ∈ G in

a complete Sylow sequence P is a sequence g1, . . . , gm, where gi ∈ Pi and g = g1 · · · gm. The multiplicity

of g in P, denoted mP (g), is the number of distinct factorizations of g in P.

Using this terminology we can easily reformulate a well-known nilpotency criterion: G is nilpotent

if and only if it has a unique Sylow sequence for one (any) fixed ordering of π (G). The following

theorem offers a solvability criterion which is formulated in terms of Sylow multiplicities. Note that

since |G| = |P1| · · · |Pm|, the condition Π (P) = G is equivalent to the condition mP (g) = 1 for every

g ∈ G.

Theorem 1. Let G be a finite group. The following three conditions are equivalent:

a. G is solvable.

b. P ∈ CSS(G) and any g ∈ G, mP (g) = 1.

c. There exists an ordering of π (G), such that for any P ∈ CSSτ (G) and any g ∈ G, mP (g) = 1.

We briefly review the history of this result. G. Miller [17], and later and independently Philip Hall

in [4], asked whether the condition Π (P) = G for every complete Sylow sequence P of G implies

the solvability of G (the other direction is elementary). The answer had to wait the work of John

Thompson on the classification of N -groups [18, Corollary 3], which, however, does not refer directly

to Sylow sequences. Explicit proofs of Theorem 1 which are based on Thompson’s results were first

published in [1, Theorem 1 - the equivalence of (a) and (b)], and later and independently in [9, Theorem

A].

What sort of questions about Sylow multiplicities can be asked when G is non-solvable? We shall say

that a group G is τ -Sylow factorizable [10],[13] if there exists an ordering τ of π (G) and P ∈ CSSτ (G)

such that Π (P) = G. Holt and Rowly [6] gave examples of non-solvable τ -Sylow factorizable groups, but

they have also shown, via computerized calculations, that SU (3, 3) is not τ -Sylow factorizable for any

τ . In the following we review further questions and results concerning the Sylow multiplicities mP (g).

2. Sylow multiplicities and the solvable radical

Recall that for any finite group G the product of all subgroups of G which are both normal and

solvable is a normal and solvable subgroup, called the solvable radical of G. The solvable radical of G

will be denoted R (G). Note that G is solvable if and only if G = R (G), and so, in view of Theorem

1, it is natural to ask for a characterization of the solvable radical in terms of Sylow multiplicities. We

define some subsets which are related to this question.

Definition 2. Let G be a finite group and let τ be some fixed ordering of π (G). Then:

a. Hτ (G) is the set of all g ∈ G satisfying mP (g) > 0 for every P ∈ CSSτ (G), and

H (G) =
∩
all τ

Hτ (G).

b. Mτ (G) is the set of all g ∈ G satisfying mP (gx) = mP (x) for every P ∈ CSSτ (G) and x ∈ G,

and M (G) =
∩
all τ

Mτ (G).
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c. Uτ (G) is the set of all g ∈ G for which there exists P ∈ CSSτ (G), such that mP (g) = 1, and

U (G) =
∩
all τ

Uτ (G).

Theorem 3. [11, Theorem 9] Let G be a group and let τ be some ordering of π (G). Then:

a. Mτ (G) and Hτ (G) are characteristic subgroups of G.

b. R (G) ≤Mτ (G) ≤ Hτ (G), and consequently R (G) ≤M (G) ≤ H (G).

In fact, it turns out (see Corollary 15 below), that Mτ (G) = M (G) for any ordering τ of π (G).

Moreover, up till now there is no example of a group G and an ordering τ which do not satisfy R (G) =

Mτ (G) = Hτ (G), and therefore the characterization of the class of groups which satisfy one or both of

these equalities is an interesting open problem.

We shall say that G is τ -unique1 if Uτ (G) ̸= ∅, and that G is unique1 if U (G) ̸= ∅1. Note that by

[11, Lemma 15], if Uτ (G) ̸= ∅ for all τ then U (G) ̸= ∅. Note that if G is τ -Sylow factorizable then it

is clearly τ -unique1. Thus, one can think of Uτ (G) ̸= ∅ as a refinement of the τ -Sylow factorizability

condition. It is an open problem whether every finite group G is unique1 or at least τ -unique1 for some

τ . The following theorem [11, Theorems 3,10] relates it to the previous problem.

Theorem 4. Let G be a group. Fix some arbitrary ordering τ of π (G).

a. If all composition factors of G are τ -unique1, then R (G) =Mτ (G) = Hτ (G) = H (G) =M (G).

b. If G is τ -unique1 then R (G) =Mτ (G) =M (G).

The problem of whether every finite group G is unique1 seems to be difficult. However, it has the

advantage that it reduces to simple non-abelian groups.

Theorem 5. [11, Theorem 4] Fix some arbitrary ordering τ over the set of primes. The group property

τ -unique1 is closed under extensions, that is, if N ⊴ G, and G/N are both τ -unique1 then so is G. In

particular, if all simple non-abelian groups are τ -unique1 then every finite group is τ -unique1.

It is not difficult to prove that the property τ -unique1 is also inherited by normal subgroups, but

at present there is no analog statement concerning quotient groups. Given that, the condition of part

(a) of Theorem 4 implies the condition of part (b) but not vice versa. Interestingly, it is also easy to

show that τ -Sylow factorizability is inherited by normal subgroups and quotient groups (while a general

statement concerning its behavior under extensions is lacking). This is sufficient for proving:

Corollary 6. Let G be a τ -Sylow factorizable group for some ordering τ of π (G). Then R (G) =

Mτ (G) = Hτ (G) = H (G) =M (G).

Proof. Since every normal subgroup and every quotient group of G is τ -Sylow factorizable we can deduce

that all composition factors of G are τ -Sylow factorizable, whence, in particular, they are τ -unique1.

Now the claim follows from Theorem 4. □

1The trivial group is defined to be unique1.
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Further results concerning the subgroups Hτ (G) and H (G) and their relation to the solvable radical

can be found in [9],[10]. Further properties of Mτ (G) and M (G) and results concerning the unique1

property will be given below.

3. Sylow multiplicities and the solvable residual

Recall that the solvable residual of a finite group G, denoted S (G), is the unique normal subgroup

of G which is minimal subject to the condition that G/S (G) is solvable. In order to formulate a

characterization of S (G) in terms of Sylow multiplicities we introduce the following quantity.

Definition 7. Let G be a group. Fix some ordering τ of π (G). The average Sylow multiplicity of G,

m
(G)
av : G→ Q+ (here Q+ is the set of positive rationals), is defined, for all g ∈ G, by:

m(G)
av (g)

def
=

1

|CSSτ (G)|
∑

P∈CSSτ (G)

mP (g) .

This quantity is of interest on its own right and will be discussed further below. In particular, it is

independent of the choice of τ . The following theorem provides a characterization of S (G) in terms of

m
(G)
av . Note that f |N denotes the restriction of the function f with domain G to N ⊆ G.

Theorem 8. [16, Theorem 4] Let G be a group and let N ⊴ G. Then:

a. For all n ∈ N , m
(N)
av (n) ≤ m

(G)
av (n).

b. S (G) ≤ N if and only if m
(N)
av = m

(G)
av |N .

Remark 9. The claim of part (a) need not be true for non-normal subgroups. A counterexample is

provided by G = A8 and M < G, M ∼= S6. A calculation using GAP ([3]) gives that the largest value of

m
(M)
av on a non-identity element is 779/675, while the largest value of m

(G)
av on a non-identity element

is 48747/42875 < 779/675.

Further results concerning the relations between the solvable residual of G and Sylow sequences of G

can be found in [12].

4. The average Sylow multiplicity character

It turns out that the properly normalized average Sylow multiplicity of a finite group G (see Definition

7) is a complex character over G. For any two characters of G, χ and ψ, denote their inner product

(1/ |G|)
∑
g∈G

χ (g)ψ (g) by ⟨χ, ψ⟩G. The irreducible complex characters of G will be denoted by χ(s),

1 ≤ s ≤ k, where k is also the number of conjugacy classes of G, and χ(1) = 1G is the trivial character

(it should be clear from the context if 1G denotes the unit element of the group G or the trivial character

of G).
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Theorem 10. [14, Theorem 5] Let g ∈ G. For all 1 ≤ i ≤ m, and for any choice of Pi ∈ Sylpi (G),

(4.1) m(G)
av (g) =

k∑
s=1

⟨
1P1 , χ

(s)|P1

⟩
P1

· · ·
⟨
1Pm , χ

(s)|Pm

⟩
Pm(

χ(s) (1G)
)m−1 χ(s) (g) .

Furthermore, there exists a smallest positive integer l such that l ·m(G)
av is a character of G.

Remark 11. Note that for any fixed 1 ≤ i ≤ m,
⟨
1Pi , χ

(s)|Pi

⟩
Pi

is a non-negative integer, independent of

the particular Pi chosen, and that m
(G)
av is independent of the ordering of the primes τ used in Definition

7.

Theorem 8 provides a characterization of the solvable residual of G in terms of m
(G)
av . We can also

use m
(G)
av in order to prove a solvability criterion by Gallagher [2],[7].

Theorem 12 (Gallagher, [2]). Let G be a group. Then G is solvable if and only if the only irreducible

character χ of G satisfying ⟨1P , χ|P ⟩P > 0 for all Sylow subgroups P of G, is the trivial character.

Proof. By Equation (4.1),

m(G)
av (1G) = 1 +

k∑
s=2

⟨
1P1 , χ

(s)|P1

⟩
P1

· · ·
⟨
1Pm , χ

(s)|Pm

⟩
Pm(

χ(s) (1G)
)m−2 .

Now G is solvable if and only if S (G) = {1G}. Since m
({1G})
av (1G) = 1, S (G) = {1G} is equivalent, by

Theorem 8, to m
(G)
av (1G) = 1. Thus, G is solvable if and only if

⟨
1P1 , χ

(s)|P1

⟩
P1

· · ·
⟨
1Pm , χ

(s)|Pm

⟩
Pm

= 0

for all s ≥ 2, which is equivalent to Gallagher’s condition. □

Remark 13. Note that the claim of Theorem 12 is equivalent to the statement that G is solvable if and

only if m
(G)
av is the trivial character of G.

Next we exhibit a direct connection between the average Sylow multiplicity and the characteristic

subgroups Mτ (G) (Definition 2 b). Recall [8, Definition 2.20] that for any character χ of a group G,

the kernel of χ, denoted kerχ, is the normal subgroup of G which consists of all g ∈ G such that

χ (g) = χ (1G). Set kerm
(G)
av := ker l ·m(G)

av , where l is defined in Theorem 10.

Theorem 14. [15, Theorem 4] Let G be a group and let τ be an arbitrary ordering of π (G). Then

kerm
(G)
av =Mτ (G).

In particular we have the following corollary.

Corollary 15. [15, Corollary 5] Let G be any group. Then Mτ (G) is independent of τ and M (G) =

Mτ (G) = kerm
(G)
av , for any ordering τ of π (G).

Another easy corollary is the following alternative characterization of Mτ (G).

Corollary 16. Let G be a group and τ an ordering of π (G). Then

Mτ (G) = {g ∈ G|mP (g) = mP (1G) , ∀P ∈ CSSτ (G)} .

http://dx.doi.org/10.22108/ijgt.2017.21482

http://dx.doi.org/10.22108/ijgt.2017.21482


6 Int. J. Group Theory 7 no. 2 (2018) 1-8 D. Levy

Proof. First note that if g ∈ Mτ (G) then mP (g) = mP (1G) for all P ∈ CSSτ (G) (take x = 1G in

Definition 2(b)). On the other hand, if g ∈ G satisfies mP (g) = mP (1G) for all P ∈ CSSτ (G), then

m
(G)
av (g) = m

(G)
av (1G), and therefore g ∈ kerm

(G)
av =Mτ (G). □

Note that Theorem 14 offers a character theory characterization of R (G) for every group G such that

R (G) = H (G), namely, R (G) is the intersection of all ker
(
χ(s)

)
such that⟨

1P1 , χ
(s)|P1

⟩
P1

· · ·
⟨
1Pm , χ

(s)|Pm

⟩
Pm

̸= 0

[8, Lemma (2.21)], and in this sense (provided that R (G) = H (G) is established for all finite groups G)

it could be viewed as a generalization of Gallagher’s solvability criterion Theorem 12.

We also have an easy sufficient condition for the property unique1, expressed as a condition on

m
(G)
av (1G).

Proposition 17. Let G be a group satisfying m
(G)
av (1G) < 2. Then G is unique1.

Proof. Assume to the contrary that m
(G)
av (1G) < 2 but G is not unique1, and so U (G) = ∅. By

[11, Lemma 15] this implies that there exists an ordering τ such that Uτ (G) = ∅. Thus, for all

P ∈ CSSτ (G) and for all g ∈ Π(P), mP (g) ≥ 2. Since 1G ∈ Π(P) for every P, we get mP (1G) ≥ 2 for

all P ∈ CSSτ (G), and hence, by Definition 7, m
(G)
av (1G) ≥ 2 - a contradiction. □

The condition of Proposition 17 can be checked using GAP within the usual limitations on the

group size. This way the unique1 property can be established for several ”small order” simple non-

abelian groups. However, for G = A10, a GAP calculation shows that m
(G)
av (1G) > 2 (A10 is the smallest

alternating group which does not satisfym
(G)
av (1G) < 2) while another GAP calculation gives Uτ (G) ̸= ∅

for every possible τ . Thus, m
(G)
av (1G) < 2 is sufficient but not necessary for G to be unique1.

For the family G = PSL (2, q), where q is a prime power (G is simple non-abelian for q ≥ 4),

the structure of the character table and of the Sylow subgroups is simple enough to allow an explicit

computation of m
(G)
av (1G) in terms of the maximal prime power factors of |G| [14, Theorem 12]. As a

corollary we obtain:

Corollary 18. Let q be any prime power and let G = PSL (2, q). Then m
(G)
av (1G) < 2, and hence, by

Proposition 17, PSL (2, q) is unique1 for all prime powers q.

It is clear that the method of studying the unique1 property via Proposition 17 and direct compu-

tations of m
(G)
av (1G) is of limited scope. Presumably, a new approach is required in order to make a

significant advance in establishing or disproving the claim that every finite group is unique1.

5. Generalization to Profinite Groups

One of the prominent features of the theory of profinite groups is the fact that the Sylow theory

of finite groups generalizes in a very natural way to the profinite setting. Hence it is natural to ask

if, and to what extent, can the concepts and results presented in the previous sections be generalized
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to profinite groups. It seems that the answer to this question is quite satisfactory: All of the major

concepts and results which were so far examined from this perspective, have natural analogs for profinite

groups. Here we will mention just a few points to give the taste of things. A full account is given in [5].

1. Given a profinite group G, the notions of a Sylow sequence of G, its product and the Sylow

multiplicity of a given element in a given Sylow sequence are defined using the underlying topology.

Definition 19. Let G be a profinite group. Fix a permutation τ of the set Pr = {p1, p2, . . .} of all prime

numbers ordered increasingly. A complete Sylow sequence of G of type τ is a sequence P =
(
Gτ(p)

)
p∈Pr,

where for each p ∈ Pr, Gp is a Sylow p-subgroup of G (if p /∈ π (G) then Gp = {1G}). The product of

the sequence P is defined by

Π(P) := cl

( ∞∪
i=1
Gτ(p1) · · ·Gτ(pi)

)
,

where cl stands for the topological closure. An element sequence in P is a sequence
(
gτ(p)

)
p∈Pr where

for each p ∈ Pr, gτ(p) ∈ Gτ(p). A factorization of g in P is an element sequence
(
gτ(p)

)
p∈Pr in P such

that g = limk→∞
(
gτ(p1) · · · gτ(pk)

)
. We denote by MP (g) the set of all factorizations of g in P, and by

mP (g) (the Sylow multiplicity of g in P) the cardinality of MP (g).

These concepts satisfy similar relations as their finite counterparts, although some work is needed in

order to show this.

Lemma 20. Let G be a profinite group, and let P =
(
Gτ(p)

)
p∈Pr be a complete Sylow sequence of type

τ . Let g ∈ Π(P). Then g has a factorization in P.

2. In the present context, finite group results carry over to profinite group if one replaces solvability

by pro-solvability. Recall that a profinite group G is prosolvable if it is the inverse limit of an inverse

system of finite solvable groups, or, equivalently, if G/N is solvable for any N ◁O G (N is an normal

open subgroup of G). For finite groups solvability and pro-solvability are, of course, the same. For

example, we have the following generalization of Theorem 1.

Theorem 21. [5, Theorem 1.6] Let G be a profinite group. Then the following are equivalent:

(1) G is prosolvable.

(2) For every permutation τ of the set of all primes and for every complete Sylow sequence P of

type τ it holds that G = Π(P).

(3) Fix an arbitrary permutation τ of the set of all primes. Then for every complete Sylow sequence

P of type τ it holds that G = Π(P).

3. Any profinite group has a pro-solvable radical and the pro-solvable residual. Furthermore, one can

also define the analog of H (G) (see Definition 2) for a profinite G which has many of the properties of

the finite object. We have:

Proposition 22. [5, Proposition 1.7] Let G be a profinite group. If H (G/N) = R (G/N) for every

normal open subgroup N , then H (G) = R (G).
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It would be very interesting if the profinite theory will produce new insights concerning the finite

H (G) = R (G) question.
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