Inertial properties in groups

Document Type: Ischia Group Theory 2016

Authors

1 Dipartimento Matematica e Appl., v. Cintia, M.S.Angelo 5a, I-80126 Napoli (Italy)

2 Dipartimento di Matematica e Informatica, Università di Udine, Via delle Scienze 206, 33100 Udine, Italy.

3 Silvana Rinauro, Dipartimento di Matematica, Informatica ed Economia, Universit`a della Basilicata, Via dell’Ateneo Lucano 10, I-85100 Potenza, Italy.

Abstract

‎‎Let $G$ be a group and $p$ be an endomorphism of $G$‎. ‎A subgroup $H$ of $G$ is called $p$-inert if $H^p\cap H$ has finite index in the image $H^p$‎. ‎The subgroups that are $p$-inert for all inner automorphisms of $G$ are widely known and studied in the literature‎, ‎under the name inert subgroups‎.
‎The related notion of inertial endomorphism‎, ‎namely an endomorphism $p$ such that all subgroups of $G$ are $p$-inert‎, ‎was introduced in \cite{DR1} and thoroughly studied in \cite{DR2,DR4}‎. ‎The ``dual‎" ‎notion of fully inert subgroup‎, ‎namely a subgroup that is $p$-inert for all endomorphisms of an abelian group $A$‎, ‎was introduced in \cite{DGSV} and further studied in \cite{Ch+‎, ‎DSZ,GSZ}‎. ‎The goal of this paper is to give an overview of up-to-date known results‎, ‎as well as some new ones‎, ‎and show how some applications of the concept of inert subgroup fit in the same picture even if they arise in different areas of algebra‎. ‎We survey on classical and recent results on groups whose inner automorphisms are inertial‎. ‎Moreover‎, ‎we show how‎
‎inert subgroups naturally appear in the realm of locally compact topological groups or locally linearly compact topological vector spaces‎, ‎and can be helpful for the computation of the algebraic entropy of continuous endomorphisms‎.

Keywords

Main Subjects


[1] R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965) 309–319.

[2] R. Baer, Automorphismengruppen von Gruppen mit endlichen Bahnen gleichmssig beschrnkter Mchtigkeit, J. Reine. Angew. Math., 262-263 (1973) 93–119.

[3] V. V. Belyaev, Inert subgroups in infinite simple groups, Sibirsk. Mat. Zh. 34 (1993) 17–23; English translation in: Siberian Math. J., 34 (1993) 606–611.

[4] V. V. Belyaev, Locally finite groups containing a finite inseparable subgroup, Sib. Mat. Zh. 34, (1993) 23-41; English translation in: Siberian Math. J., 34 (1993) 218–232.

[5] V. V. Belyaev, Inert subgroups in simple locally finite groups, Finite and locally finite groups, Istanbul, 1994 213-218, NATO Adv. Sci.Inst. Ser. C Math. Phys. Sci., 471, Kluwer Acad. Publ., Dordrecht, 1995.

[6] V. V. Belyaev, M. Kuzucuoglu and E. Seckin, Totally inert groups, Rend. Sem. Mat. Univ. Padova, 102 (1999) 151–156.

[7] V. V. Belyaev and D. A. Shved, Finitary automorphisms of groups, Proc. Steklov Inst. Math., 267 (2009) S49–S56.

[8] V. V. Belyaev and D. A. Shved, Groups of outer finitary automorphisms, Mat. Zametki, 89 (2011) 635–636; translation in: Math. Notes, 89 (2011) 596–597.

[9] G. M. Bergman, H. W. Lenstra Jr., Subgroups close to normal subgroups, J. Algebra, 127 (1989) 80–97.

[10] F. Berlai, D. Dikranjan and A. Giordano Bruno, Scale function vs Topological entropy, Topology Appl., 160 (2013) 2314–2334.

[11] J. C. Beidleman, H. Heineken, A Note on I-Automorphisms, J. Algebra, 234 (2000) 694–706.

[12] S. Breaz and G. Calugareanu, Strongly inert subgroups of Abelian groups, to appear on Rend. Sem. Mat. Univ. Padova, 1xx (201x).

[13] J. T. Buckley, J. C. Lennox, B. H. Neumann, H. Smith and J. Wiegold, Groups with all subgroups normal-by-finite, J. Austral. Math. Soc. Ser. A, 59 (1995) 384–398.

[14] G. Calugareanu, Strongly invariant subgroups, Glasgow Math. J., 57 (2015) 431–443.

[15] G. Carraro, Invarianti nella categoria dei flussi per spazi vettoriali, Master Thesis, Padua University, 2014.

[16] C. Casolo, Groups with finite conjugacy classes of subnormal subgroups, Rend. Sem. Mat. Univ. Padova, 81 (1989) 107–149.

[17] C. Casolo, Groups in which all subgroups are subnormal-by-finite, Adv. Group Theory Appl., 1 (2016) 33–45.

 

[18] C. Casolo, U. Dardano and S. Rinauro, Groups in which each subgroup is commensurable with a normal subgroup, submitted, arXiv:1705.02360.

[19] C. Casolo and O. Puglisi, Hirsch-Plotkin radical of stability groups, J. Algebra, 370 (2012) 133–151.

[20] I. Castellano, Topological entropy for linearly compact vector spaces, corank and Bernoulli shifts, work in progress.

[21] I. Castellano and A. Giordano Bruno, Algebraic entropy in locally linearly compact vector spaces, M. Fontana et al. (eds.), Rings, Polynomials, and Modules, Springer International Publishing AG 2017,

[22] I. Castellano and A. Giordano Bruno, Topological entropy on locally linearly compact vector spaces, Topology Appl., to appear.

[23] T. Ceccherini-Silberstein, M. Coornaert and F. Krieger, An analogue of Fekete’s lemma for subadditive functions on cancellative amenable semigroups, J. Anal. Math., 124 (2014) 59–81.

[24] A. R. Chekhlov, Fully inert subgroups of completely decomposable finite rank groups and their commensurability, (in Russian) Vestn. Tomsk. Gos. Univ. Mat. Mekh., (2016) 41 42–50.

[25] A. R. Chekhlov, On Fully Inert Subgroups of Completely Decomposable Groups, Mathematical Notes, 101 (2017) 365–373.

[26] C. D. Cooper, Power automorphisms of a group, Math.Z., 107 (1968) 335–356.

[27] M. Curzio, S. Franciosi and F. de Giovanni, On automorphisms fixing infinite subgroups of groups, Arch. Math. (Basel), 54 (1990) 4–13.

[28] G. Cutolo, Quasi-power automorphisms of infinite groups, Comm. Algebra, 21 (1993) 1009–1022.

[29] G. Cutolo, E. I. Khukhro, J. C. Lennox, S. Rinauro, H. Smith and J. Wiegold, Locally finite groups all of whose subgroups are boundedly finite over their cores, Bull. London Math. Soc., 29 (1997) 563–570.

[30] D. van Dantzig, Studien over topologische Algebra, Dissertation, Amsterdam, 1931.

[31] U. Dardano, On groups with many maximal subgroups, Ricerche Mat., 38 (1989) 261–271.

[32] U. Dardano and C. Franchi, On group automorphisms fixing subnormal subgroups setwise, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 3 (2000) 811–820.

[33] U. Dardano and C. Franchi, A note on groups paralyzing a subgroup series, Rend. Circ. Mat. Palermo (2), 50 (2001) 165–170.

[34] U. Dardano and S. Rinauro, Inertial automorphisms of an abelian group, Rend. Sem. Mat. Univ. Padova, 127 (2012) 213–233.

[35] U. Dardano, S. Rinauro, On the ring of inertial endomorphisms of an abelian group, Ricerche Mat., 63 (2014) S103- S115.

[36] U. Dardano and S. Rinauro, On groups whose subnormal subgroups are inert, Int. J. Group Theory, 4 no. 2 (2015) 17–24.

[37] U. Dardano and S. Rinauro, Inertial endomorphisms of an abelian group, Ann. Mat. Pura Appl. (4), 195 (2016) 219–234.

[38] U. Dardano and S. Rinauro, A group of generalized finitary automorphisms of an abelian group, J. Group Theory, 20 (2017) 347–369.

[39] M. De Falco, F. de Giovanni, C. Musella and N. Trabelsi, Strongly inertial groups, Comm. Algebra, 41 (2013) 2213– 2227.

[40] M. De Falco, F. de Giovanni, C. Musella and Y. P. Sysak, Weakly power automorphisms of groups, Communications in Algebra, (2017).

[41] D. Dikranjan, A. Fornasiero and A. Giordano Bruno, Algebraic entropy for amenable semigroup actions, work in progress.

[42] D. Dikranjan and A. Giordano Bruno, Topological entropy and algebraic entropy for group endomorphisms, in: Proceedings of the International Conference on Topology and Its Applications, (ICTA 2011), Cambridge Scientific Publishers, Cambridge, 2012 133–214.

[43] D. Dikranjan and A. Giordano Bruno, The Pinsker subgroup of an algebraic flow, Jour. Pure Appl. Algebra, 216 (2012) 364–376.

[44] D. Dikranjan and A. Giordano Bruno, The connection between topological and algebraic entropy, Topology Appl., 159 (2012) 2980–2989.

[45] D. Dikranjan and A. Giordano Bruno, Limit free computation of entropy, Rend. Istit. Mat. Univ. Trieste, 44 (2012) 297–312.

[46] D. Dikranjan and A. Giordano Bruno, Entropy in a category, Appl. Categ. Structures, 21 (2013) 67–101

[47] D. Dikranjan and A. Giordano Bruno, Discrete dynamical systems in group theory, Note Mat., 33 (2013) 1–48.

[48] D. Dikranjan and A. Giordano Bruno, The Bridge Theorem for totally disconnected locally compact groups, Topology Appl., 169 (2014) 21–32.

[49] D. Dikranjan and A. Giordano Bruno, Entropy on abelian groups, Advances in Mathematics, 298 (2016) 612–653.

[50] D. Dikranjan, A. Giordano Bruno and L. Salce, Adjoint algebraic entropy, J. Algebra, 324 (2010) 442–463.

[51] D. Dikranjan, A. Giordano Bruno, L. Salce and S. Virili, Fully inert subgroups of divisible Abelian groups, J. Group Theory, 16 (2013) 915–939.

[52] D. Dikranjan, A. Giordano Bruno, L. Salce and S. Virili, Intrinsic algebraic entropy, J. Pure Appl. Algebra, 219 (2015) 2933–2961.

[53] D. Dikranjan, B. Goldsmith, L. Salce and P. Zanardo, Algebraic entropy of endomorphisms of abelian groups, Trans. Amer. Math. Soc., 361 (2009) 3401–3434.

[54] D. Dikranjan, L. Salce and P. Zanardo, Fully inert subgroups of free Abelian groups, Period. Math. Hungar., 69 (2014) 69–78.

[55] D. Dikranjan, M. Sanchis and S. Virili, New and old facts about entropy in uniform spaces and topological groups, Topology Appl., 159 (2012) 1916–1942.

[56] M. R. Dixon, M. J. Evans and H. Smith, Groups with all proper subgroups soluble-by-finite rank, J. Algebra 298 (2005) 135–147.

[57] M. Dixon and H. Smith, Embedding groups in locally (soluble-by-finite) simple groups, J. Group Theory, 9 (2006) 383–395.

[58] M. R. Dixon, M. Evans and A. Tortora, On totally inert simple groups, Cent. Eur. J. Math, 8 (2010) 22–25.

[59] S. Franciosi and F. de Giovanni, Groups in which every infinite subnormal subgroup is normal, J. Algebra, 96 (1985) 566–580.

[60] S. Franciosi and F. de Giovanni, Groups whose subnormal nonnormal subgroups have finite index, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 17 (1993) 241–251.

[61] S. Franciosi, F. de Giovanni and M. L. Newell, Groups whose subnormal subgroups are normal-by-finite, Comm. Alg., 23 (1995) 5483–5497.

[62] L. Fuchs, Infinite Abelian Groups, Academic Press, New York - London, 1970–1973.

[63] W. Gasch¨utz, Gruppen, in denen das Normalteilersein transitiv ist, J. Reine Angew. Math., 198 (1957) 87–92.

[64] A. Giordano Bruno and L. Salce, A soft introduction to algebraic entropy, Arabian J. of Math., 1 (2012) 69–87.

[65] A. Giordano Bruno and L. Salce, Adjoint intrinsic algebraic entropy, work in progress.

[66] A. Giordano Bruno and P. Spiga, Some properties of the growth and of the algebraic entropy of group endomorphisms, J. Group Theory, 20 (2017) 763–774.

[67] A. Giordano Bruno and P. Spiga, Milnor-Wolf theorem for the growth of endomorphisms of locally virtually soluble groups, submitted.

[68] A. Giordano Bruno and S. Virili, The Algebraic Yuzvinski Formula, J. Algebra, 423 (2015) 114–147.

[69] A. Giordano Bruno and S. Virili, On the Algebraic Yuzvinski Formula, Topol. Algebra and its Appl., 3 (2015) 86–103.

[70] A. Giordano Bruno and S. Virili, Topological entropy in totally disconnected locally compact groups, Ergodic Theory Dynam. Systems, 37 (2017) 2163–2186.

[71] F. de Giovanni, Some trends in the theory of groups with restricted conjugacy classes, Note Mat., 33 (2013) 71–87.

[72] R. G¨obel and L. Salce, Endomorphism rings with different rank-entropy supports, Q. J. Math., 63 (2012) 381–397.

[73] B. Goldsmith and L. Salce, When the intrinsic algebraic entropy is not really intrinsic, Topol. Algebra Appl., 3 (2015) 45–56.

[74] B. Goldsmith and L. Salce, Algebraic entropies for Abelian groups with applications to the structure of their endomorphism rings: a survey, in Groups, Modules, and Model Theory - Surveys and Recent Developments, Springer 2017 135–175.

[75] B. Goldsmith and L. Salce, ’s realization theorems from the viewpoint of algebraic entropy, Proceedings 2016 Brixen/Graz Conferences, Springer, 2017.

[76] B. Goldsmith, L. Salce and P. Zanardo, Fully inert subgroups of Abelian p-groups, J. Algebra, 419 (2014) 332–349.

[77] B. Goldsmith, L. Salce and P. Zanardo, Fully inert submodules of torsion-free modules over the ring of p-adic integers, Colloq. Math., 136 (2014) 169–178.

[78] J. I. Hall, Finitary linear transformation groups and elements of finite local degree, Arch. Math. (Basel), 50 (1988) 315–318.

[79] P. de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000,

[80] H. Heineken, Groups with neighbourhood conditions for certain lattices, Note Mat., 16 (1996) 131–143.

[81] H. Heineken and L. A. Kurdachenko, Groups with finitely many classes of almost equal normal subgroups, Algebra Colloq., 4 (1997) 329–344.

[82] O. Kegel and D. Schmidt, Existentially closed finitary linear groups, Groups-St. Andrews, 1989, 2 353–362, London Math. Soc. Lecture Note Ser., 160, Cambridge Univ. Press, Cambridge, 1991.

[83] J. C. Lennox and D. J. S. Robinson, The theory of infinite soluble groups, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2004.

[84] U. Meierfrankenfeld, R. E. Phillips and O. Puglisi, Locally solvable finitary linear groups, J. London Math. Soc., 47 (1993) 31–40.

[85] F. Menegazzo and D. J. S. Robinson, A finiteness condition on automorphism groups, Rend. Sem. Mat. Univ. Padova, 78 (1987) 267–277.

[86] W. M¨ohres, Torsionsgruppen, deren Untergruppen alle subnormal sind, Geom. Dedicata, 31 (1989) 237–244.

[87] B. H. Neumann, Groups with finite classes of conjugate subgroups, Math. Z., 63 (1955) 76–96.

[88] D. Palacin and F. O. Wagner, A Fitting theorem for simple theories, Bull. Lond. Math. Soc., 48 (2016) 472–482.

[89] J. Peters, Entropy on discrete Abelian groups, Adv. Math., 33 (1979) 1–13.

[90] R. E. Phillips, The structure of groups of finitary transformations, J. Algebra, 119 (1988) 400–448.

[91] D. J. S. Robinson, Groups in which normality is a transitive relation, Proc. Cambridge Philos. Soc., 60 (1964) 21–38.

[92] D. J. S. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics, 80 Springer-Verlag, New York, 1996.

[93] D. J. S. Robinson, On inert subgroups of a group, Rend. Sem. Mat. Univ. Padova, 115 (2006) 137–159.

[94] L. Salce, P. V´amos and S. Virili, Length functions, multiplicities and algebraic entropy, Forum Math., 25 (2013) 255–282.

[95] L. Salce and S. Virili, Two new proofs concerning the intrinsic algebraic entropy, Comm. Algebra, to appear.

[96] L. Salce and P. Zanardo, A general notion of algebraic entropy and the rank entropy, Forum Math., 21 (2009) 579–599.

[97] G. Schlichting, Operationen mit periodischen Stabilisatoren. Arch. Math. (Basel), 34 (1980) 97–99.

[98] D. Shved, On the structure of groups of virtually trivial automorphisms, Comm. Algebra, 45 (2017) 184–1852.

[99] H. Smith and J. Wiegold, Locally graded groups with all subgroups normal-by- finite, J. Austral. Math. Soc. Ser. A , 60 (1996) 222–227.

[100] W. Specht and H. Heineken, Gruppen mit endlicher Komponentenzahl fastgleicher Untergruppen, Math. Nachr., 134 73–82.

[101] I. Ya. Subbotin, On the ZD-coradical of a KI-group, (Russian) Vychisl. Prikl. Mat. (Kiev), 75 (1991) 120–124; translation in J. Math. Sci., 72 (1994) 3149–3151.

[102] S. Virili, Entropy for endomorphisms of LCA groups, Topology Appl., 159 (2012) 2546–2556.

[103] S. Virili, Algebraic and topological entropy of group actions, preprint.

[104] B. A. F. Wehrfritz, Finite-finitary groups of automorphisms, J. Algebra Appl., 1 (2002) 375–389.

[105] B. A. F. Wehrfritz, On generalized finitary groups, J. Algebra, 247 (2002) 707–727.

[106] M. D. Weiss, Algebraic and other entropies of group endomorphisms, Math. Systems Theory, 8 (1974/75) 243–248.

[107] G. A. Willis, The structure of totally disconnected locally compact groups, Math. Ann., 300 (1994) 341–363.

[108] G. A. Willis, Further properties of the scale function on a totally disconnected group, J. Algebra, 237 (2001) 142–164.

[109] S. Yuzvinski, Metric properties of endomorphisms of compact groups, English Translation: Amer. Math. Soc. Transl. (2), 66 (1968) 63–98.

[110] G. Zacher, Una caratterizzazione reticolare della finitezza dell’indice di un sottogruppo in un gruppo, Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 69 (1980) 317–323.

[111] A. E. Zalesskii, Groups of bounded automorphisms of groups (in Russian), Dokl. Akad. Nauk BSSR 19 (1975) 681–684.