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Abstract. A subset B of a group G is called a difference basis of G if each element g ∈ G can be

written as the difference g = ab−1 of some elements a, b ∈ B. The smallest cardinality |B| of a difference

basis B ⊂ G is called the difference size of G and is denoted by ∆[G]. The fraction ð[G] := ∆[G]/
√

|G|
is called the difference characteristic of G. We prove that for every n ∈ N the dihedral group D2n of

order 2n has the difference characteristic
√
2 ≤ ð[D2n] ≤ 48√

586
≈ 1.983. Moreover, if n ≥ 2 · 1015, then

ð[D2n] <
4√
6
≈ 1.633. Also we calculate the difference sizes and characteristics of all dihedral groups

of cardinality ≤ 80.

1. Introduction

A subset B of a group G is called a difference basis for a subset A ⊂ G if each element a ∈ A can

be written as a = xy−1 for some x, y ∈ B. The smallest cardinality of a difference basis for A is called

the difference size of A and is denoted by ∆[A]. For example, the set {0, 1, 4, 6} is a difference basis

for the interval A = [−6, 6] ∩ Z witnessing that ∆[A] ≤ 4.

The definition of a difference basis B for a set A in a group G implies that |A| ≤ |B|2 and gives a

lower bound
√

|A| ≤ ∆[A]. The fraction

ð[A] :=
∆[A]√
|A|

≥ 1

is called the difference characteristic of A.

For a real number x we put

⌈x⌉ = min{n ∈ Z : n ≥ x} and ⌊x⌋ = max{n ∈ Z : n ≤ x}.
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The following proposition is proved in [3, 1.1].

Proposition 1. Let G be a finite group. Then

(1)
1+
√

4|G|−3

2 ≤ ∆[G] ≤
⌈ |G|+1

2

⌉
,

(2) ∆[G] ≤ ∆[H] ·∆[G/H] and ð[G] ≤ ð[H] · ð[G/H] for any normal subgroup H ⊂ G;

(3) ∆[G] ≤ |H|+ |G/H| − 1 for any subgroup H ⊂ G.

In [10] Kozma and Lev proved (using the classification of finite simple groups) that each finite group

G has difference characteristic ð[G] ≤ 4√
3
≈ 2.3094.

In this paper we shall evaluate the difference characteristics of dihedral groups and prove that each

dihedral group D2n has ð[D2n] ≤ 48√
586

≈ 1.983. Moreover, if n ≥ 2 · 1015, then ð[D2n] <
4√
6
≈ 1.633.

We recall that the dihedral group D2n is the isometry group of a regular n-gon. The dihedral group

D2n contains a normal cyclic subgroup of index 2. A standard model of a cyclic group of order n is

the multiplicative group

Cn = {z ∈ C : zn = 1}

of n-th roots of 1. The group Cn is isomorphic to the additive group of the ring Zn = Z/nZ.
Difference bases have applications in the study of structure of superextensions of groups, see [1, 3].

A subset B of a group G is called a basis of G if each element g ∈ G can be written as g = ab for

some a, b ∈ B. Bases in dihedral groups were studied in [7].

Theorem 2. For any numbers n,m ∈ N the dihedral group D2nm has the difference size

2
√
nm ≤ ∆[D2nm] ≤ ∆[D2n] ·∆[Cm]

and the difference characteristic
√
2 ≤ ð[D2nm] ≤ ð[D2n] · ð[Cm].

Proof. It is well-known that the dihedral group D2nm contains a normal cyclic subgroup of order nm,

which can be identified with the cyclic group Cnm. The subgroup Cm ⊂ Cnm is normal in D2mn and

the quotient group D2mn/Cm is isomorphic to D2n. Applying Proposition 1(2), we obtain the upper

bounds ∆[D2n] ≤ ∆[D2nm/Cm] ·∆[Cm] = ∆[D2n] ·∆[Cm] and ð[D2nm] ≤ ð[D2n] · ð[Cm].

Next, we prove the lower bound 2
√
nm ≤ ∆[D2nm]. Fix any element s ∈ D2nm \ Cnm and observe

that s = s−1 and sxs−1 = x−1 for all x ∈ Cnm. Fix a difference basis D ⊂ D2nm of cardinality

|D| = ∆[D2nm] and writeD as the unionD = A∪sB for some sets A,B ⊂ Cnm ⊂ D2nm. We claim that

AB−1 = Cnm. Indeed, for any x ∈ Cnm we get xs ∈ sCnm∩ (A∪ sB)(A∪ sB)−1 = AB−1s−1∪ sBA−1

and hence

x ∈ AB−1s−1s−1 ∪ sBA−1s−1 = AB−1 ∪B−1A = AB−1.

So, Cnm = AB−1 and hence nm ≤ |A| · |B|. Then ∆[D2nm] = |A| + |B| ≥ min{l + k : l, k ∈ N, lk ≥
nm} ≥ 2

√
nm and ð[D2nm] = ∆[D2nm]√

2nm
≥ 2

√
nm√

2nm
=

√
2. □

Corollary 3. For any number n ∈ N the dihedral group D2n has the difference size

2
√
n ≤ ∆[D2n] ≤ 2 ·∆[Cn]

and the difference characteristic
√
2 ≤ ð[D2n] ≤

√
2 · ð[Cn].
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The difference sizes of finite cyclic groups were evaluated in [2] with the help of the difference sizes

of the order-intervals [1, n] ∩ Z in the additive group Z of integer numbers. For a natural number

n ∈ N by ∆[n] we shall denote the difference size of the order-interval [1, n]∩Z and by ð[n] := ∆[n]√
n

its

difference characteristic. The asymptotics of the sequence (ð[n])∞n=1 was studied by Rédei and Rényi

[11], Leech [9] and Golay [8] who eventually proved that

√
2 + 4

3π <

√
2 + max

0<φ<2π

2 sin(φ)
φ+π ≤ lim

n→∞
ð[n] = inf

n∈N
ð[n] ≤ ð[6166] =

128√
6166

< ð[6] =
√

8
3 .

In [2] the difference sizes of the order-intervals [1, n] ∩ Z were applied to give upper bounds for the

difference sizes of finite cyclic groups.

Proposition 4. For every n ∈ N the cyclic group Cn has difference size ∆[Cn] ≤ ∆
[
⌈n−1

2 ⌉
]
, which

implies that

lim sup
n→∞

ð[Cn] ≤
1√
2
inf
n∈N

ð[n] ≤ 64√
3083

<
2√
3
.

The following upper bound for the difference sizes of cyclic groups were proved in [2].

Theorem 5. For any n ∈ N the cyclic group Cn has the difference characteristic:

(1) ð[Cn] ≤ ð[C4] =
3
2 ;

(2) ð[Cn] ≤ ð[C2] = ð[C8] =
√
2 if n ̸= 4;

(3) ð[Cn] ≤ 12√
73

<
√
2 if n ≥ 9;

(4) ð[Cn] ≤ 24√
293

< 12√
73

if n ≥ 9 and n ̸= 292;

(5) ð[Cn] <
2√
3
if n ≥ 2 · 1015.

For some special numbers n we have more precise upper bounds for ∆[Cn]. A number q is called a

prime power if q = pk for some prime number p and some k ∈ N.
The following theorem was derived in [2] from the classical results of Singer [13], Bose, Chowla [4],

[5] and Rusza [12].

Theorem 6. Let p be a prime number and q be a prime power. Then

(1) ∆[Cq2+q+1] = q + 1;

(2) ∆[Cq2−1] ≤ q − 1 + ∆[Cq−1] ≤ q − 1 + 3
2

√
q − 1;

(3) ∆[Cp2−p] ≤ p− 3 + ∆[Cp] + ∆[Cp−1] ≤ p− 3 + 3
2(
√
p+

√
p− 1).

The following Table 1 of difference sizes and characteristics of cyclic groups Cn for n ≤ 100 is taken

from [2].
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Table 1. Difference sizes and characteristics of cyclic groups Cn for n ≤ 100.

n ∆[Cn] ð[Cn] n ∆[Cn] ð[Cn] n ∆[Cn] ð[Cn] n ∆[Cn] ð[Cn]

1 1 1 26 6 1.1766... 51 8 1.1202... 76 10 1.1470...

2 2 1.4142... 27 6 1.1547... 52 9 1.2480... 77 10 1.1396...

3 2 1.1547... 28 6 1.1338... 53 9 1.2362... 78 10 1.1322...

4 3 1.5 29 7 1.2998... 54 9 1.2247... 79 10 1.1250...

5 3 1.3416... 30 7 1.2780... 55 9 1.2135... 80 11 1.2298...

6 3 1.2247... 31 6 1.0776... 56 9 1.2026... 81 11 1.2222...

7 3 1.1338... 32 7 1.2374... 57 8 1.0596... 82 11 1.2147...

8 4 1.4142... 33 7 1.2185... 58 9 1.1817... 83 11 1.2074...

9 4 1.3333... 34 7 1.2004... 59 9 1.1717... 84 11 1.2001...

10 4 1.2649... 35 7 1.1832... 60 9 1.1618... 85 11 1.1931...

11 4 1.2060... 36 7 1.1666... 61 9 1.1523... 86 11 1.1861...

12 4 1.1547... 37 7 1.1507... 62 9 1.1430... 87 11 1.1793...

13 4 1.1094... 38 8 1.2977... 63 9 1.1338... 88 11 1.1726...

14 5 1.3363... 39 7 1.1208... 64 9 1.125 89 11 1.1659...

15 5 1.2909... 40 8 1.2649... 65 9 1.1163... 90 11 1.1595...

16 5 1.25 41 8 1.2493... 66 10 1.2309... 91 10 1.0482...

17 5 1.2126... 42 8 1.2344... 67 10 1.2216... 92 11 1.1468...

18 5 1.1785... 43 8 1.2199... 68 10 1.2126... 93 12 1.2443...

19 5 1.1470... 44 8 1.2060... 69 10 1.2038... 94 12 1.2377...

20 6 1.3416... 45 8 1.1925... 70 10 1.1952... 95 12 1.2311...

21 5 1.0910... 46 8 1.1795... 71 10 1.1867... 96 12 1.2247...

22 6 1.2792... 47 8 1.1669... 72 10 1.1785... 97 12 1.2184...

23 6 1.2510... 48 8 1.1547... 73 9 1.0533... 98 12 1.2121...

24 6 1.2247... 49 8 1.1428... 74 10 1.1624... 99 12 1.2060...

25 6 1.2 50 8 1.1313... 75 10 1.1547... 100 12 1.2

Using Theorem 6(1), we shall prove that for infinitely many numbers n the lower and upper bounds

given in Theorem 2 uniquely determine the difference size ∆[D2n] of D2n.

Theorem 7. If n = 1 + q + q2 for some prime power q, then

∆[D2n] = 2 ·∆[Cn] =
⌈
2
√
n
⌉
=

⌈√
2|D2n|

⌉
= 2 + 2q.
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Proof. By Theorem 6(1), ∆[Cn] = 1 + q. Since

2
√

q2 + q + 1 = 2
√
n ≤ ∆[D2n] ≤ ∆[D2] ·∆[Cn] = 2 ·∆[Cn] = 2 + 2q,

it suffices to check that (2 + 2q)− 2
√

q2 + q + 1 < 1, which is equivalent to
√

q2 + q + 1 > q + 1
2 and

to q2 + q + 1 > q2 + q + 1
4 . □

A bit weaker result holds also for the dihedral groups D8(q2+q+1).

Proposition 8. If n = 1 + q + q2 for some prime power q, then

4q + 3 ≤ ∆[D8n] ≤ 4q + 4.

Proof. By Theorem 6(1), ∆[Cn] = 1 + q. Since ∆[D8] = 4 (see Table 2), by Theorem 2,

4
√

q2 + q + 1 = 2
√
4n ≤ ∆[D8n] ≤ ∆[D8] ·∆[Cn] = 4(1 + q).

To see that 4q + 3 ≤ ∆[D8n] ≤ 4q + 4, it suffices to check that (4 + 4q)− 4
√

q2 + q + 1 < 2, which is

equivalent to
√

q2 + q + 1 > q + 1
2 and to q2 + q + 1 > q2 + q + 1

4 . □

In Table 2 we present the results of computer calculation of the difference sizes and characteristics of

dihedral groups of order ≤ 80. In this table lb[D2n] := ⌈
√
4n ⌉ is the lower bound given in Theorem 2.

With the boldface font we denote the numbers 2n ∈ {14, 26, 42, 62}, equal to 2(q2 + q+1) for a prime

power q. For these numbers we know that ∆[D2n] = lb[D2n] = 2q+2. For q = 2 and n = q2+q+1 = 7

the table shows that ∆[D56] = ∆[D8n] = 11 = 4q + 3, which means that the lower bound 4q + 3 in

Proposition 8 is attained.

Theorem 9. For any number n ∈ N the dihedral group D2n has the difference characteristic

√
2 ≤ ð[D2n] ≤

48√
586

≈ 1.983.

Moreover, if n ≥ 2 · 1015, then ð[D2n] <
4√
6
≈ 1.633.

Proof. By Corollary 3,
√
2 ≤ ð[D2n] ≤

√
2 · ð[Cn]. If n ≥ 9 and n ̸= 292, then ð[Cn] ≤ 24√

293
by

Theorem 5(4), and hence ð[D2n] ≤
√
2 · ð[Cn] ≤

√
2 · 24√

293
= 48√

586
. If n = 292, then known values

ð[C73] =
9√
73

(given in Table 1), ð[D8] =
4√
8
=

√
2 (given in Table 2) and Theorem 2 yield the upper

bound

ð[D2·292] = ð[D8·73] ≤ ð[D8] · ð[C73] =
√
2 · 9√

73
<

48√
586

.

Analyzing the data from Table 2, one can check that ð[D2n] ≤ 48√
586

≈ 1.983 for all n ≤ 8.

If n ≥ 2 · 1015, then ð[Cn] <
2√
3
by Theorem 5(5), and hence

ð[D2n] ≤
√
2 · ð[Cn] <

4√
6
.

□

Question 10. Is supn∈N ð[D2n] = ð[D22] =
8√
22

≈ 1.7056?

To answer Question 10 affirmatively, it suffices to check that ð[D2n] ≤ 8√
22

for all n < 1 212 464.
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Table 2. Difference sizes and characteristics of dihedral groups D2n for 2n ≤ 80.

2n lb[D2n] ∆[D2n] 2∆[Cn] ð[D2n] 2n lb[D2n] ∆[D2n] 2∆[Cn] ð[D2n]

2 2 2 2 1.4142... 42 10 10 10 1.5430...

4 3 3 4 1.5 44 10 10 12 1.5075...

6 4 4 4 1.6329... 46 10 11 12 1.6218...

8 4 4 6 1.4142... 48 10 10 12 1.4433...

10 5 5 6 1.5811... 50 10 11 12 1.5556...

12 5 5 6 1.4433... 52 11 11 12 1.5254...

14 6 6 6 1.6035... 54 11 12 12 1.6329...

16 6 6 8 1.5 56 11 11 12 1.4699...

18 6 7 8 1.6499... 58 11 12 14 1.5756...

20 7 7 8 1.5652... 60 11 12 14 1.5491...

22 7 8 8 1.7056... 62 12 12 12 1.5240...

24 7 7 8 1.4288... 64 12 12 14 1.5

26 8 8 8 1.5689... 66 12 13 14 1.6001...

28 8 8 10 1.5118... 68 12 13 14 1.5764...

30 8 8 10 1.4605... 70 12 12 14 1.4342...

32 8 9 10 1.5909... 72 12 13 14 1.5320...

34 9 9 10 1.5434... 74 13 14 14 1.6274...

36 9 9 10 1.5 76 13 14 16 1.6059...

38 9 10 10 1.6222... 78 13 14 14 1.5851...

40 9 9 12 1.4230... 80 13 14 16 1.5652...

Proposition 11. The inequality ð[D2n] ≤
√
2 · ð[Cn] ≤ 8√

22
holds for all n ≥ 1 212 464.

Proof. It suffices to prove that ð[Cn] ≤ 4√
11

for all n ≥ 1 212 464. To derive a contradiction, assume

that ð[Cn] >
4√
11

for some n ≥ 1 212 464. Let (qk)
∞
k=1 be an increasing enumeration of prime powers.

Let k ∈ N be the unique number such that 12q2k+14qk+15 < n ≤ 12q2k+1+14qk+1+15. By Corollary

4.9 of [2], ∆[Cn] ≤ 4(qk+1 + 1). The inequality ð[Cn] >
4√
11

implies

4(qk+1 + 1) ≥ ∆[Cn] >
4√
11

√
n ≥ 4√

11

√
12q2k + 14qk + 16.

By Theorem 1.9 of [6], if qk ≥ 3275, then qk+1 ≤ qk + qk
2 ln2(qk)

. On the other hand, using Wol-

framAlpha computational knowledge engine it can be shown that the inequality 1 + x + x
2 ln2(x)

≤
1√
11

√
12x2 + 14x+ 16 holds for all x ≥ 43. This implies that qk < 3275.
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Analyzing the table1 of (maximal gaps between) primes, it can be shows that 11(qk+1 + 1)2 ≤
12q2k + 14qk + 16 if qk ≥ 331. So, qk ≤ 317, qk+1 ≤ 331 and 11 · (qk+1+1)2 = 11 ·3322 = 1212 464 ≤ n,

which contradicts 4(qk+1 + 1) > 4√
11

√
n. □
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