Graham Higman's PORC theorem

Document Type: Research Paper


Oxford University Mathematical Institute


Graham Higman published two important papers in 1960‎. ‎In the first of these‎ ‎papers he proved that for any positive integer $n$ the number of groups of‎ ‎order $p^{n}$ is bounded by a polynomial in $p$‎, ‎and he formulated his famous‎ ‎PORC conjecture about the form of the function $f(p^{n})$ giving the number of‎ ‎groups of order $p^{n}$‎. ‎In the second of these two papers he proved that the‎ ‎function giving the number of $p$-class two groups of order $p^{n}$ is PORC‎. ‎He established this result as a corollary to a very general result about‎ ‎vector spaces acted on by the general linear group‎. ‎This theorem takes over a‎ ‎page to state‎, ‎and is so general that it is hard to see what is going on‎. ‎Higman's proof of this general theorem contains several new ideas and is quite‎ ‎hard to follow‎. ‎However in the last few years several authors have developed‎ ‎and implemented algorithms for computing Higman's PORC formulae in‎ ‎special cases of his general theorem‎. ‎These algorithms give perspective on‎ ‎what are the key points in Higman's proof‎, ‎and also simplify parts of the proof‎. ‎In this note I give a proof of Higman's general theorem written in the light‎ ‎of these recent developments‎.


Main Subjects