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Abstract. A subgroup H of a group G is called malonormal in G if H ∩Hx = ⟨1⟩ for every element

x /∈ NG(H). These subgroups are generalizations of malnormal subgroups. Every malnormal subgroup

is malonormal, and every selfnormalizing malonormal subgroup is malnormal. Furthermore, every

normal subgroup is malonormal. In this paper we obtain a description of finite and certain infinite

groups, whose subgroups are malonormal.

1. Introduction

Let G be a group. A subgroup H of a group G is called malnormal in G if H ∩Hx = ⟨1⟩ for every
element x /∈ H.

The term has been introduced by B. Baumslag [1].

Malnormal subgroups arise in finite groups as Frobenius complements in Frobenius groups. The

Frobenius complements of Frobenius groups are described quite well (see, for example, [8, Chapter 10

Theorem 3.1]). In this connection, we note the following result:

If G is a finite group and H,K are malnormal subgroups of G, then there exists an element g such

that Hg ≤ K or Kg ≤ H ([6, P. Flavell]).

The situation with malnormal subgroups in infinite groups much more complicated. The following

result justifies this statement:

MSC(2010):Primary 20D15, 20D25, 20E07, 20E34, 20F19, 20F50.

Keywords: Malnormal Subgroups, Malonormal Subgroups, Frobenius Group, Locally Graded groups, Generalized Radical Groups.

Received: 17 July 2018, Accepted: 09 December 2018.

∗Corresponding author.

http://dx.doi.org/10.22108/ijgt.2018.112124.1487

.

1

http://www.theoryofgroups.ir
http://www.ui.ac.ir
http://dx.doi.org/10.22108/ijgt.2018.112124.1487


2 Int. J. Group Theory x no. x (201x) xx-xx L. A. Kurdachenko, N. N. Semko and I. Ya. Subbotin

If K and L are non-trivial groups, then K is malnormal in the free product H ∗K [12, Proposition

2].

In [12] in various cases the role of malnormal subgroups in different classes of infinite groups was

shown. As can be seen from the definition, malnormal subgroups are antagonists to normal subgroups:

A normal subgroup H of a group G is malnormal in G if and only if H = ⟨1⟩ or H = G.

A similar situation we have with another antagonist to normal subgroups, namely with abnormal

subgroups. Recall that a subgroup H of a group G is called abnormal if x ∈ ⟨H,Hx⟩ for each element

x ∈ G. A normal subgroup H of a group G is abnormal in G if and only if H = G.

Nevertheless, there are subgroups that are simultaneously a generalization of both abnormal and

normal subgroups. Such are the pronormal subgroups. Recall that a subgroup H of a group G is

called pronormal , if the subgroups H and Hx are conjugate in ⟨H,Hx⟩ for each element x ∈ G.

These types of subgroups and other types of subgroups associated with them are subjects of a vast

array of articles. The results of these articles are reflected in the survey [14].

We want to introduce a similar generalization of malnormal subgroups, namely, we want to introduce

here the following class of subgroups containing both malnormal subgroups and normal subgroups.

A subgroup H of a group G is called malonormal in G, if H ∩ Hx = ⟨1⟩ for every element

x /∈ NG(H).

Thus every malnormal subgroup is malonormal, and every selfnormalizing malonormal subgroup is

malnormal. Furthermore, every normal subgroup is malonormal.

In this paper we considered the groups, whose all subgroups are malonormal. These class of groups

includes the groups, whose subgroups are normal. Recall that groups, whose subgroups are normal, are

called Dedekind groups. If G is a Dedekind group, then either G is abelian or G = Q×B×S where

Q is a quaternion group, B is an elementary abelian 2-subgroup, S is a periodic abelian p-subgroup

[2].

A special consideration here was given to finite groups, whose subgroups are malonormal. Our first

main result is the description of such groups.

Theorem 1.1. Let G be a finite group, whose subgroups are malonormal. Then G is a group of one

of the following types:

(i) G is a Dedekind group.

(ii) G = ⟨ν⟩λ⟨u⟩ where |ν| = pk, k ≥ 3, |u| = p and vu = vs where s = 1 + pk−1, p is a prime.

(iii) G = (⟨c⟩ × ⟨ν⟩)λ⟨u⟩ where |c| = |ν| = |u| = p > 2 and [ν, u] = c, [c, u] = 1, p is a prime.

(iv) G = (⟨z⟩ × ⟨a⟩)λ⟨u⟩ where |a| = |u| = p, |z| > pk, k > 1, [z, u] = 1, [a, u] = c where ⟨c⟩ =

Ω1(Z), p is a prime.

(v) G = QD, [Q,D] = ⟨1⟩ where Q is a quaternion group of order 8, D is a dihedral group of order

8 and Q ∩D = ζ(Q) = ζ(D).
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(vi) G = QλK where Q is an elementary abelian q-subgroup of order q2, q is a prime, K is a cyclic

q′-subgroup, 2 /∈ Π(K), Q does not include non-trivial cyclic ⟨y⟩-invariant subgroup for each

y ∈ K\{1}.
(vii) G = QλK where |Q| = q is prime, Q = CG(Q),K is a cyclic subgroup of order dividing q− 1.

Conversely, in any listed above group each subgroup is malonormal.

The natural next stage is the consideration of infinite groups with this property. The situation

with periodic groups is not very visible. A. Yu. Olshanskii [18] has constructed an example of infinite

finitely generated p-group O, p is a quite big prime, all of whose proper subgroups have order p. It is

clear that every proper subgroup of this group is malnormal. Therefore, some additional restrictions

were required.

A group G is said to be locally graded if every non-trivial finitely generated subgroup of G includes

a proper subgroup of finite index.

This definition belongs to S. N. Chernikov [4].

We were able to obtain the following results.

Theorem 1.2. Let G be an infinite periodic locally graded group, whose subgroups are malonormal.

Then G is a group of one of following types:

(i) G is a Dedekind group.

(ii) G = (K × ⟨c⟩)λ⟨b⟩ where K = ⟨an|ap1 = 1, apn+1 = an, n ∈ N⟩ is a quasicyclic p-subgroup,

cp = bp = 1, [K, b] = ⟨1⟩, [b, c] = a1, where p is a prime.

Conversely, in every of these groups each subgroup is malonormal.

For non-periodic locally graded groups the situation is simpler.

Theorem 1.3. Let G be a locally graded group, whose subgroups are malonormal. If G non-periodic,

then G is abelian.

Another restriction, which we used is connected to generalized solvability.

A group G is called generalized radical if G has an ascending series, whose factors are locally

nilpotent or locally finite.

It is not hard to see that a generalized radical group has an ascending series of normal, indeed

characteristic, subgroups with locally nilpotent or locally finite factors.

Theorem 1.4. Let G be a locally generalized radical group, whose subgroups are malonormal. If G

non-periodic, then G is abelian.

2. Finite groups, whose subgroups are malonormal

Note some properties of malonormal subgroups.

Lemma 2.1. Let G be a group.
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(i) If H is a malonormal subgroup of G and K is a subgroup, then H ∩K is malonormal in K.

In particular, if H is a malonormal subgroup of G and K is a subgroup including H, then H

is malonormal in K.

(ii) If H is a malonormal subgroup of G, then Hx is a malonormal subgroup of G for every element

x ∈ G.

(iii) Let H and K be subgroups of G such that K is a proper nontrivial subgroup of H. If

NG(K) ̸= NG(H), then H is not malonormal in G. In particular, if H is malonormal in

G and CoreG(H) ̸= ⟨1⟩, then H is normal in G.

Proof. (i) Suppose that x ∈ K\NK(H ∩ K). If we assume that x ∈ NG(H), then Hx = H. Since

x ∈ K,Kx = K. Then H ∩ K = Hx ∩ Kx = (H ∩ K)x, and we obtain a contradiction. Hence

x /∈ NG(H). It follows that H ∩Hx = ⟨1⟩. Then

⟨1⟩ = (H ∩Hx) ∩K = (H ∩K) ∩ (Hx ∩K) = (H ∩K) ∩ (Hx ∩Kx) = (H ∩K) ∩ (H ∩K)x.

It shows that H ∩K is malonormal in K.

(ii) is obvious.

(iii) Let x ∈ NG(K)\NG(H), then Hx ̸= H and K = Kx ≤ Hx, so that K ≤ H ∩ Hx and

H ∩Hx ̸= ⟨1⟩.

□

Corollary 2.2. Let G be a group and H be a non-trivial normal subgroup of G. If every subgroup of

G is malonormal in G, then G/H is a Dedekind group.

Proof. Indeed, choose an arbitrary element x /∈ H and put X = ⟨x,H⟩. The inclusion H ≤ CoreG(X)

shows that CoreG(X) ̸= ⟨1⟩. Lemma 2.1 implies that X must be normal in G. It follows that every

cyclic subgroup of G/H is normal. In this case, every subgroup of G/H is normal. □

Corollary 2.3. Let G be a group and P be a p-subgroup of G, p is a prime. Suppose that every

subgroup of order p of P is normal in G. If every subgroup of P is malonormal in G, then every

subgroup of P is normal in G. In particular, P is a Dedekind group.

Proof. Indeed, if H is an arbitrary subgroup of P . Then H contains an element x having prime order

p. Since the subgroup ⟨x⟩ is normal in G, ⟨x⟩ ≤ CoreG(H), in particular CoreG(H) ̸= ⟨1⟩. Then

Lemma 2.1 implies that H is normal in G. □

Lemma 2.4. Let G be a group and H be a normal finite subgroup of G, having order pn where p is a

prime. If L is a malonormal subgroup of G such that L ≤ H, |L| = pk and 2k > n, then L is normal

in G.

Proof. Suppose the contrary, let L is not normal on G. Then NG(L) ̸= L. Let x /∈ NG(L), then

Lx ̸= L. Since L is malonormal, Lx ∩ L = ⟨1⟩. On the other hand, Lx ≤ H, so that H includes the

subgroup ⟨Lx, L⟩. The last subgroup includes the product LxL. The equality Lx∩L = ⟨1⟩ shows that
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|LxL| = |Lx||L| = |L|2 = p2k. It follows that |⟨Lx, L⟩| ≥ p2k > pn, so we obtain a contradiction with

the inclusion ⟨Lx, L⟩ ≤ H. This contradiction proves that L is a normal subgroup of G. □

Corollary 2.5. Let G be a group and P be a proper finite normal p-subgroup of G, p is a prime.

Suppose that every subgroup of P is malonormal in G. If |P | > p2, then every maximal subgroup of

P is normal in G.

Corollary 2.6. Let G be a group and P be a finite abelian normal p-subgroup of G. Suppose that

P = ⟨a1⟩ × . . . × ⟨an⟩ where |aj | = pk for all j, 1 ≤ j ≤ n. If n > 2 and every subgroup of P is

malonormal in G, then every subgroup of P is normal in G.

Proof. We have |P | = pkn. Put Lj = ⟨a1⟩× Dr2≤m≤n,:m̸=j⟨am⟩. Then |Lj | = pk(n−1). Since n >

2, 2k(n − 1) > 2k and Lemma 2.4 implies that every subgroup Lj is normal in G, 2 ≤ j ≤ n. The

equality ⟨a1⟩ = ∩2≤j≤nLj shows that the subgroup ⟨a1⟩ is normal in G. □

Let d be an arbitrary element of P , then d = at1
1
. . . atnn where 0 ≤ tj ≤ k − 1, 1 ≤ j ≤ n. Let m be

a number such that |amtm | ≥ |ajtj | for all j, 1 ≤ j ≤ n. Let |amtm | = pr. If r = k, then |d| = pk. In

this case, there exists a subgroup K of P such that P = ⟨d⟩×K. Repeating the above arguments, we

obtain that the subgroup ⟨d⟩ is normal in G.

Suppose now that r < k. Then the equation xs = d where s = pk−r has a solution in P . Let b

be a solution of this equation. Then b has order pk. Using the above arguments we obtain that the

subgroup ⟨b⟩ is normal in G. Since every subgroup of a cyclic group is characteristic, the subgroup ⟨d⟩
is also normal in G. Thus every cyclic subgroup of P is normal in G. It follows that every subgroup

of P is normal in G.

Let p be a prime and A be an abelian p-group. We say that a group A is homogeneous if A =

Drλ∈Λ⟨aλ⟩ where |aλ| = pk for all λ ∈ Λ.

Corollary 2.7. Let G be a group and P be a finite abelian normal p-subgroup of G. Suppose that

P = ⟨a1⟩ × ⟨a2⟩ where |a1| = |a2| = pk and k ≥ 2. If every subgroup of P is malonormal in G, then

every subgroup of P is normal in G.

Proof. We have |P | = p2k ≥ p4. Let a be an arbitrary element of P , and let ⟨b⟩ = ⟨a⟩ ∩ Ω1(P ). Then

there exists an element d of P such that ⟨b⟩ = ⟨d⟩ ∩ Ω1(P ) and P = ⟨d⟩ × ⟨v⟩ for some subgroup

⟨v⟩ (see, for example, [7, Corollary 27.2], ). Since a direct decomposition of finite abelian p-group is

unique up to isomorphism, |d| = |v| = pk. By Corollary 2.5 a subgroup ⟨d⟩× ⟨vp⟩ is normal in G. Put

v1 = vp. Suppose first that |v1| = p. Suppose that the subgroup ⟨d⟩ is not normal in G. Then we can

find an element x /∈ NG(⟨d⟩). Then dx /∈ ⟨d⟩. Since |dx| = |d| = pk, dx = dtvs
1
where GCD(p, t) = 1 =

GCD(p, s). In this case, (dx)p = dtp ∈ ⟨dp⟩ and ⟨d⟩x ∩ ⟨d⟩ = ⟨dx⟩ ∩ ⟨d⟩ = ⟨dp⟩ ̸= ⟨1⟩, and we obtain a

contradiction. This contradiction shows that ⟨d⟩ is normal in G. □

Suppose now that |v1| > p. Then |⟨d⟩ × ⟨v1⟩| > p2. Using again Corollary 2.5, we obtain that the

subgroup ⟨d⟩× ⟨vp1⟩ is normal in G. Put v2 = v1p . If |v2| = p, then repeating the above arguments, we
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obtain that the subgroup ⟨d⟩ is normal in G. If |v2| > p, then we consider the subgroup ⟨d⟩×⟨v2⟩, and
so on. After finitely many step we find an element vm such that |vm| = p and the subgroup ⟨d⟩× ⟨vm⟩
is normal in G. Repeating again the above arguments, we obtain that the subgroup ⟨d⟩ is normal in

G.

Since Ω1(⟨d⟩) is a characteristic subgroup of ⟨d⟩, it is normal in G. The choice of d yields that

Ω1(⟨d⟩) = Ω1(⟨a⟩), so that Ω1(⟨a⟩) is normal in G. It follows that CoreG(⟨a⟩) ≥ Ω1(P ), in particular,

CoreG(⟨a⟩) ̸= ⟨1⟩ and Lemma 2.1 implies that ⟨a⟩ is normal in G. The fact, that every cyclic subgroup

of P is normal in G, implies that every subgroup of P is normal in G.

Corollary 2.8. Let G be a group and P be a finite abelian normal p-subgroup of G. Suppose that

P = ⟨a1⟩ × ⟨a2⟩ where |a1|, |a2| ≥ p2. If every subgroup of P is malonormal in G, then every subgroup

of P is normal in G.

Proof. We will apply induction on |P |. If |P | = p4, then the result follows from Corollary 2.7. Suppose

now that |P | > p4, and we have already proved this assertion for all normal abelian p-subgroup B

such that |B| < |P |. If |a1| = |a2|, then we can use again Corollary 2.7. Therefore suppose now that

|a1| > |a2| and consider the subgroup A = ⟨ap1⟩ × ⟨a2⟩. By Corollary 2.5, the subgroup A is normal in

G. Since |a2| ≥ p2, |A| ≥ p4. By the induction hypothesis, every subgroup of A is normal in G. The

choice of A shows that Ω1(P ) ≤ A, so we obtain that every subgroup of Ω1(P ) is normal in G. If H is

a subgroup of P , then CoreG(H) ≥ Ω1(H), and in particular, CoreG(H) ̸= ⟨1⟩. Lemma 2.1 implies

that H is normal in G. □

Let p be a prime. We say that a group G has f inite section p-rank srp(G) = r if every elementary

abelian p-section of G is finite of order at most pr and there is an elementary abelian p-section A/B

of G such that A/B = pr.

Let A be an abelian p-group. Then A has finite section p-rank r if and only if |Ω1(A)| = pr (see,

for example, [5, Lemma 3.1.3]).

Here for every positive integer n we put

Ωn(A) = {a ∈ A| |a| divides pn}.

Corollary 2.9. Let G be a group and P be a finite abelian normal p-subgroup of G. Suppose that

srp(P ) ≥ 3. If every subgroup of P is malonormal in G, then every subgroup of P is normal in G.

Proof. We will apply induction on |P |. If |P | = p3, then the condition srp(P ) ≥ 3 implies that

P = ⟨a1⟩ × ⟨a2⟩ × ⟨a3⟩ where |aj | = p, j ∈ {1, 2, 3}. In this case, using Corollary 2.6 we obtain that

every subgroup of P is normal in G. □

Suppose now that |P | > p3, and we have already proved this assertion for every normal abelian

p-subgroup B such that |B| < |P |. Let e be a positive integer such that |a| ≤ pe for all elements a ∈ P

and there exists an element d ∈ P such that |d| = pe. If we suppose that e = 1, then P is elementary
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abelian and srp(P ) ≥ 4. Using again Corollary 2.6 we obtain that every subgroup of P is normal in

G. Therefore we can suppose now that e > 1.

Put D = ⟨d⟩. It is not hard to prove that P = D × B for some subgroup B. In this case,

Ω1(P ) ≤ Dp × B. The last subgroup has index p in P , and using Corollary 2.5 we obtain that

the subgroup Dp × B is normal in G. By its choice, srp(D
p × B) = srp(P ), |Dp × B| ≥ p3 and

|Dp ×B| < |P |. By the induction hypothesis every subgroup of Dp ×B is normal in G. In particular,

every subgroup of Ω1(P ) is normal in G. If H is a subgroup of P , then CoreG(H) ≥ Ω1(H); in

particular, CoreG(H) ̸= ⟨1⟩. Lemma 2.1 implies that H is normal in G.

Lemma 2.10. Let G be a group and P be a normal finite p-subgroup of G, p is a prime. Suppose that

P includes a normal abelian subgroup A such that srp(A) ≥ 3. If every subgroup of P is malonormal

in G, then every subgroup of P is normal in G; in particular, P is a Dedekind group.

Proof. Using Corollary 2.9 we obtain that every subgroup of A is normal in P . In particular, every

subgroup of Ω1(A) is normal in P . We note that srp(Ω1(A)) ≥ 3. Let 1 ̸= d be an element of Ω1(A).

By Corollary 2.2 the factor-group P/⟨d⟩ is Dedekind. Let B be a maximal normal in P elementary

abelian p-subgroup of P , including Ω1(A). Then srp(B) ≥ 3. Using again Corollary 2.9 we obtain

that every subgroup of B is normal in P . In particular, every cyclic subgroup of B is normal in P .

Recall that the center of a finite p-group includes every normal cyclic subgroup of prime order p. It

follows that B ≤ ζ(P ). If we assume that P contains an element c of order p such that c /∈ B, then

⟨B, c⟩ is an elementary abelian p-subgroup. The inclusion ⟨d⟩ ≤ ⟨B, c⟩ implies that ⟨B, c⟩ is normal

in P . Thus we obtain a contradiction with a choice of B. This contradiction shows that B contains

every element of P , having order p. In particular, B is a characteristic subgroup of P , so that B is

normal in G. An application of Corollary 2.9 shows that every subgroup of B is normal in G. Since

B ∩H ̸= ⟨1⟩ for every non-trivial subgroup H of P , Lemma 2.1 implies that every subgroup of P is

normal in G. In particular, P is a Dedekind group. □

Lemma 2.11. Let G be a group and P be a normal finite p-subgroup of G, where p is a prime.

Suppose that P includes a normal abelian subgroup A such that A = ⟨a1⟩ × ⟨a2⟩ where |a1|, |a2| ≥ p2.

If every subgroup of P is malonormal in G, then every subgroup of P is normal in G, in particular,

P is a Dedekind group.

Proof. Using Corollary 2.8 we obtain that every subgroup of A is normal in P . In particular, every

subgroup of Ω1(A) is normal in P . Let 1 ̸= d be an element of Ω1(A). By Corollary 2.2, the factor-

group P/⟨d⟩ is Dedekind. Let B be a maximal normal in P elementary abelian p-subgroup of P

including Ω1(A). If srp(B) ≥ 3, then using Corollary 2.9 we obtain that every subgroup of B is

normal in P . In particular, every cyclic subgroup of B is normal in P . Recall that the center of a

finite p-group includes every normal cyclic subgroup of prime order p. It follows that B ≤ ζ(P ). If

we assume that P contains an element c of order p such that c /∈ B, then ⟨B, c⟩ is an elementary

abelian p-subgroup. The inclusion ⟨d⟩ ≤ ⟨B, c⟩ implies that ⟨B, c⟩ is normal in P . Thus we obtain a
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contradiction with a choice of B. This contradiction shows that B contains every element of P , having

order p. In particular, B is a characteristic subgroup of P , so that B is normal in G. An application

of Corollary 2.9 shows that every subgroup of B is normal in G.

Suppose that srp(B) = 2. In this case, B = Ω1(A), and again B ≤ ζ(P ). If we assume that P

contains an element c of order p such that c /∈ B, then ⟨B, c⟩ is an elementary abelian p-subgroup.

The inclusion ⟨d⟩ ≤ ⟨B, c⟩ implies that ⟨B, c⟩ is normal in P . Thus we obtain a contradiction with a

choice of B. This contradiction shows that B contains every element of P having order p.

Since B ∩H ̸= ⟨1⟩ for every non-trivial subgroup H of P , Lemma 2.1 implies that every subgroup

of P is normal in G. In particular, P is a Dedekind group. □

Lemma 2.12. Let P be a finite p-group, where p is a prime. If every subgroup of P is malonormal

in G, then P is a group of one of following types:

(a) P is a Dedekind group.

(b) P = ⟨ν⟩λ⟨u⟩ where |ν| = pk, k ≥ 3, |u| = p and νu = νs where s = 1 + pk−1.

(c) P = (⟨c⟩ × ⟨ν⟩)λ⟨u⟩ where |c| = |ν| = |u| = p > 2 and [ν, u] = c,[c, u] = 1 .

(d) P = (⟨z⟩ × ⟨a⟩)λ⟨u⟩ where |a| = |u| = p, |z| > p, [z, u] = 1, [a, u] = c where ⟨c⟩ = Ω1(Z).

(e) P = QD, [Q,D] = ⟨1⟩ where Q is a quaternion group of order 8, D is a dihedral group of order

8 and Q ∩D = ζ(Q) = ζ(D).

Conversely, in every of these above listed groups each subgroup is malonormal.

Proof. Let A be an arbitrary maximal normal abelian subgroup of P . If srp(A) ≥ 3, then Lemma 2.10

implies that every subgroup of P is normal. Therefore suppose that srp(A) ≤ 2 for every maximal

normal abelian subgroup A of P . It follows that A = ⟨a1⟩× < ⟨a2⟩ If |a1|, |a2| ≥ p2, then using Lemma

2.11 we obtain again that every subgroup of P is normal in G.

Suppose now that |a1| = pn ≥ p2, |a2| = p.

Let a be an element of A and |a| ≥ p2. Then a = at1a
s
2 where t = pkt1, k ≤ n − 2, 0 ≤ s < p.

Then ap = (at1a
s
2)

p = atp1 . It follows that ⟨a⟩ ≥ Ω1(⟨a1⟩). Assume that the subgroup ⟨a⟩ is not normal

in G and choose an element x ∈ G such that ⟨a⟩x = ⟨ax⟩ ̸= ⟨a⟩. Then |ax| = |a| and therefore

⟨a⟩x ≥ Ω1(⟨a1⟩). But in this case ⟨1⟩ ̸= ⟨a⟩x ∩ ⟨a⟩. This contradiction shows that the subgroup ⟨a⟩
must be normal in P . In particular, the subgroup ⟨a⟩ is normal in P . It follows that ⟨c1⟩ = Ω1(⟨a1⟩)
also is normal in P . Corollary 2.2 shows that the factor-group P/⟨c1⟩ is Dedekind.

Suppose that |a1| = |a2| = p. Since A is a normal subgroup of a p-group P , then A ∩ ζ(P ) ̸= ⟨1⟩.
In this case, A includes a P -invariant subgroup ⟨c1⟩, having order p. Using again Corollary 2.2 we

obtain that the factor-group P/⟨c1⟩ is Dedekind.

Finally, if A is cyclic, then Ω1(A) = ⟨c1⟩ is a P -invariant subgroup of order p, and again the

factor-group P/⟨c1⟩ is Dedekind.

If every proper subgroup of P is cyclic, then P is a quaternion group of order 8 (see, for example,

[3, §1, Exercise 2]). In particular, P is a Dedekind group.
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Suppose now that P includes a non-cyclic subgroups and let H be an arbitrary non-cyclic subgroup

of P . If c1 ∈ H, then the fact that P/⟨c1⟩ is a Dedekind group implies that H is normal in P . Suppose

that c1 /∈ H. Then ⟨H, c1⟩ = H × ⟨c1⟩, in particular, H is maximal in H⟨c1⟩. Since H is not cyclic,

|H| ≥ p2. It follows that |H⟨c1⟩| ≥ p3. Using Corollary 2.5, we obtain that the subgroup H is normal

in P . Thus every non-cyclic subgroup of P is normal in P . Finite p-groups with this property have

been described by F.N. Liman [16], [17]. One can find the description of these groups in the book [3,

Theorem 16.2]). We use this description.

Suppose that P is a group of type (i) of Theorem 16.2 of the book [3]. Then either P = ⟨v⟩λ⟨u⟩
where |v| = pk, |u| = pt, k ≥ 2, t ≥ 1, and vu = vs where s = 1 + pk−1; or P = (⟨c⟩ × ⟨v⟩)λ⟨u⟩ where
|v| = pk, |u| = pt, |c| = p, [v, u] = c, [u, c] = 1, and if p = 2, then k + t > 2 (see, for example, [3, §1,
Exercise 8a]). In the first group the subgroup ⟨u⟩ is not normal. Then Lemma 2.1 shows that ⟨u⟩ does
not include proper P -invariant subgroups. It follows that up = 1. In particular, if p = 2, k = 2, then

P is a dihedral group of order 8. Thus we obtain a group of type (b).

Consider the second case. If t ≥ 2, then [v, up] = 1, so that P has an abelian subgroup, having

section p-rank 3. Thus |u| = p. If we suppose that k ≥ 2, then [vp, u] = 1, and again P has an abelian

subgroup, having section p-rank 3. Thus |u| = |v| = p. In particular, it follows that p > 2, and we

obtain a group of type (c).

Let P be a group of type (ii) of Theorem 16.2 of the book [3]. Then P = RZ, where R is a

non-abelian subgroup of order p3, Z = ⟨z⟩ is cyclic, [R,Z] = ⟨1⟩, and R ∩ Z = ζ(R). Moreover, if

p = 2, then |Z| > 2. Thus if p > 2 and |Z| = p, then P = R is a non-abelian group of order p3. In

this case, every proper subgroup of P is abelian. It was considered above. Therefore we assume that

|Z| > p. Since R is a non-abelian group of order p3, then either R = ⟨v⟩λ⟨u⟩ where |v| = p2, |u| = p

and vu = v1+p, or R = (⟨c⟩ × ⟨v⟩)λ⟨u⟩ where |v| = |u| = |c| = p, [v, u] = c, [u, c] = 1 and p > 2.

In the first case, we consider the subgroup ⟨v, z⟩. It is abelian and the equality ⟨v⟩ ∩ Z = ⟨vp⟩
implies that ⟨v, z⟩/⟨vp⟩ is a direct product of two cyclic subgroups. In particular, ⟨v, z⟩ is not cyclic.
We have |z| ≥ p2 = |v|. It follows that ⟨z⟩ is a cyclic subgroup of ⟨v, z⟩ of maximal possible order.

In this case, ⟨v, z⟩ = ⟨z⟩ × ⟨a⟩ for some element a ∈ ⟨v, z⟩. We note that |a| = p. The equalities

R ∩ Z = ⟨vp⟩ and ⟨v⟩ ∩ ⟨u⟩ = ⟨1⟩ imply that ⟨v, z⟩ ∩ ⟨u⟩ = ⟨1⟩, so we obtain that P = ⟨v, z⟩λ⟨u⟩ =
(⟨a⟩ × ⟨z⟩)λ⟨u⟩. Furthermore, a = vkzt where GCD(k, p) = 1, because [v, u] ̸= 1, but [vp, u] = 1. It

follows that [a, u] = [vk, u] = c ̸= 1 and ⟨c⟩ = ⟨vp⟩ = Ω1(Z). Thus we obtain a group of type (d).

Consider the second case. In this case, Z ∩ R = ⟨c⟩, so that ⟨z, v⟩ = ⟨z⟩ × ⟨v⟩, and again P =

(⟨z⟩ × ⟨v⟩)λ⟨u⟩, [v, u] = c where ⟨c⟩ = Ω1(Z). Thus we come again to a group of type (d).

Let P be a group of type (iii) of Theorem 16.2 of the book [3]. Then P = Q × Z, where Q is a

quaternion group of order 8 and Z is a cyclic 2-subgroup of order 2k where k ≥ 2. In this case, P

includes the subgroup ⟨v⟩ × ⟨z⟩ where |v| = 22, |z| = 2k and k ≥ 2. As we have seen above, in this

situation every subgroup of P is normal in G.

Let P be a group of type (iv) of Theorem 16.2 of the book [3]. Then P is a group of order 34 and of

maximal class (i.e. a nilpotency class of P is 3) with Ω1(P ) = [P, P ] and the latter is an elementary
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abelian subgroup of order 32. However, we have already proved above that P includes a normal cyclic

subgroup ⟨c1⟩ of prime order such that the factor-group P/⟨c1⟩ is Dedekind. Since G is a 3-group, we

obtain that P/⟨c1⟩ is abelian. On the other hand, the center of P includes ⟨c1⟩, so that nilpotency

class of P is 2. It shows that a group of this type includes a subgroup which is not malonormal.

Let P be a group of type (v) of Theorem 16.2 of the book [3]. Then P = ⟨u, v|u8 = v8 = 1, vu =

v−1, v4 = u4⟩ where |P | = 25, [P, P ] and ζ(P ) are cyclic subgroups of order 4, [P, P ] ∩ ζ(P ) has order

2, Ω2(P ) = ⟨x|x4 = 1⟩ is a direct product of cyclic subgroups of order 4 and a subgroup of order

2. In this case, we have [v, u] = v−1u−1vu = v−1v−1 = v−2. It follows that v−1u−1v = v−2u−1,

hence v−1uv = uv2. Then the subgroup ⟨u⟩v contains an element uv2 (in particular, it shows that

⟨u⟩v ̸= ⟨u⟩), and therefore ⟨u⟩v contains an element uv2uv2 = uu v−2v2 = u2. It follows that ⟨u⟩v∩⟨u⟩
contains an element u2 ̸= 1, which shows that the subgroup ⟨u⟩ cannot be malonormal.

Let P be a group of type (vi) of Theorem 16.2 of a book [3]. Then P is a generalized quaternion

group of order 24, that is P = ⟨u, v|v8 = u4 = 1, v4 = u2 = c ̸= 1, c2 = 1, vu = v−1⟩. The subgroup ⟨u⟩
is not normal, but ⟨u⟩ includes a normal subgroup ⟨c⟩. Thus a subgroup ⟨u⟩ cannot be malonormal.

Let P be a group of type (vii) of Theorem 16.2 of the book [3]. Then P = QD, [Q,D] = ⟨1⟩ where
Q is a quaternion group of order 8, D is a dihedral group of order 8, and Q ∩ D = ζ(Q) = ζ(D).

We have Q = ⟨u, v|u4 = v4 = 1, vu = v−1, v2 = u2 = c ̸= 1⟩ and D = ⟨d, b|d4 = b2 = 1, db = d−1⟩.
In this situation ⟨c⟩ = ζ(P ) = [P, P ] and P/⟨c⟩ is an elementary abelian group of order 24. If x is

an element of order 4, then 1 ̸= x2 ∈ ⟨c⟩. Since ⟨c⟩ = {1, c}, x2 = c. It follows that c ∈ ⟨x⟩, so
that ⟨x⟩ is a normal subgroup of P . Suppose now that |x| = 2 and x ̸= c. The subgroup ⟨x⟩ is not

normal in P , otherwise ⟨x⟩ ≤ ζ(P ) and ζ(P ) > ⟨c⟩, so we obtain a contradiction. Let y /∈ NP (⟨x⟩).
The fact that P/⟨c⟩ is abelian implies that x ̸= xy ∈ x⟨c⟩. This means that xy = xc. In this case,

⟨xy⟩ ∩ ⟨x⟩ = ⟨xc⟩ ∩ ⟨x⟩ = ⟨1⟩. Thus every cyclic subgroup of P is malonormal in P . On the other

hand, by Theorem 16.2 of the book [3] every non-cyclic subgroup of P is normal. Consequently every

subgroup of P is malonormal, so we come to a group of type (e).

Let P be a group of type (viii) of Theorem 16.2 of the book [3]. Then P = (⟨u⟩ × ⟨v⟩)⟨c⟩, where
u4 = v4 = 1, v2 = c2, vc = vu2, uc = uv2. In this case, P includes a direct product of two subgroups of

order 22. As we have proved above, in this case, every subgroup of P is normal in G.

Let P be a group of type (ix) of Theorem 16.2 of the book [3]. Then this group includes a maximal

subgroup isomorphic to a group of type (viii) of Theorem 16.2 of the book [3]. As we have seen, in

this case, every subgroup of P is normal in G. □

Lemma 2.13. Let G be a finite group and let P be a Sylow p-subgroup of G, where p is a prime.

Suppose that P is not normal in G. If every subgroup of G is malonormal, then G = QλK where K

is a Frobenius complement. Moreover, K is a Dedekind group and K = NG(P ).

Proof. Since P is not normal in G,K = NG(P ) ̸= G. Since P is a Sylow p-subgroup of G,NG(K) = K.

In this case, K is a malnormal subgroup of G. Then G is a Frobenius group with K as a Frobenius
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complement, that is G = QλK (see, for example, [8, Chapter 2 Theorem 7.6]). The fact that K ̸= G

implies that Q is non-trivial. Then Corollary 2.2 implies that G/R ∼= K is a Dedekind group. □

Corollary 2.14. Let G be a finite group, whose subgroups are malonormal. If G is non-nilpotent,

then G = QλK, and the following conditions hold:

(i) Q is an abelian Sylow q-subgroup of G where q is a prime.

(ii) K is a Dedekind group, moreover, either K is cyclic or K = D × S where D is a quaternion

group of order 8 and S is a cyclic Sylow 2́

(iii) CQ(x) = ⟨1⟩ for each 1 ̸= x ∈ K.

Proof. Since G is not nilpotent, there exists a prime p such that the Sylow p-subgroup P of G is

not normal in G. By Lemma 2.13, G = QλK is a Frobenius group with the Frobenius complement

K = NG(P ). We note that a Sylow r-subgroup of the Frobenius complement is cyclic whenever r ̸= 2,

and it is cyclic or generalized quaternion whenever r = 2 (see, for example, [8, Chapter 10 Theorem

3.1]). The fact that K ̸= G implies that Q is non-trivial. Then Corollary 2.2 implies that G/Q ∼= K

is a Dedekind group. In particular, if a Sylow 2-subgroup of K is not cyclic, then being generalized

quaternion and Dedekind, it is a quaternion group of order 8. Thus we obtain that either K is cyclic

or K = D × S where D is a quaternion group of order 8 and S is a cyclic 2-subgroup.

Note that a Frobenius kernel Q is nilpotent (see, for example, [8, Chapter 10 Theorem 3.1]). Suppose

that Π(Q) contains two different primes q1 and q2. Let Sj be a Sylow qj-subgroup of Q, j ∈ {1, 2}.
Clearly Sj is normal in G. Since Sj is non-trivial, Corollary 2.2 shows that G/Sj is a Dedekind group.

In particular, it is nilpotent. The equality S1 ∩ S2 = ⟨1⟩ together with Remak’s theorem imply an

imbedding G in G/S1 ×G/S2, which shows that G is nilpotent, and we obtain a contradiction. This

contradiction proves that Q is a q-subgroup for some prime q.

For each 1 ̸= x ∈ K we have CQ(x) = ⟨1⟩ (see, for example, [8, Chapter 10 Theorem 3.1]). In

particular, it follows that q /∈ Π(K), so that Q is a Sylow q-subgroup of G. Suppose that Q is

non-abelian. Then ζ(Q) is a non-trivial proper G-invariant subgroup of Q. By Corollary 2.2, the

factor-group G/ζ(Q) is Dedekind. It follows that [Q,K] ≤ ζ(Q), in particular, [Q,K] ̸= Q. On the

other hand, q /∈ Π(K), so that Q = [Q,K]CQ(K) (see, for example, [8, Chapter 5 Theorem 3.5]).

From last equality it follows that CQ(K) ̸= ⟨1⟩, and we obtain a contradiction. This contradiction

proves that Q is abelian. □

Lemma 2.15. Let G be a finite group, whose all subgroups are malonormal. Suppose that G is not

nilpotent. Then G is a group of one of following types:

(i) G = QλK where Q is an elementary abelian q-subgroup of order q2, q is a prime, K is a cyclic

q′-subgroup, 2 /∈ Π(K), Q does not include a non-trivial cyclic ⟨y⟩-invariant subgroup for each

y ∈ K\{1}.
(ii) G = QλK where |Q| = q is prime, Q = CG(Q),K is a cyclic subgroup of order dividing q− 1.
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Proof. Corollary 2.14 shows that G = QλK is a Frobenius group with a Frobenius complement K

and a Frobenius kernel Q. By this Corollary, Q is an abelian Sylow q-subgroup of G. Suppose that

srq(Q) ≥ 3. Then Lemma 2.10 implies that every subgroup of Q is normal in G. In this case, we

have Q = Dr1≤j≤n⟨aj⟩ where n ≥ 3. By above noted, every subgroup ⟨aj⟩ is normal in G, and

Corollary 2.2 implies that G/⟨aj⟩ is a Dedekind group, 1 ≤ j ≤ n. In particular, it is nilpotent.

From ⟨1⟩ = ⟨a1⟩ ∩ ⟨a2⟩ and Remak’s theorem we obtain that G is isomorphic to some subgroup of

G/⟨a1⟩×G/⟨a2⟩, so that G is nilpotent, and we obtain a contradiction. This contradiction shows that

srq(Q) ≤ 2.

Suppose now that Q = ⟨a1⟩ × ⟨a2⟩, where |a1|, |a2| ≥ q2. In this case, using Lemma 2.11 we obtain

that every subgroup of Q is normal in G, and repeating the above arguments again we obtain a

contradiction.

Suppose now that Q = ⟨a1⟩ × ⟨a2⟩ where |a1| > q, |a2| = q. Suppose that the subgroup ⟨a1⟩
is not normal in G and choose an element x /∈ NG(⟨a1⟩). Since Q is normal in G, ax1 ∈ Q. We

have |ax1 | = |a1| > q, and therefore ax1 = ak1a
s
2 where GCD(k, q) = 1, 0 ≤ s ≤ q. It follows that

1 ̸= (ax1)
q| = (ak1a

s
2)

q = akq1 . This means that ⟨aq1⟩ ≤ ⟨ax1⟩ = ⟨a1⟩x and hence ⟨a1⟩ ∩ ⟨a1⟩x ̸= ⟨1⟩. This

contradiction shows that ⟨a1⟩ is normal in G. Taking into account that q /∈ Π(K), we obtain that

Q = ⟨a1⟩ × ⟨b1⟩ where the subgroup ⟨b1⟩ is G-invariant (see, for example, [15, Corollary 5.13]). Using

the above arguments, we again obtain a contradiction. This contradiction shows that Q = ⟨a1⟩ × ⟨a2⟩
where |a1| = |a2| = q.

Assume that K has an element y ̸= 1 such that Q includes a non-trivial ⟨y⟩-invariant cyclic sub-

groups ⟨c1⟩. Suppose that ⟨c1, y⟩ is non-normal in G and choose an element z /∈ NG(⟨c1, y⟩). The

fact that G/Q is a Dedekind group implies that a subgroup ⟨y⟩Q is normal in G. It follows that

⟨c1, y⟩z ≤ Q⟨y⟩. We have q = |Q⟨y⟩ : ⟨c1, y⟩|. Thus

q = |⟨Q, y⟩z : ⟨c1, y⟩z| = |⟨Q, y⟩ : ⟨c1, y⟩x|,

which shows that ⟨c1, y⟩ ∩ ⟨c1, y⟩z ̸= ⟨1⟩, and we obtain a contradiction. This contradiction proves

that a subgroup ⟨c1, y⟩ must be normal in G.

Since Q is elementary abelian, ⟨c1⟩ has a complement in Q. The fact that GCD(q, |y|) = 1 implies

that Q includes an ⟨y⟩-invariant subgroup ⟨c2⟩ such that Q = ⟨c1⟩ × ⟨c2⟩ (see, for example, [15,

Corollary 5.13]). Using the above arguments, we obtain that the subgroup ⟨c2, y⟩ is normal in G.

It follows that ⟨y⟩ = ⟨c1, y⟩ ∩ ⟨c2, y⟩ is normal in G. By Corollary 2.2, the factor-group G/⟨y⟩ is

Dedekind. In particular, it is nilpotent. From ⟨1⟩ = Q∩ ⟨y⟩ and Remak’s theorem it follows that G is

isomorphic to some subgroup of G/Q×G/⟨y⟩, so that G is nilpotent, and we obtain a contradiction.

This contradiction shows that Q does not include non-trivial ⟨y⟩-invariant cyclic subgroups for each

element 1 ̸= y ∈ K.

Suppose now that 2 ∈ Π(K) and let d be an element of K of order 2. For an element 1 ̸= a ∈ Q we

have only the following options: ad ∈ ⟨a⟩ or ⟨ad⟩ ∩ ⟨a⟩ = ⟨1⟩. By above proved first case is impossible.

In the second case a ad ̸= 1 and d−1(a d−1ad)d = (d−1ad)(d−2ad2) = a d−1ad, and we again obtain a
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contradiction. This contradiction shows that 2 /∈ Π(K). Corollary 2.14 implies that K is cyclic. Thus

we come to a group of the type (i).

Finally, suppose that Q is cyclic, Q = ⟨a⟩. Also suppose that |a| > p. Then ap ̸= 1. By Corollary

2.2, the factor-group G/⟨ap⟩ is Dedekind. In particular, it is nilpotent. It follows that [Q,K] ≤ ⟨ap⟩.
In particular, [Q,K] ̸= Q. On the other hand, q /∈ Π(K), so that Q = [Q,K] × CQ(K) (see, for

example, [8, Chapter 5 Theorem 2.3]). From the last equality it follows that CQ(K) ̸= ⟨1⟩, and we

obtain a contradiction. This contradiction proves that Q has order q. Thus we come to a group of the

type (ii). □

Corollary 2.16. Let G be a finite group, whose subgroups are malonormal. If G includes an elemen-

tary abelian p-subgroup of order p3 for some prime p, then G is nilpotent.

Lemma 2.17. Let G be a periodic locally nilpotent group, whose subgroups are malonormal. If Π(G)

contains two different primes, then G is a Dedekind group.

Proof. Let p be the least prime from the set Π(G). Then G = P ×Q where P is a Sylow p-subgroup

of G and Q is a Sylow p′-subgroup of G. By Corollary 2.2, G/P ∼= Q is a Dedekind group. The choice

of p shows that 2 /∈ Π(G/P ), hence Q is abelian. Corollary 2.2 shows that P = G/Q is a Dedekind

p-group. It follows that G is a Dedekind group. □

Corollary 2.18. Let G be a group, whose subgroups are malonormal. Suppose that G includes a

normal periodic locally nilpotent subgroup K. If Π(K) contains two different primes, then G is a

Dedekind group.

Proof. Let p be the least prime from a set Π(G). Then G = P ×Q where P is a Sylow p-subgroup of

G and Q is a Sylow p′-subgroup of G. Clearly P and Q are G-invariant. By Corollary 2.2, G/P and

G/Q are Dedekind groups. If G is not periodic, then the both these factor-groups are abelian. The

equality P ∩Q = ⟨1⟩ together with Remak’s theorem imply that G is abelian. If G is periodic, then

G/P and G/Q are nilpotent of nilpotency class at most 2. The equality P ∩ Q = ⟨1⟩ together with

Remak’s theorem imply that G is nilpotent, and we can apply Lemma 3.12. □

Proof of Theorem 1.1. If G is a p-group for some prime p, then Lemma 2.12 shows that G is a

group of one of the types (i)-(v). Suppose that G is nilpotent and |Π(G)| ≥ 2. Then Lemma 3.12

implies that G is a Dedekind group.

If G is not nilpotent, then Lemma 3.10 shows that G is a group of the types (vi) or (vii).

3. Infinite groups, whose subgroups are malonormal

Lemma 3.1. Let P be an infinite locally finite p-group, whose subgroups are malonormal, p is a prime.

Then either P is a Dedekind group or P = (K × ⟨c⟩)λ⟨b⟩ where K = ⟨an|ap1 = 1, apn+1 = an, n ∈ N⟩
is a quasicyclic p-subgroup, cp = bp = 1, [K, b] = ⟨1⟩, [b, c] = a1. Conversely, in every of these groups

each subgroup is malonormal.
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Proof. Let K be an arbitrary finite subgroup of P . Choose in the center of K an element c of order

p. By Corollary 2.2, the factor-group K/⟨c⟩ is Dedekind. In particular, it is nilpotent of nilpotency

class at most 2. Thus K is nilpotent of nilpotency class at most 3. Since it is true for every finitely

generated subgroup of P, P is also nilpotent of nilpotency class at most 3. In particular, ζ(P ) ̸= ⟨1⟩.
Choose in ζ(P ) an element c1 having order p. Suppose that P includes a finite abelian subgroup A

such that srp(A) ≥ 3. If c1 /∈ A, then instead of A we consider a subgroup ⟨A, c1⟩. Therefore without

loss of generality we can suppose that c1 ∈ A. By Corollary 2.2, the factor-group P/⟨c1⟩ is Dedekind.

It follows that the subgroup A is normal in P . Let g and x be arbitrary elements of P . By Lemma

2.10, every subgroup of ⟨A, g, x⟩ is normal, in particular, x−1⟨g⟩x = ⟨g⟩. Since it is true for each

x ∈ P , the subgroup ⟨g⟩ is normal in P . Thus every cyclic subgroup of P is normal in P . It follows

that P is a Dedekind group.

Assume that P/⟨c1⟩ is non-abelian. Then P/⟨c1⟩ = Q/⟨c1⟩ × E/⟨c1⟩ where Q/⟨c1⟩ is a quaternion

group of order 8, and E/⟨c1⟩ is an elementary abelian 2-group. Since P is infinite, E/⟨c1⟩ is infinite.
But in this case, P includes an infinite elementary abelian subgroup. By above proved P is a Dedekind

group.

Suppose that P includes an abelian subgroup A = ⟨a1⟩×⟨a2⟩ where |a1|, |a2| > p. As above without

loss of generality we can suppose that c1 ∈ A. By Corollary 2.2, the factor-group P/⟨c1⟩ is Dedekind.

It follows that the subgroup A is normal in P . Let g and x be arbitrary elements of P . By Lemma

2.11, every subgroup of ⟨A, g, x⟩ is normal; in particular, x−1⟨g⟩x = ⟨g⟩. Since it is true for each

x ∈ P , the subgroup ⟨g⟩ is normal in P . Thus every cyclic subgroup of P is normal in P . It follows

that P is a Dedekind group.

Suppose now that every finite abelian subgroup A of P has a form A = ⟨a1⟩ × ⟨a2⟩ where |a2| = p.

Furthermore, we assume also that P/⟨c1⟩ is abelian. If we suppose that every proper subgroup of P is

cyclic, then, being locally finite, P must be quasicyclic [13], [11]. In particular, it is abelian. Therefore

we can assume that P includes non-cyclic subgroups. As in the proof of Lemma 2.12, we can show

that every non-cyclic subgroup of P is normal in P . Locally finite p-groups with this property have

been described by F.N. Liman [16], [17].

Suppose that p = 2. We note that only groups of type (4) and (10) of the main theorem of the

paper [16] are infinite. Let P be a group of type (4), then P = (K × ⟨c⟩)λ⟨b⟩ where K = ⟨an|a21 =

1, a2n+1 = an, n ∈ N⟩ is a quasicyclic 2-subgroup, c2 = b2 = 1, [K, b] = ⟨1⟩, [b, c] = a1. If x is an element

of order 2k, k ≥ 2, then x = atc
mbs where t ≥ 2,m, s ∈ {0, 1}. If m = s = 1, then 1 ̸= x2 = atcbatcb =

at2a1c
2b2 = at−1a1 ∈ K. If m = 0, s = 1, then 1 ̸= x2 = atbatb = a2t b

2 = at−1 ∈ K; if m = 1, s = 0,

then 1 ̸= x2 = atc : atc = a2t c
2 = at−1 ∈ K; if m = s = 0, then 1 ̸= x2 = atat = at−1 ∈ K. Thus

in every case a1 ∈ ⟨x⟩. Since P/⟨a1⟩ is abelian, ⟨x⟩ is normal in P . Suppose now that |x| = 2. Then

x = a1rc
mbs where r,m, s ∈ {0, 1}. If m = s = 0, then ⟨x⟩ = ⟨a1⟩ is normal in P . Otherwise the

subgroup ⟨x⟩ is not normal in P . Let y /∈ NP (⟨x⟩). The fact that P/⟨a1⟩ is abelian implies that

x ̸= xy ∈ x⟨a1⟩. This means that xy = xa1. In this case, ⟨xy⟩ ∩ ⟨x⟩ = ⟨xa1⟩ ∩ ⟨x⟩ = ⟨1⟩. Thus every
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cyclic subgroup of P is malonormal in P . On the other hand, by the main theorem of the paper [16],

each non-cyclic subgroup of P is normal, and therefore malonormal.

Let P be a group of type (10), then P = K×Q whereK is a quasicyclic 2-subgroup, Q is a quaternion

group of order 8. This group includes an abelian subgroup A = ⟨a1⟩ × ⟨a2⟩ where |a1| = |a2| = 4. As

we have seen above, in this case, P must be a Dedekind group.

Suppose first that p > 2. Then Theorem 2.1 of the paper [17] shows that P = (K × ⟨c⟩)λ⟨b⟩ where
K = ⟨an|a1p = 1, an+1p = an, n ∈ N⟩ is a quasicyclic p-subgroup, cp = bp = 1, [K, b] = ⟨1⟩, [b, c] = a1.

Repeating the above arguments, we prove that in this group every subgroup is malonormal. □

Lemma 3.2. Let G be an infinite locally finite group, whose subgroups are malonormal. If Π(G)

contains two different primes, then G is a Dedekind group.

Proof. If G is locally nilpotent, then Lemma 3.12 shows that G is a Dedekind group. Suppose that

G is not locally nilpotent. Then G includes a finite subgroup F which is not nilpotent. Let L be

the family of all finite subgroup of G, including F . If F is a group of type (i) of Lemma 3.10, then

every finite subgroup K, including F , cannot be a group of type (ii) of Lemma 3.10. Thus K has

a normal Sylow q-subgroup Q, which is elementary abelian of order q2. Moreover, Q = CK(Q). It

follows that |K/Q| ≤ q(q − 1)(q2 − 1) (see, for example, [8, Chapter 2 Theorem 8.1]). It follows

that |K| ≤ q3(q − 1)(q2 − 1). Since it is true for each K ∈ L, G cannot be infinite, and we obtain a

contradiction. If F is a group of type (ii) of Lemma 3.10, then an application of similar arguments

also bring us to a contradiction. These contradictions show that G must be locally nilpotent.

If G is a group, then denote by Tor(G) a maximal normal periodic subgroup of G. Note that if G

is locally nilpotent, then Tor(G) contains all elements, having finite order. □

Lemma 3.3. Let G be an infinite residually finite group, whose subgroups are malonormal. Then G

is nilpotent of nilpotency class at most 2.

Proof. Being residually finite, G has a family R of normal subgroups, having finite index, such that

∩R = ⟨1⟩. If H is a normal subgroup, having finite index, then H is non-trivial and Corollary 2.2

implies that G/H is a Dedekind group. In particular, G/H is nilpotent of nilpotency class at most 2.

The equality ∩R = ⟨1⟩ together with Remak’s theorem imply that G is nilpotent of nilpotency class

at most 2. □

Proof of Theorem 1.2. Suppose first that G is a locally finite group. If the set Π(G) contains two

different primes, then Lemma 4.2 implies that G is a Dedekind group. If G is a p-group for some

prime p, then we can apply Lemma 4.1.

Suppose now thatG is locally graded group and letK be a finitely generated subgroup ofG. Suppose

that K is infinite. Denote by R the family of normal subgroups of K having in K finite index. If

H ∈ R, then, by our assumption, H is non-trivial and Corollary 2.2 implies that K/H is a Dedekind

group. Let R = ∩H∈RR. If R = ⟨1⟩, then Remak’s theorem imply that K is nilpotent of nilpotency

class at most 2. Being periodic and finitely generated, K is finite, and we obtain a contradiction

http://dx.doi.org/10.22108/ijgt.2018.112124.1487

http://dx.doi.org/10.22108/ijgt.2018.112124.1487


16 Int. J. Group Theory x no. x (201x) xx-xx L. A. Kurdachenko, N. N. Semko and I. Ya. Subbotin

with our assumption. Thus R ̸= ⟨1⟩. Finiteness of K/R implies that R is finitely generated (see,

for example, [5, Proposition 1.2.13]). Being locally graded, R includes a proper subgroup S having

finite index in R. Then |K : S| is also finite. It follows that S includes R, and again we obtain a

contradiction. This contradiction proves that K is finite. Then G is locally finite, and this finish the

proof.

Lemma 3.4. Let G be a finitely generated nilpotent group, whose subgroups are malonormal. If G is

infinite, then G is abelian.

Proof. Suppose the contrary, let G be non-abelian. Being infinite, G is non-periodic. Let T = Tor(G),

then T is finite and there is a normal subgroup K of G such that K ∩ T = ⟨1⟩ and G/K is finite.

By Corollary 2.2, G/T is a Dedekind group. Being not periodic, G/T is abelian. It follows that K

is abelian. Finiteness of G/K implies that K is finitely generated (see, for example, [5, Proposition

1.2.13]). Then K ̸= K8. The subgroup K8 is G-invariant and non-trivial. Corollary 2.2 implies that

G/K8 is a Dedekind group. Since this factor-group contains some elements of order 8, it is abelian.

The equality T ∩K8 = ⟨1⟩ together with Remak’s theorem imply that G is abelian. □

Corollary 3.5. Let G be a locally nilpotent group, whose subgroups are malonormal. If G is not

periodic, then G is abelian.

Proof. Being not periodic, G has a finitely generated subgroup K, which is not periodic. Let x, y be

the arbitrary elements of G. Then the subgroup ⟨x, y,K⟩ is not periodic, and Lemma 4.4 shows that

it is abelian. In particular, xy = yx. Thus G is abelian. □

Corollary 3.6. Let G be an infinite finitely generated group, whose subgroups are malonormal. If G

is residually finite, then G is abelian.

Proof. By Lemma 4.3 G is nilpotent, and we can apply Lemma 4.4. □

Corollary 3.7. Let G be a residually finite group, whose subgroups are malonormal. If G is non-

periodic, then G is abelian.

Corollary 3.8. Let G be an infinite polycyclic-by-finite group, whose subgroups are malonormal. Then

G is abelian.

Proof. Indeed, a polycyclic-by-finite group is finitely generated and residually finite, and therefore we

may apply Corollary 4.6. □

Recall that the group G has f inite special rank r(G) = r, if every finitely generated subgroup of

G can be generated by r elements and r is the least positive integer with this property.

Proof of Theorem 1.3. Since G is not periodic, G contains an element g, having infinite order.

Let K be an arbitrary finitely generated subgroup of G containing g. Then K is infinite. Let K =

⟨g, g1, . . . , gn⟩. Denote by R the family of normal subgroups of K, having in K finite index. If H ∈ R,
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then, by our assumption, H is non-trivial and Corollary 2.2 implies that K/H is a Dedekind group.

If K/H is abelian, then r(K/H) ≤ n + 1. If K/H is non-abelian, then K/H is a direct product of

a quaternion group and abelian group, so that r(K/H) ≤ n + 2. Thus the special ranks of finite

factor-groups of K are bounded. Let L be a subgroup of K, and x be an element of K such that

Lx ≤ L. If we suppose that x /∈ NK(L), then L∩Lx = ⟨1⟩. It shows that x ∈ NK(L), so that Lx = L.

Using now Theorem B of the paper [19], we obtain that K is polycyclic-by-finite. Corollary 4.8 implies

that K is abelian. It follows that G is also abelian.

Lemma 3.9. Let G be a finitely generated generalized radical group, whose subgroups are malonormal.

If G is not periodic, then G is abelian.

Proof. Let T = Tor(G) and suppose that T is non-trivial. Using Corollary 2.2 we obtain that G/T is

a Dedekind group. Being non-periodic, G/T is abelian. If T is finite, then G is residually finite, and

Corollary 4.6 shows that G is abelian.

Suppose that T is infinite. If Π(T ) contains two different primes, then Lemma 4.2 implies that T is a

Dedekind group. Using now Corollary 3.13, we obtain that G is also Dedekind. Being non-periodic, G

is abelian. Consider now the case, when T is a p-group for some prime p. If we suppose that T is non-

abelian, then Lemma 4.1 shows that [T, T ] has order p and T/[T, T ] includes a quasicyclic subgroup.

On the other hand, G/[T, T ] is metabelian and finitely generated, so that it satisfies the maximal

condition on normal subgroups [9, Theorem 3], and we obtain a contradiction. This contradiction

shows that T is abelian. In this case, G is residually finite [10, Theorem 1], and Corollary 4.6 proves

that G is abelian. □

Proof of Theorem 1.4. Since G is not periodic, G contains an element g, having infinite order.

Let K be an arbitrary finitely generated subgroup of G, containing g. Then K is finitely generated,

non-periodic and generalized radical. Using Lemma 4.9, we obtain that K is abelian. It follows that

G is abelian.
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Proof. Since G is not nilpotent, there exists a prime p such that the Sylow p-subgroup P of G is

not normal in G. By Lemma 2.13, G = QλK is a Frobenius group with the Frobenius complement

K = NG(P ). We note that a Sylow r-subgroup of the Frobenius complement is cyclic whenever r ̸= 2,

and it is cyclic or generalized quaternion whenever r = 2 (see, for example, [8, Chapter 10 Theorem

3.1]). The fact that K ̸= G implies that Q is non-trivial. Then Corollary 2.2 implies that G/Q ∼= K

is a Dedekind group. In particular, if a Sylow 2-subgroup of K is not cyclic, then being generalized

quaternion and Dedekind, it is a quaternion group of order 8. Thus we obtain that either K is cyclic

or K = D × S where D is a quaternion group of order 8 and S is a cyclic 2-subgroup.

Note that a Frobenius kernel Q is nilpotent (see, for example, [8, Chapter 10 Theorem 3.1]). Suppose

that Π(Q) contains two different primes q1 and q2. Let Sj be a Sylow qj-subgroup of Q, j ∈ {1, 2}.
Clearly Sj is normal in G. Since Sj is non-trivial, Corollary 2.2 shows that G/Sj is a Dedekind group.

In particular, it is nilpotent. The equality S1 ∩ S2 = ⟨1⟩ together with Remak’s theorem imply an

imbedding G in G/S1 ×G/S2, which shows that G is nilpotent, and we obtain a contradiction. This

contradiction proves that Q is a q-subgroup for some prime q.

For each 1 ̸= x ∈ K we have CQ(x) = ⟨1⟩ (see, for example, [8, Chapter 10 Theorem 3.1]). In

particular, it follows that q /∈ Π(K), so that Q is a Sylow q-subgroup of G. Suppose that Q is

non-abelian. Then ζ(Q) is a non-trivial proper G-invariant subgroup of Q. By Corollary 2.2, the

factor-group G/ζ(Q) is Dedekind. It follows that [Q,K] ≤ ζ(Q), in particular, [Q,K] ̸= Q. On the

other hand, q /∈ Π(K), so that Q = [Q,K]CQ(K) (see, for example, [8, Chapter 5 Theorem 3.5]).

From last equality it follows that CQ(K) ̸= ⟨1⟩, and we obtain a contradiction. This contradiction

proves that Q is abelian. □

Lemma 3.10. Let G be a finite group, whose all subgroups are malonormal. Suppose that G is not

nilpotent. Then G is a group of one of following types:

(i) G = QλK where Q is an elementary abelian q-subgroup of order q2, q is a prime, K is a cyclic

q′-subgroup, 2 /∈ Π(K), Q does not include a non-trivial cyclic ⟨y⟩-invariant subgroup for each

y ∈ K\{1}.
(ii) G = QλK where |Q| = q is prime, Q = CG(Q),K is a cyclic subgroup of order dividing q− 1.

Proof. Corollary 2.14 shows that G = QλK is a Frobenius group with a Frobenius complement K

and a Frobenius kernel Q. By this Corollary, Q is an abelian Sylow q-subgroup of G. Suppose that

srq(Q) ≥ 3. Then Lemma 2.10 implies that every subgroup of Q is normal in G. In this case, we

have Q = Dr1≤j≤n⟨aj⟩ where n ≥ 3. By above noted, every subgroup ⟨aj⟩ is normal in G, and

Corollary 2.2 implies that G/⟨aj⟩ is a Dedekind group, 1 ≤ j ≤ n. In particular, it is nilpotent.

From ⟨1⟩ = ⟨a1⟩ ∩ ⟨a2⟩ and Remak’s theorem we obtain that G is isomorphic to some subgroup of

G/⟨a1⟩×G/⟨a2⟩, so that G is nilpotent, and we obtain a contradiction. This contradiction shows that

srq(Q) ≤ 2.
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Suppose now that Q = ⟨a1⟩ × ⟨a2⟩, where |a1|, |a2| ≥ q2. In this case, using Lemma 2.11 we obtain

that every subgroup of Q is normal in G, and repeating the above arguments again we obtain a

contradiction.

Suppose now that Q = ⟨a1⟩ × ⟨a2⟩ where |a1| > q, |a2| = q. Suppose that the subgroup ⟨a1⟩
is not normal in G and choose an element x /∈ NG(⟨a1⟩). Since Q is normal in G, ax1 ∈ Q. We

have |ax1 | = |a1| > q, and therefore ax1 = ak1a
s
2 where GCD(k, q) = 1, 0 ≤ s ≤ q. It follows that

1 ̸= (ax1)
q| = (ak1a

s
2)

q = akq1 . This means that ⟨aq1⟩ ≤ ⟨ax1⟩ = ⟨a1⟩x and hence ⟨a1⟩ ∩ ⟨a1⟩x ̸= ⟨1⟩. This

contradiction shows that ⟨a1⟩ is normal in G. Taking into account that q /∈ Π(K), we obtain that

Q = ⟨a1⟩ × ⟨b1⟩ where the subgroup ⟨b1⟩ is G-invariant (see, for example, [15, Corollary 5.13]). Using

the above arguments, we again obtain a contradiction. This contradiction shows that Q = ⟨a1⟩ × ⟨a2⟩
where |a1| = |a2| = q.

Assume that K has an element y ̸= 1 such that Q includes a non-trivial ⟨y⟩-invariant cyclic sub-

groups ⟨c1⟩. Suppose that ⟨c1, y⟩ is non-normal in G and choose an element z /∈ NG(⟨c1, y⟩). The

fact that G/Q is a Dedekind group implies that a subgroup ⟨y⟩Q is normal in G. It follows that

⟨c1, y⟩z ≤ Q⟨y⟩. We have q = |Q⟨y⟩ : ⟨c1, y⟩|. Thus

q = |⟨Q, y⟩z : ⟨c1, y⟩z| = |⟨Q, y⟩ : ⟨c1, y⟩x|,

which shows that ⟨c1, y⟩ ∩ ⟨c1, y⟩z ̸= ⟨1⟩, and we obtain a contradiction. This contradiction proves

that a subgroup ⟨c1, y⟩ must be normal in G.

Since Q is elementary abelian, ⟨c1⟩ has a complement in Q. The fact that GCD(q, |y|) = 1 implies

that Q includes an ⟨y⟩-invariant subgroup ⟨c2⟩ such that Q = ⟨c1⟩ × ⟨c2⟩ (see, for example, [15,

Corollary 5.13]). Using the above arguments, we obtain that the subgroup ⟨c2, y⟩ is normal in G.

It follows that ⟨y⟩ = ⟨c1, y⟩ ∩ ⟨c2, y⟩ is normal in G. By Corollary 2.2, the factor-group G/⟨y⟩ is

Dedekind. In particular, it is nilpotent. From ⟨1⟩ = Q∩ ⟨y⟩ and Remak’s theorem it follows that G is

isomorphic to some subgroup of G/Q×G/⟨y⟩, so that G is nilpotent, and we obtain a contradiction.

This contradiction shows that Q does not include non-trivial ⟨y⟩-invariant cyclic subgroups for each

element 1 ̸= y ∈ K.

Suppose now that 2 ∈ Π(K) and let d be an element of K of order 2. For an element 1 ̸= a ∈ Q we

have only the following options: ad ∈ ⟨a⟩ or ⟨ad⟩ ∩ ⟨a⟩ = ⟨1⟩. By above proved first case is impossible.

In the second case a ad ̸= 1 and d−1(a d−1ad)d = (d−1ad)(d−2ad2) = a d−1ad, and we again obtain a

contradiction. This contradiction shows that 2 /∈ Π(K). Corollary 2.14 implies that K is cyclic. Thus

we come to a group of the type (i).

Finally, suppose that Q is cyclic, Q = ⟨a⟩. Also suppose that |a| > p. Then ap ̸= 1. By Corollary

2.2, the factor-group G/⟨ap⟩ is Dedekind. In particular, it is nilpotent. It follows that [Q,K] ≤ ⟨ap⟩.
In particular, [Q,K] ̸= Q. On the other hand, q /∈ Π(K), so that Q = [Q,K] × CQ(K) (see, for

example, [8, Chapter 5 Theorem 2.3]). From the last equality it follows that CQ(K) ̸= ⟨1⟩, and we

obtain a contradiction. This contradiction proves that Q has order q. Thus we come to a group of the

type (ii). □
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Corollary 3.11. Let G be a finite group, whose subgroups are malonormal. If G includes an elemen-

tary abelian p-subgroup of order p3 for some prime p, then G is nilpotent.

Lemma 3.12. Let G be a periodic locally nilpotent group, whose subgroups are malonormal. If Π(G)

contains two different primes, then G is a Dedekind group.

Proof. Let p be the least prime from the set Π(G). Then G = P ×Q where P is a Sylow p-subgroup

of G and Q is a Sylow p′-subgroup of G. By Corollary 2.2, G/P ∼= Q is a Dedekind group. The choice

of p shows that 2 /∈ Π(G/P ), hence Q is abelian. Corollary 2.2 shows that P = G/Q is a Dedekind

p-group. It follows that G is a Dedekind group. □

Corollary 3.13. Let G be a group, whose subgroups are malonormal. Suppose that G includes a

normal periodic locally nilpotent subgroup K. If Π(K) contains two different primes, then G is a

Dedekind group.

Proof. Let p be the least prime from a set Π(G). Then G = P ×Q where P is a Sylow p-subgroup of

G and Q is a Sylow p′-subgroup of G. Clearly P and Q are G-invariant. By Corollary 2.2, G/P and

G/Q are Dedekind groups. If G is not periodic, then the both these factor-groups are abelian. The

equality P ∩Q = ⟨1⟩ together with Remak’s theorem imply that G is abelian. If G is periodic, then

G/P and G/Q are nilpotent of nilpotency class at most 2. The equality P ∩ Q = ⟨1⟩ together with

Remak’s theorem imply that G is nilpotent, and we can apply Lemma 3.12. □

Proof of Theorem 1.1. If G is a p-group for some prime p, then Lemma 2.12 shows that G is a

group of one of the types (i)-(v). Suppose that G is nilpotent and |Π(G)| ≥ 2. Then Lemma 3.12

implies that G is a Dedekind group.

If G is not nilpotent, then Lemma 3.10 shows that G is a group of the types (vi) or (vii).

4. Infinite groups, whose subgroups are malonormal

Lemma 4.1. Let P be an infinite locally finite p-group, whose subgroups are malonormal, p is a prime.

Then either P is a Dedekind group or P = (K × ⟨c⟩)λ⟨b⟩ where K = ⟨an|ap1 = 1, apn+1 = an, n ∈ N⟩
is a quasicyclic p-subgroup, cp = bp = 1, [K, b] = ⟨1⟩, [b, c] = a1. Conversely, in every of these groups

each subgroup is malonormal.

Proof. Let K be an arbitrary finite subgroup of P . Choose in the center of K an element c of order

p. By Corollary 2.2, the factor-group K/⟨c⟩ is Dedekind. In particular, it is nilpotent of nilpotency

class at most 2. Thus K is nilpotent of nilpotency class at most 3. Since it is true for every finitely

generated subgroup of P, P is also nilpotent of nilpotency class at most 3. In particular, ζ(P ) ̸= ⟨1⟩.
Choose in ζ(P ) an element c1 having order p. Suppose that P includes a finite abelian subgroup A

such that srp(A) ≥ 3. If c1 /∈ A, then instead of A we consider a subgroup ⟨A, c1⟩. Therefore without

loss of generality we can suppose that c1 ∈ A. By Corollary 2.2, the factor-group P/⟨c1⟩ is Dedekind.

It follows that the subgroup A is normal in P . Let g and x be arbitrary elements of P . By Lemma
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2.10, every subgroup of ⟨A, g, x⟩ is normal, in particular, x−1⟨g⟩x = ⟨g⟩. Since it is true for each

x ∈ P , the subgroup ⟨g⟩ is normal in P . Thus every cyclic subgroup of P is normal in P . It follows

that P is a Dedekind group.

Assume that P/⟨c1⟩ is non-abelian. Then P/⟨c1⟩ = Q/⟨c1⟩ × E/⟨c1⟩ where Q/⟨c1⟩ is a quaternion

group of order 8, and E/⟨c1⟩ is an elementary abelian 2-group. Since P is infinite, E/⟨c1⟩ is infinite.
But in this case, P includes an infinite elementary abelian subgroup. By above proved P is a Dedekind

group.

Suppose that P includes an abelian subgroup A = ⟨a1⟩×⟨a2⟩ where |a1|, |a2| > p. As above without

loss of generality we can suppose that c1 ∈ A. By Corollary 2.2, the factor-group P/⟨c1⟩ is Dedekind.

It follows that the subgroup A is normal in P . Let g and x be arbitrary elements of P . By Lemma

2.11, every subgroup of ⟨A, g, x⟩ is normal; in particular, x−1⟨g⟩x = ⟨g⟩. Since it is true for each

x ∈ P , the subgroup ⟨g⟩ is normal in P . Thus every cyclic subgroup of P is normal in P . It follows

that P is a Dedekind group.

Suppose now that every finite abelian subgroup A of P has a form A = ⟨a1⟩ × ⟨a2⟩ where |a2| = p.

Furthermore, we assume also that P/⟨c1⟩ is abelian. If we suppose that every proper subgroup of P is

cyclic, then, being locally finite, P must be quasicyclic [13], [11]. In particular, it is abelian. Therefore

we can assume that P includes non-cyclic subgroups. As in the proof of Lemma 2.12, we can show

that every non-cyclic subgroup of P is normal in P . Locally finite p-groups with this property have

been described by F.N. Liman [16], [17].

Suppose that p = 2. We note that only groups of type (4) and (10) of the main theorem of the

paper [16] are infinite. Let P be a group of type (4), then P = (K × ⟨c⟩)λ⟨b⟩ where K = ⟨an|a21 =

1, a2n+1 = an, n ∈ N⟩ is a quasicyclic 2-subgroup, c2 = b2 = 1, [K, b] = ⟨1⟩, [b, c] = a1. If x is an element

of order 2k, k ≥ 2, then x = atc
mbs where t ≥ 2,m, s ∈ {0, 1}. If m = s = 1, then 1 ̸= x2 = atcbatcb =

at2a1c
2b2 = at−1a1 ∈ K. If m = 0, s = 1, then 1 ̸= x2 = atbatb = a2t b

2 = at−1 ∈ K; if m = 1, s = 0,

then 1 ̸= x2 = atc : atc = a2t c
2 = at−1 ∈ K; if m = s = 0, then 1 ̸= x2 = atat = at−1 ∈ K. Thus

in every case a1 ∈ ⟨x⟩. Since P/⟨a1⟩ is abelian, ⟨x⟩ is normal in P . Suppose now that |x| = 2. Then

x = a1rc
mbs where r,m, s ∈ {0, 1}. If m = s = 0, then ⟨x⟩ = ⟨a1⟩ is normal in P . Otherwise the

subgroup ⟨x⟩ is not normal in P . Let y /∈ NP (⟨x⟩). The fact that P/⟨a1⟩ is abelian implies that

x ̸= xy ∈ x⟨a1⟩. This means that xy = xa1. In this case, ⟨xy⟩ ∩ ⟨x⟩ = ⟨xa1⟩ ∩ ⟨x⟩ = ⟨1⟩. Thus every

cyclic subgroup of P is malonormal in P . On the other hand, by the main theorem of the paper [16],

each non-cyclic subgroup of P is normal, and therefore malonormal.

Let P be a group of type (10), then P = K×Q whereK is a quasicyclic 2-subgroup, Q is a quaternion

group of order 8. This group includes an abelian subgroup A = ⟨a1⟩ × ⟨a2⟩ where |a1| = |a2| = 4. As

we have seen above, in this case, P must be a Dedekind group.

Suppose first that p > 2. Then Theorem 2.1 of the paper [17] shows that P = (K × ⟨c⟩)λ⟨b⟩ where
K = ⟨an|a1p = 1, an+1p = an, n ∈ N⟩ is a quasicyclic p-subgroup, cp = bp = 1, [K, b] = ⟨1⟩, [b, c] = a1.

Repeating the above arguments, we prove that in this group every subgroup is malonormal. □
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Lemma 4.2. Let G be an infinite locally finite group, whose subgroups are malonormal. If Π(G)

contains two different primes, then G is a Dedekind group.

Proof. If G is locally nilpotent, then Lemma 3.12 shows that G is a Dedekind group. Suppose that

G is not locally nilpotent. Then G includes a finite subgroup F which is not nilpotent. Let L be

the family of all finite subgroup of G, including F . If F is a group of type (i) of Lemma 3.10, then

every finite subgroup K, including F , cannot be a group of type (ii) of Lemma 3.10. Thus K has

a normal Sylow q-subgroup Q, which is elementary abelian of order q2. Moreover, Q = CK(Q). It

follows that |K/Q| ≤ q(q − 1)(q2 − 1) (see, for example, [8, Chapter 2 Theorem 8.1]). It follows

that |K| ≤ q3(q − 1)(q2 − 1). Since it is true for each K ∈ L, G cannot be infinite, and we obtain a

contradiction. If F is a group of type (ii) of Lemma 3.10, then an application of similar arguments

also bring us to a contradiction. These contradictions show that G must be locally nilpotent.

If G is a group, then denote by Tor(G) a maximal normal periodic subgroup of G. Note that if G

is locally nilpotent, then Tor(G) contains all elements, having finite order. □

Lemma 4.3. Let G be an infinite residually finite group, whose subgroups are malonormal. Then G

is nilpotent of nilpotency class at most 2.

Proof. Being residually finite, G has a family R of normal subgroups, having finite index, such that

∩R = ⟨1⟩. If H is a normal subgroup, having finite index, then H is non-trivial and Corollary 2.2

implies that G/H is a Dedekind group. In particular, G/H is nilpotent of nilpotency class at most 2.

The equality ∩R = ⟨1⟩ together with Remak’s theorem imply that G is nilpotent of nilpotency class

at most 2. □

Proof of Theorem 1.2. Suppose first that G is a locally finite group. If the set Π(G) contains two

different primes, then Lemma 4.2 implies that G is a Dedekind group. If G is a p-group for some

prime p, then we can apply Lemma 4.1.

Suppose now thatG is locally graded group and letK be a finitely generated subgroup ofG. Suppose

that K is infinite. Denote by R the family of normal subgroups of K having in K finite index. If

H ∈ R, then, by our assumption, H is non-trivial and Corollary 2.2 implies that K/H is a Dedekind

group. Let R = ∩H∈RR. If R = ⟨1⟩, then Remak’s theorem imply that K is nilpotent of nilpotency

class at most 2. Being periodic and finitely generated, K is finite, and we obtain a contradiction

with our assumption. Thus R ̸= ⟨1⟩. Finiteness of K/R implies that R is finitely generated (see,

for example, [5, Proposition 1.2.13]). Being locally graded, R includes a proper subgroup S having

finite index in R. Then |K : S| is also finite. It follows that S includes R, and again we obtain a

contradiction. This contradiction proves that K is finite. Then G is locally finite, and this finish the

proof.

Lemma 4.4. Let G be a finitely generated nilpotent group, whose subgroups are malonormal. If G is

infinite, then G is abelian.
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Proof. Suppose the contrary, let G be non-abelian. Being infinite, G is non-periodic. Let T = Tor(G),

then T is finite and there is a normal subgroup K of G such that K ∩ T = ⟨1⟩ and G/K is finite.

By Corollary 2.2, G/T is a Dedekind group. Being not periodic, G/T is abelian. It follows that K

is abelian. Finiteness of G/K implies that K is finitely generated (see, for example, [5, Proposition

1.2.13]). Then K ̸= K8. The subgroup K8 is G-invariant and non-trivial. Corollary 2.2 implies that

G/K8 is a Dedekind group. Since this factor-group contains some elements of order 8, it is abelian.

The equality T ∩K8 = ⟨1⟩ together with Remak’s theorem imply that G is abelian. □

Corollary 4.5. Let G be a locally nilpotent group, whose subgroups are malonormal. If G is not

periodic, then G is abelian.

Proof. Being not periodic, G has a finitely generated subgroup K, which is not periodic. Let x, y be

the arbitrary elements of G. Then the subgroup ⟨x, y,K⟩ is not periodic, and Lemma 4.4 shows that

it is abelian. In particular, xy = yx. Thus G is abelian. □

Corollary 4.6. Let G be an infinite finitely generated group, whose subgroups are malonormal. If G

is residually finite, then G is abelian.

Proof. By Lemma 4.3 G is nilpotent, and we can apply Lemma 4.4. □

Corollary 4.7. Let G be a residually finite group, whose subgroups are malonormal. If G is non-

periodic, then G is abelian.

Corollary 4.8. Let G be an infinite polycyclic-by-finite group, whose subgroups are malonormal. Then

G is abelian.

Proof. Indeed, a polycyclic-by-finite group is finitely generated and residually finite, and therefore we

may apply Corollary 4.6. □

Recall that the group G has f inite special rank r(G) = r, if every finitely generated subgroup of

G can be generated by r elements and r is the least positive integer with this property.

Proof of Theorem 1.3. Since G is not periodic, G contains an element g, having infinite order.

Let K be an arbitrary finitely generated subgroup of G containing g. Then K is infinite. Let K =

⟨g, g1, . . . , gn⟩. Denote by R the family of normal subgroups of K, having in K finite index. If H ∈ R,

then, by our assumption, H is non-trivial and Corollary 2.2 implies that K/H is a Dedekind group.

If K/H is abelian, then r(K/H) ≤ n + 1. If K/H is non-abelian, then K/H is a direct product of

a quaternion group and abelian group, so that r(K/H) ≤ n + 2. Thus the special ranks of finite

factor-groups of K are bounded. Let L be a subgroup of K, and x be an element of K such that

Lx ≤ L. If we suppose that x /∈ NK(L), then L∩Lx = ⟨1⟩. It shows that x ∈ NK(L), so that Lx = L.

Using now Theorem B of the paper [19], we obtain that K is polycyclic-by-finite. Corollary 4.8 implies

that K is abelian. It follows that G is also abelian.
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Lemma 4.9. Let G be a finitely generated generalized radical group, whose subgroups are malonormal.

If G is not periodic, then G is abelian.

Proof. Let T = Tor(G) and suppose that T is non-trivial. Using Corollary 2.2 we obtain that G/T is

a Dedekind group. Being non-periodic, G/T is abelian. If T is finite, then G is residually finite, and

Corollary 4.6 shows that G is abelian.

Suppose that T is infinite. If Π(T ) contains two different primes, then Lemma 4.2 implies that T is a

Dedekind group. Using now Corollary 3.13, we obtain that G is also Dedekind. Being non-periodic, G

is abelian. Consider now the case, when T is a p-group for some prime p. If we suppose that T is non-

abelian, then Lemma 4.1 shows that [T, T ] has order p and T/[T, T ] includes a quasicyclic subgroup.

On the other hand, G/[T, T ] is metabelian and finitely generated, so that it satisfies the maximal

condition on normal subgroups [9, Theorem 3], and we obtain a contradiction. This contradiction

shows that T is abelian. In this case, G is residually finite [10, Theorem 1], and Corollary 4.6 proves

that G is abelian. □

Proof of Theorem 1.4. Since G is not periodic, G contains an element g, having infinite order.

Let K be an arbitrary finitely generated subgroup of G, containing g. Then K is finitely generated,

non-periodic and generalized radical. Using Lemma 4.9, we obtain that K is abelian. It follows that

G is abelian.
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