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Abstract. We prove that the class of profinite groups G that have a factorization G = AB with A and

B abelian closed subgroups, is closed under taking inverse limits of surjective inverse systems. This is a

generalization of a recent result by K.H. Hofmann and F.G. Russo. As an application we reprove their

generalization of Iwasawa’s structure theorem for quasihamiltonian pro-p groups.

1. Introduction

In a forthcoming paper, [3], Hofmann and Russo are concerned with pro-p quasihamiltonian groups.

By definition, in such a group G every pair X,Y of closed subgroups commutes as sets, i.e. XY = Y X.

When G is finite then such a group satisfies Iwasawa’s structure theorem – namely, G = A〈b〉 with

A abelian and 〈b〉 cyclic, and so that b−1ab = a1+ps
holds for some s ≥ 1 (and s ≥ 2 if p = 2) and

all a ∈ A – see e.g. [1, Theorem 1.4.3]. Hofmann and Russo term a group nearabelian if it satisfies

Iwasawa’s structure theorem without the restriction on s for p = 2. One of their main results is the fact

that nearabelian pro-p groups form a category that is closed under taking strict inverse limits. Here it

is meant that the inverse limit over an inverse system (Gi, I,≤) is strict provided that all the bonding

maps ψij : Gi → Gj for i ≥ j are epimorphisms. We are going to reprove this inverse limit result in a

slightly more general context and want to use a well-known result from topology.

For a boolean space X let C(X) denote the subset of all nonempty closed subsets. The latter set

can be equipped with the Vietoris topology, namely, when X = lim←−iXi is the inverse limit of finite

discrete spaces, then C(X) = lim←−i C(Xi) and we consider the initial topology with respect to canonical

epimorphisms C(X)→ C(Xi). See e.g. [2].
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Lemma 1.1. Let (Xj , φjk, I) be an inverse system of compact spaces with bonding maps φjk. Sup-

pose there are non-empty closed subsets Fj ⊆ C(Xj) none of them containing the empty set such that

(Fj , C(φjk), I) is an inverse system of closed subsets of C(Xj) then

(1) F := lim←−j Fj ∈ C(X) is not empty; and

(2) Every A ∈ F is the inverse limit A = lim←−j φj(A) and φj(A) ∈ Fj.

Proof. (1) is a general property of inverse limits.

(2). Note first that C(φj)(F ) ⊆ Fj . Therefore, for all j ∈ I, Aj := φj(A) ∈ Fj . For j ≤ k we have

Aj = φj(A) = φjkφk(A) = φjk(Ak). Now [4, Corollary 1.1.8] shows that A = lim←−j φj(Aj). �

2. The Main Result

Theorem 2.1. Let G = lim←−iGi be a strict inverse limit of profinite groups Gi that allow a factorization

Gi = AiBi with Ai and Bi closed abelian subgroups. Then G = AB for suitable abelian closed subgroups

A and B of G.

Proof. We want to employ Lemma 1.1 and set Xi := Gi × Gi. The inverse system (Gi, ψij , I) gives

rise to an inverse system (Xi, φij , I) with bonding maps defined by φij(g, h) := (ψij(g), ψij(h)) for all

(g, h) ∈ Gi×Gi. As G = lim←−iGi is strict so is X := lim←−iGi×Gi. Define Fi to be the set of all cartesian

products A× B of closed abelian subgroups A and B in Gi with Gi = AB and note that Fi is not the

empty set by assumption. Moreover, if A×B ∈ Fi then certainly C(φij)(A×B) = ψij(A)×ψij(B) ∈ Fj
since Gi = AB implies ψij(Gi) = ψij(AB) = ψij(A)ψij(B).

Having thus established the premises of the Lemma we find that lim←−i Fi is not empty. Hence there

are closed sets A and B with φi(A × B) = ψi(A) × ψi(B) ∈ Fi, i.e. Gi = ψi(A)ψi(B), for every i ∈ I.

By (2) of the Lemma the sets A and B must be closed subgroups of G and, since all ψi(A) and ψi(B)

are abelian, so are A and B.

For showing that G = AB pick x ∈ G arbitrary. Then there are (ai, bi) ∈ A × B with ψi(x) =

ψi(ai)ψi(bi), i.e. aibix−1 ∈ kerψi. Fix any open normal subgroup N of G and pass to a cofinal subset of

I so that ai and bi converge respectively to elements a ∈ A and b ∈ B. Then ai ∈ aN and bi ∈ bN holds

for a cofinal subset of I and, for the same subset we have abx−1 ∈ N kerψi. Since
⋂
iN kerψi = N by

[4, Lemma 1.1.16] we can conclude that abx−1 ∈ N . As N was an arbitrary open normal subgroup and⋂
N N = 1 we arrive at x = ab as desired. �

Remark that G in the theorem is metabelian since, by Iwasawa’s result, every finite factorizable group

is metabelian. As a consequence we can reprove [3, Theorem 7.2] in a more direct way.

Corollary 2.2. Let G be a pro-p group in which any two closed subgroups commute as sets. Then there

is a closed normal abelian subgroup A of G, an element b ∈ G and s ≥ 1 (s ≥ 2 if p = 2) such that

G = A〈b〉 and, for every a ∈ A, b−1ab = a1+ps
.

Proof. For any clopen normal subgroup N of G the quotient group G/N is a finite quasihamiltonian

p-group. Therefore we can present G = lim←−iGi as the strict inverse limit of finite quasihamiltonian
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p-groups. Then, by Iwasawa’s theorem for finite groups, [1, Theorem 1.4.3], Gi = Ai〈bi〉 with Ai normal

in Gi and abelian in Gi and abii = a1+psi

i where si ≥ 2 for p = 2. By Theorem 2.1 there are abelian

subgroups A and B such that G = AB. Restricting in the proof of the main theorem the groups Ai to

be normal and Bi to be cyclic this proof also yields that A is normal and B is procyclic – the inverse

limit of cyclic finite p-groups.

Finally observe that ψi(ab) = ψi(a)ψi(b) = ψi(a)1+psi holds for all a ∈ A and the topological generator

b of B. We claim that for a cofinal subset of indices i we must have si = s for a fixed number s ∈ N.

Indeed

ψi(a)1+psj = ψi(a1+psj ) = ψij(ψj(a1+psj )) = ψij(ψj(ab)) = ψi(a)ψi(b) = ψi(a)1+psi

hence ψi(a)p
si−psj = 1. So, if for a cofinal subset of I we have si 6= sj , the latter equation implies that

a = 1. If si ≥ 2 for a cofinal subset of I then certainly s ≥ 2. �

The same Lemma from topology can be used to derive a inverse limit result on profinite Frobenius

groups. Recall from [4, page 142] that the semidirect product G = F o H of profinite groups H and

F so that for every open normal subgroup N of G the orders |HN/N | and |FN/N | are coprime and

CG(f) ≤ F holds for all 1 6= f ∈ F is termed profinite Frobenius group.

Corollary 2.3. The strict inverse limit G = lim←−iGi of profinite Frobenius groups Gi = Fi o Hi is a

profinite Frobenius group.

Proof. Using the Lemma as before one can find F and H so that G = FH. Note that Gi = ψi(F )oψi(H)

and F becomes normal in G since all Fi are normal in Gi. When N is any open normal subgroup of

G then |ψi(FN)/ψi(N)| and |ψi(HN)/ψi(N)| are coprime and therefore so are |FN/N | and |HN/N |.
Suppose next that fg = f 6= 1 for some g ∈ G. Then ψi(f)ψi(g) = ψi(f) 6= 1 holds for a cofinal subset

of indices i ∈ I. Hence ψi(g) ∈ ψi(F ) for these indices i and so g ∈ F . Thus G = F oH is Frobenius

group. �
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