On finite-by-nilpotent profinite groups

Document Type: Proceedings of the conference "Engel conditions in groups" - Bath - UK - 2019


1 Dipartimento di Ingegneria dell'Informazione - DEI, Università di Padova,

2 Dipartimento di Matematica, Università di Bologna, Italy.


Let $\gamma_n=[x_1,\ldots,x_n]$ be the $n$th lower central word‎. ‎Suppose that $G$ is a profinite group‎ ‎where the conjugacy classes $x^{\gamma_n(G)}$ contains less than $2^{\aleph_0}$‎ ‎elements‎ ‎for any $x \in G$‎. ‎We prove that then $\gamma_{n+1}(G)$ has finite order‎. ‎This generalizes the much celebrated‎ ‎theorem of B‎. ‎H‎. ‎Neumann that says that the commutator subgroup of a BFC-group is finite‎. ‎Moreover‎, ‎it implies that‎ ‎a profinite group $G$ is finite-by-nilpotent if and only if there is a positive integer $n$ such that‎ ‎$x^{\gamma_n(G)}$ contains less than $2^{\aleph_0}$‎ ‎elements‎, ‎for any $x\in G$‎.