Linear analogues of theorems of Schur, Baer and Hall

Document Type: Ischia Group Theory 2012


1 University of Alabama

2 National University of Dnepropetrovsk

3 University of Zaragoza


A celebrated result of I‎. ‎Schur asserts that the derived subgroup of a group is finite provided the group modulo its center is finite‎, ‎a result that has been the source of many investigations within the Theory of Groups‎. ‎In this paper we exhibit a similar result to Schur's Theorem for vector spaces‎, ‎acted upon by certain groups‎. ‎The proof of this analogous result depends on the characteristic of the underlying field‎. ‎We also give linear versions of corresponding theorems of R‎. ‎Baer and P‎. ‎Hall‎.


Main Subjects

S. I. Adian (1971). On some torsion-free groups. Math. USSR. Izv.. 5, 475-484
R. Baer (1952). Endlichkeitskriterien f"ur {K}ommutatorgruppen. Math. Ann.. 124, 161-177
R. M. Guralnick (1989). On the number of generators of a finite group. Arch. Math. (Basel). 53, 521-523
P. Hall (1956). Finite-by-nilpotent groups. Proc. Cambridge Philos. Soc.. 52, 611-616
L. A. Kurdachenko (1993). On groups with minimax conjugacy classes. Infinite groups and adjoining algebraic structures, Naukova Dumka, Kiev. , 160-177
L. A. Kurdachenko, J. Otal and I. Ya. Subbotin (2002). Groups with prescribed quotient groups and associated module theory. World Sci. Publ., New Jersey.
L. A. Kurdachenko, J. Otal and I. Ya. Subbotin (2007). Artinian modules over group rings. Birkhauser, Basel.
L. A. Kurdachenko and P. Shumyatsky The ranks of central factor and commutator groups. Math. Proc. Cambridge Phil. Soc., to appear.
A. G. Kurosh (1967). The theory of groups. Nauka, Moskow.
Yu. I. Merzlyakov (1964). On locally soluble groups of finite rank. Algebra i Logika. 3, 5-16
I. Schur (1904). "Uber die Darstellungen der endlichen Gruppen durch gebrochene lineare substitutionen. J. Reine Angew. Math.. 127, 20-50
B. A. F. Wehrfritz (1973). Infinite linear groups. Springer, Berlin.