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Abstract. In this paper we give a new condition for a Sylow p-subgroup of a finite group to control

transfer. Then it is deduced a characterization of supersoluble groups that can be seen as a generalization

of the well known result concerning the supersolubility of finite groups with cyclic Sylow subgroups.

Moreover a condition for a normal embedding of a strongly closed p-subgroup is given. These results

make use of the properties of G-chains and Φ-chains.

1. Introduction

Let G be a finite group, P be a Sylow p-subgroup of G and V E P . Then we say that V controls

(strong) fusion in P with respect to G if for any g ∈ G and any subset A of P such that Ag ⊆ P

then ∃t ∈ NG(V ) such that Ag = At (if it controls strong fusion then g = ct with c ∈ CG(A) and

t ∈ NG(V )). Moreover we say that V controls transfer in P with respect to G if P ∩G′ = P ∩NG(V )′.

It follows by the definitions and by the Focal Subgroup Theorem (see [16, p. 142]) that if V controls

fusion, then it controls transfer.

These concepts play a fundamental role in the study of local properties of a finite group. We observe

that some authors prefer to say that NG(V ), instead of V, controls (strong) fusion or controls transfer.

In the papers [9] and [10] two types of chains have been introduced, namely the G-chain and the

Φ-chain of a strongly closed subgroup whose definitions will be recalled below. These chains play a role,

respectively, for the control of strong fusion and of transfer by a strongly closed subgroup. In particular,

conditions for the existence of a normal Sylow p-complement can be deduced from their properties.

In this paper we improve some criterions of [10] for the control of transfer from which we deduce
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new conditions for the existence of normal Sylow p-complements and the following characterization

of supersoluble groups which can be seen as a generalization of the well known result concerning the

supersolubility of finite groups with cyclic Sylow subgroups:

A finite group G is supersoluble if and only if there is a normal subgroup N such that G/N has

cyclic Sylow p-subgroups and for every Sylow subgroup P of G we have that P ∩N has a Φ-chain.

Using properties of G-chains and following some ideas from [10] we prove the supersolubility of a

finite group G in which all cyclic subgroups of order p (for all primes p which divide |G|) or 4 are

strongly closed. P. Csörgö and M. Herzog proved the same result, with different proof and by using

the concept of H-subgroup (see [3, Th. 8]). We observe that for a p-subgroup, the two concepts of

strongly closed subgroup and of H-subgroup are equivalent (see Lemma 2.2 ).

If G is p-soluble, then a p-subgroup V which is strongly closed can be characterized as the Sylow

p-subgroup of its normal closure. A subgroup possessing this property is called normally embedded (see

for instance [4, p. 250]). The above condition is not longer true in general. However, using properties

of G-chains we can prove the following result:

Let G be a finite group, p ∈ π(G) and P ∈ Sylp(G). Let V be strongly closed in P and suppose

that there is a chain 1 = Vo C V1 . . . C Vn = V with Vi, i = 1, . . . , n weakly closed and |Vi : Vi−1| = p.

Moreover, suppose that (|NG(V ) : CG(V )|, p− 1) = 1, then V ∈ Sylp(V G).

2. Some definitions and preliminary results

All the groups considered in the paper are finite and the notation is usually standard. In particular

π(G) indicates the set of different primes which divide the order of a finite group G. If p ∈ π(G) we

set p′ = {π(G) \ p}. If G is the semidirect product of the subgroups H and K with H E G, we write

[H]K. If p ∈ π(G), then Sylp(G) is the set of all the Sylow p-subgroups of G. A finite group G is said

to possess a Sylow tower if there is a normal series 1 = G0 C G1 C G2 . . . C Gn = G in G such that

Gi/Gi−1, 1 ≤ i ≤ n is isomorphic to a Sylow subgroup of G. Op(G) is the maximal normal p-subgroup

of G and Op′(G) is the maximal normal subgroup whose order is not divisible by p. Op(G) indicates

the minimal normal subgroup of G such that G/Op(G) is a p-group. If Op(G) = Op′(G), then this is a

normal Sylow p-complement of G and G is said to be p-nilpotent. If A is a subgroup of a finite group

G, then NG(A) and CG(A) are respectively the normalizer and the centralizer of A in G. Moreover

AG is the normal closure of A i.e. the minimal normal subgroup of G containing A. Finally, if G is a

p-group, then Ωi(G) is the subgroup of G generated by the elements of G of order less or equal to pi.

For the sake of the reader we remember some results and definitions.

Definition 2.1. Let T be a subgroup of a finite group G and let A be a subset of T .

a) A is said to be weakly closed in T (with respect to G) if whenever Ag ⊆ T with g ∈ G, we have

Ag = A.

b) A is said to be strongly closed in T (with respect to G) if for any element a ∈ A and for any

g ∈ G, ag ∈ T implies ag ∈ A (that is Ag ∩ T ⊆ A).
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c) If A is a subgroup and T = NG(A), then A is said to be an H-subgroup of G if Ag ∩ T ≤ A for

all g ∈ G (see [3]).

We often will omit the ”with respect to G” if it is not necessary to specify in which group we consider

the property.

We have the following properties of strongly closed subgroups (see [16, pg. 584] and [10]).

Lemma 2.2. Let G be a finite group. Then

(1) If A is a strongly closed subset in a subgroup T of G with respect to G, then A is weakly closed

in T with respect to G.

(2) Let V be a p-subgroup of G and let P ∈ Sylp(G) such that V ≤ P . Then the following conditions

on V are equivalent:

• The subgroup V is an H-subgroup of G.

• If S is any p-subgroup of G such that V ≤ S, then V is strongly closed in S with respect

to G.

• The subgroup V is strongly closed in P with respect to G.

(3) Let V be a p-subgroup of G and let P ∈ Sylp(G) such that V ≤ P . Suppose that V is a strongly

closed subgroup in P with respect to G. Then the following properties hold:

i) For any normal subgroup N of G, V ∩ N is a strongly closed subgroup in P with respect

to G.

ii) For any normal subgroup N of G, let G = G/N . Then V = V N/N is a strongly closed

subgroup in P = PN/N with respect to G and we have

NG(V ) = NG(V )N/N.

(4) Let G be a finite group and P ∈ Sylp(G). Suppose that V E P . Then

a) If N E G and V is weakly closed in P with respect to G then V N/N is weakly closed in

PN/N with respect to G/N .

b) V is normal in G if and only if V is weakly closed in P and subnormal in G.

Now we summarize and generalize some definitions given in previous papers (see [8] and [10]).

Definitions 2.3. a) Let G be a finite group and P ∈ Sylp(G). Suppose that Va and Vb are strongly

closed subgroups of P with Va < Vb. Let

(2.1) Va = Vo E V1 E . . .E Vn = Vb

a chain where Vi, i = 1, . . . n − 1 is weakly closed in P with respect to G and Vi/Vi−1 ≤
Z(Vb/Vi−1) for i = 1, . . . , n. Then (2.1) is said to be a p−G−chain connecting Va and Vb (or,

if there is no ambiguity, a G-chain connecting Va and Vb). If Va = 1 we simply say that (2.1)

is a G-chain of Vb.

b) If in the above definition |Vi : Vi−1| = p (i = 1, . . . , n), then (2.1) is said to be a strict

p−G−chain connecting Va and Vb.
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c) Suppose that V is a strongly closed subgroup of P ∈ Sylp(G) and that Φ(V ) is also strongly

closed in P . Then a strict G-chain connecting Φ(V ) and V is said to be a Φ-chain of V , that

is

Φ(V ) = V0 E V1 E · · ·E Vn = V

with Vi weakly closed and |Vi/Vi−1| = p (i = 1, . . . , n).

3. Supersoluble conditions

Let V be a normal subgroup of a Sylow p-subgroup P of a finite group G. Then V controls

transfer, i.e. P ∩ G′ = P ∩ NG(V )′ if and only if G/Op(G)G′ ∼= NG(V )/(Op(NG(V ))NG(V )′) ([14,

Lemma 6.15 d), p. 49]). On the other hand G/Op(G)G′ ∼= NG(V )/(Op(NG(V ))NG(V )′) if and only if

G/Op(G) ∼= NG(V )/Op(NG(V )) (see for instance [14, Th. 6.18, p. 51]). So, in the following, when we

say that V controls transfer we mean

G/Op(G) ∼= NG(V )/Op(NG(V )).

Lemma 3.1. [[10], Lemma 21] Let G be a finite group and P ∈ Sylp(G). Suppose that V is a strongly

closed subgroup of P . Moreover suppose that Φ(V ) is strongly closed in P with respect to G. Then V

controls transfer.

Proposition 3.2. Let G be a finite group and P a Sylow p-subgroup of G. Suppose that V is a strongly

closed subgroup of P which possesses a Φ-chain and that P/V is cyclic. Then P controls transfer.

Proof. Suppose that G is a minimal counterexample and let N = NG(P ) and N1 = NG(V ). Since V

possesses a Φ-chain, by Lemma 3.1 we have G/Op(G) ∼= N1/O
p(N1). If N1 < G, the hypotheses go to

N1 and so P controls transfer in N1, that is

NN1(P )/Op(NN1(P )) ∼= N1/O
p(N1).

Since NG(P )/Op(NG(P )) = NN1(P )/Op(NN1(P )) we have

G/Op(G) ∼= NG(P )/Op(NG(P )).

Therefore we can assume that N1 = G, that is V E G. Then we have Φ(V ) E G and Φ(V ) ≤ Φ(P ).

Suppose that Φ(V ) 6= 1 and consider Ĝ = G/Φ(V ). Then N/Φ(V ) = N
Ĝ

(P/Φ(V )). By minimality of

G we have G/Φ(V )/Op(G/Φ(V )) ∼= N/Φ(V )/Op(N/Φ(V )) that is

G/Op(G)Φ(V )) ∼= N/Op(N)Φ(V ).

Then P ∩ Op(G)Φ(V ) = P ∩ Op(N)Φ(V ) that is Φ(V )(P ∩ Op(G)) = Φ(V )(P ∩ Op(N)). Since

Φ(V ) ≤ Φ(P ) it follows that Φ(P )(P ∩ Op(G)) = Φ(P )(P ∩ Op(N)). We have that G = POp(G)

and N = POp(N). So it follows that Φ(P )Op(G) E G and Φ(P )Op(N) E N . On the other hand

P/(P ∩Op(G)Φ(P )) is elementary abelian as well P/(P ∩Op(N)Φ(P )). Therefore Op(G)Φ(P ) ≥ G′ and

then Op(G)Φ(P ) = Op(G)G′Φ(P ). Similarly Op(N)Φ(P ) ≥ N ′ and so Op(N)Φ(P ) = Op(N)N ′Φ(P ).

In particular Op(G)Φ(P ) and Op(N)Φ(P ) are the smallest normal subgroups of G and N respectively,
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with elementary abelian quotient. Therefore, since P ∩ Op(G)Φ(P ) = P ∩ Op(N)Φ(P ), we have, by

Tate’s result [5, p. 102], that P ∩Op(G) = P ∩Op(N), that is

G/Op(G) ∼= N/Op(N).

So we can suppose Φ(V ) = 1. Consider the chain

(3.1) 1 = Vo C V1 C . . .C Vs = V E Vs+1 E . . .E Vn = P

where 1 = Vo C V1 C . . . C Vs = V is the Φ-chain of V and V = Vs E Vs+1 E . . . E Vn = P is a chain

connecting V and P such that |Vj/Vj−1| = p, j = s + 1, . . . , n. Since P/V is cyclic, such a chain is

uniquely determined. Moreover Vj is weakly closed since V is normal in G. So the chain (3.1) is a

strict p − G−chain of P . Then P controls strong fusion by [9] and in particular it controls transfer,

that is G/Op(G) ∼= N/Op(N).

q.e.d.

Corollary 3.3. Let G be a finite group and p be the smallest prime in π(G). Suppose that V is a

strongly closed subgroup of P ∈ Sylp(G) which possesses a Φ-chain and that P/V is cyclic . Then G

is p-nilpotent.

Proof. By Proposition 3.2 it is enough to show that NG(P ) is p-nilpotent. Let K be a Hall p′-subgroup

of NG(P ) which exists by Schur-Zassenhaus Theorem [12, Th. 2.1, p. 221]. K induces automorphisms

of V that stabilize the Φ-chain of V since p is the smallest prime in π(G). It follows by [12, p. 178]

that K induces the identity on V/Φ(V ) and by [12, p. 180] K fixes V . Also K fixes P/V since P/V

is cyclic and p is the smallest prime. So K stabilizes the normal chain 1 E V E P and therefore, again

by [12, p. 178], K induces the identity on P . It means that NG(P ) = P ×K. q.e.d.

Corollary 3.4. A finite group G is supersoluble if and only if for all p ∈ π(G), if P ∈ Sylp(G), then

P possesses a strongly closed subgroup V with a Φ-chain and P/V cyclic.

Proof. Let G be a minimal counterexample and let r be the smallest prime in π(G). Then G has a

normal Sylow r-complement K by Corollary 3.3. By minimality of G we have that K is supersoluble

and so G has a Sylow tower with respect to the reverse natural order in π(G). Let q be the biggest

prime in π(G) and let Q ∈ Sylq(G) . Then QEG. By the hypotheses Q has a strongly closed subgroup

V which has Φ-chain and Q/V is cyclic. Since Φ(V ) is strongly closed and subnormal, we have, by

Lemma 2.2 (4 b) that Φ(V ) EG. Let Ĝ = G/Φ(V ) and suppose that Φ(V ) 6= 1. Since the hypotheses

go to Ĝ we have that Ĝ is supersoluble and since Φ(V ) ≤ Φ(G) we have that G is supersoluble. Then

we can assume Φ(V ) = 1. Since Q/V is cyclic with V C G and V has a Φ-chain it follows, repeating

an argument as in Proposition 3.2, that Q has a strict G-chain 1 = SoCS1CS2C . . .CSn = Q, where

Si, i = 1, . . . , n, being weakly closed and subnormal, is normal in G by Lemma 2.2 (4 b). Since G/Q

is supersoluble by minimality of G we have that G is supersoluble. Vice versa the result is true by

Corollary 2 of [8]. q.e.d.

As easy consequence of Corollary 3.4, considering property 3 i) of Lemma 2.2, we have the following:
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Corollary 3.5. A finite group G is supersoluble if and only if there is a normal subgroup N such

that G/N has cyclic Sylow subgroups and for every Sylow subgroup P of G we have that P ∩N has a

Φ-chain.

Remarks 3.6.

(1) Now we give two examples which show that if we exclude either that P/V is cyclic or that V

has a Φ-chain, then the conclusion in Proposition 3.2 does not hold.

• Consider G ∼= Sym4 and let P be a Sylow 2-subgroup of G. Let V be the Klein subgroup

which is normal in G. Then P/V is cyclic. On the other hand V does not possess a Φ-chain

since an eventually weakly closed subgroup, contained properly in V, would be normal in

G by Lemma 2.2 (4 b) and this is not the case. On the other hand NG(P ) = P . It follows

that P does not control transfer, otherwise G would have a normal Sylow 2-complement

and this is not true.

• Now consider G ∼= SL(2, 7) and let P ∼= Q16 (the generalized quaternion group) be a Sylow

2-subgroup of G. Take V = Z(P ), then V is strongly closed in P and and 1 = Φ(V ) C V

is a Φ-chain of V , but P/V is not cyclic. On the other hand NG(P ) = P and so, P does

not control transfer, otherwise, as in the previous example, G would have a normal Sylow

2-complement in G and this is not the case.

(2) Now we show that if we suppose that Φ(V ) is weakly closed, instead of strongly closed in the

definition of Φ-chain of the strongly closed subgroup V , then the conclusion of Proposition 3.2

is not true.

For, consider G ∼= PSL(2, 17) and let V = P ∈ Syl2(G). Then P is dihedral of order 16.

We have that Φ(P ) is the unique cyclic subgroup of order 4. So it is weakly closed in P but it

is not strongly closed. Moreover we observe that there is a unique cyclic subgroup H of order

8 between Φ(P ) and P . Therefore Φ(P ) CH C P is a chain in which the members are weakly

closed and the quotients are of order 2. We have that NG(P ) = P but, as in previous examples,

V does not control transfer since, otherwise G would have a normal Sylow 2-complement.

The next lemma extends [10, Th. 19] (see also [15]).

Lemma 3.7. Let G be a finite group, p the smallest prime in π(G) and P ∈ Sylp(G). Suppose that

any subgroup of P of order p, when p is odd, or any cyclic subgroup of P of order less than or equal to

4, when p = 2, is strongly closed in P with respect to G. Then G is p-nilpotent.

Proof. Let Ω(P ) =

{
Ω1(P ) for p odd

Ω2(P ) for p = 2

We have Ω1(P ) ≤ Z(P ). Moreover Ω2(P ), (for p = 2), is a product of strongly closed subgroups, then

it is strongly closed by Theorem 2 of [1]. If |〈x〉| = 4 then 〈x〉Ω1(P ) ≤ Z(P/Ω1(P )) and so Ω2(P ) ≤
Z2(P ). Therefore Ω(P ) has a G-chain, that is 1 C Ω1(P ) = Ω(P ) for p odd or 1 C Ω1(P ) E Ω2(P ) for

p = 2. We have that Ω(P ) controls strong fusion by [9], therefore Ω(P ) controls transfer, i.e.

(3.2) NG(Ω(P ))/Op(NG(Ω(P )) ∼= G/Op(G)
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Since any cyclic subgroup of order p, when p is odd, or any cyclic subgroup of order less than or

equal to 4, when p = 2, is strongly closed in P with respect to NG(Ω(P )), we have, by induction, that

NG(Ω(P )) is p-nilpotent if NG(Ω(P )) < G. Then G is p-nilpotent by (3.2).

So we can assume that Ω(P ) C G. Since all the subgroups of order p, when p is odd, or the cyclic

subgroups of order less than or equal to 4, when p = 2, are strongly closed and subnormal, then they

are normal in G by Lemma 2.2 (4 b).

Suppose that |〈x〉| = p with p odd. We have that |NG(〈x〉)/CG(〈x〉)| divides p − 1. Since p is the

smallest prime in π(G) we have CG(〈x〉) = NG(〈x〉) = G. It means 〈x〉 ≤ Z(G). By [13, Satz 5.5, p.

435] we have that G is p-nilpotent.

Now assume that p = 2. Clearly if |〈x〉| = 2, then CG(〈x〉) = G. So we suppose that |〈x〉| = 4. We

have |NG(〈x〉) : CG(〈x〉)| ≤ 2. By NG(〈x〉) = G it follows that CG(〈x〉) EG. Since all the elements of

order less than or equal to 4 of P ∩ CG(〈x〉) are strongly closed in P ∩ CG(〈x〉) with respect CG(〈x〉),
we have, by induction, that CG(〈x〉) is 2-nilpotent. Suppose that [G : CG(〈x〉)] = 2. Since O2′(CG〈x〉)
is characteristic in CG(〈x〉), we have that O2′(CG〈x〉) is a normal Sylow 2-complement of G. So G is

2-nilpotent. Therefore we can suppose that all the cyclic subgroups of order less than or equal to 4 are

in Z(G). Then, again by [13, Satz 5.5, p. 435] we have that G is 2-nilpotent. q.e.d.

Applying Lemma 3.7 we get a new proof of the following condition for supersolubility. As we have

observed in the introduction, this result is a restatement of Theorem 8 in [3].

Corollary 3.8. Let G be a finite group and suppose that any cyclic subgroup of prime order p (for any

p ∈ π(G)) or 4 is strongly closed in P ∈ Sylp(G) with respect to G. Then G is supersoluble.

Proof. By Lemma 3.7 G has a Sylow tower with respect to the reverse natural order. Let P ∈ Sylp(G)

where p is the biggest prime in π(G). Then P E G. By induction we have that G/P is supersoluble.

Therefore, to prove the result, it is enough to show that each principal factor H/K of G under P has

order p. For, let Po = Ω1(P ) = 〈xi : |xi| = p〉. Since 〈xi〉 is strongly closed and subnormal we have,

by Lemma 2.2 (4 b) that it it is normal in G. Now, with the same proof as [2, Th. 6.7, p. 25] we can

prove that |H/K| = p. q.e.d.

4. Strict p-G-chains and some applications

A p-subgroup V of a finite group G is said to be normally embedded in G if V is a Sylow p-subgroup

of its normal closure (see [4, p. 250]). It is known that if G is a finite p-soluble group and V is a

subgroup of P ∈ Sylp(G), then V is strongly closed in P with respect to G if and if it is normally

embedded in G (see for instance [11] where this property is stated without a proof for its simplicity).

However, for the convenience of the reader, we give an easy proof of it.

Lemma 4.1. Let G be a finite p-soluble group with P ∈ Sylp(G). Then a subgroup V of P is strongly

closed in P with respect to G if and only if it is normally embedded in G.
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Proof. First we suppose that V is normally embedded. Then there is a normal subgroup N of G such

that V = P ∩N for some P ∈ Sylp(G). So V g ∩ P = (P ∩N)g ∩ P = P g ∩N ∩ P ≤ V . Therefore V

is strongly closed in P with respect to G.

Vice versa, suppose that V is strongly closed in P with respect to G. Then we will show that V

is normally embedded in G by induction on |G|. If Op′(G) 6= 1, then V Op′(G)/Op′(G) is strongly

closed in G/Op′(G) by property 3 ii) of Lemma 2.2. So there is N E G with N ≥ Op′(G) such that

V Op′(G)/Op′(G) = (POp′(G)/Op′(G)) ∩ (N/Op′(G)) = (P ∩N)Op′(G)/Op′(G). Since V ≤ P ∩N , it

follows that V = P ∩ N . Therefore we may argue that Op′(G) = 1. Since G is p-soluble, it follows

that Op(G) 6= 1. By property 3 i) of Lemma 2.2 we have that V ∩Op(G) is strongly closed in P with

respect to G. Moreover, by properties 1) and 4 b) of Lemma 2.2, we have that V ∩Op(G) EG. Since

G is p-soluble and Op′(G) = 1, we have, by [12, Th. 3.3, p. 228], that CG(Op(G)) ≤ Op(G). So

V ∩ Op(G) 6= 1. Then, by induction V/V ∩ Op(G) is normally embedded in G/V ∩ Op(G). Therefore

V is normally embedded in G. q.e.d.

However the property of Lemma 4.1 is not true in general. Now we give a sufficient condition for a

strongly closed subgroup to be normally embedded.

Proposition 4.2. Let G be a finite group, p ∈ π(G) and P ∈ Sylp(G). Suppose that V is a strongly

closed subgroup of P which possesses a strict p − G− chain and (|NG(V ) : CG(V )|, p − 1) = 1. Then

V ∈ Sylp(V G).

Proof. Let 1 = Vo C V1 C . . . C Vn = V a strict p − G-chain of V . First observe that the condition

(|NG(V ) : CG(V )|, p − 1) = 1 implies NG(V ) ≤ CG(V1). In fact, suppose that x is a p′-element

in NG(V ). Since Vi, i = 1, . . . , n, is weakly closed in P , we have that Vi is invariant by x and so

it induces an automorphism of Vi/Vi−1, i = 1, . . . , n. Since |Aut(Vi/Vi−1)| = p − 1 the hypotheses

(|NG(V ) : CG(V )|, p− 1) = 1 implies that x centralizes Vi/Vi−1 for all i = {1, . . . , n}. Then by [12, p.

178] x centralizes V, in particular x ∈ CG(V1). If x is a p-element, then x ∈ Q ∈ Sylp(NG(V )). We

observe that Q ∈ Sylp(G) and that V1 ≤ Z(Q), so x ∈ CG(V1). If x is any element of NG(V ), then x

is a product of a p-element and a p′-element and so we are done.

Now we prove that V ∈ Sylp(V G) and we suppose that G is a minimal counterexample. We consider

N = NG(V1) and we distinguish two cases.

a) N = G. If V1 = V we are done. So we can suppose V1 < V . Then we consider G = G/V1 and

V = V/V1. Since NGV = NG(V )/V1 by Lemma 2.2 and considering that CG(V ) ≥ CG(V )/V1

we have that G satisfies the same hypotheses as G. Therefore V is a Sylow p-subgroup of (V )G.

But (V )G = V G/V1 and then V is a Sylow p-subgroup of V G.

b) N < G. Obviously V ≤ P ≤ N , so the hypotheses go to N . It follows that V ∈ Sylp(V N ). Now

let g ∈ N \ CG(V1). By Theorem A of [7] we have that V N has a normal Sylow p-complement

K. Since K is characteristic in V N we have that K is normal in N . So K ≤ CG(V1). Since

V g ∈ Sylp(V N ) we have V g = V k where k ∈ K. It follows gk−1 ∈ NG(V ). Then g = nk with

n ∈ NG(V ) ≤ CG(V1). So g ∈ CG(V1) against the assumption. It follows NG(V1) = CG(V1).
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This condition implies that if 〈x〉 = V1 then x is not conjugate to its powers. Furthermore,

since V1 is weakly closed in P with respect to G, we have that x does not commute with

its conjugates. So either by [6, Proposition 2.2] for the case p odd or by the Z∗-Theorem

of Glauberman if p = 2 (see [16, p. 315]) we have that V1Op′(G)/Op′(G) ≤ Z(G/Op′(G)).

Observe that, since V1 is not normal in G, we can suppose Op′(G) 6= 1. So, by minimality

of G we get that V Op′(G)/Op′(G) is a Sylow p-subgroup of (V Op′(G)/Op′(G))G/Op′ (G). Let

M/Op′(G) = (V Op′(G)/Op′(G))G/Op′ (G). Since M ≥ V G and (|V |, |Op′(G)|) = 1, we have that

V ∈ Sylp(V G) and so we are done.

q.e.d.

Corollary 4.3. Let G be a finite group and P ∈ Sylp(G). Suppose that (|G|, p− 1) = 1 and that V is

strongly closed in P with a strict p−G−chain. Then V Op′(G) is normal in G.

Proof. By Proposition 4.2 we have that V is a Sylow p-subgroup of V G. We have that NG(V )/CG(V )

is a p-group. In fact suppose that x is a p′-element of NG(V ). If 1 = VoE . . .EVn = V is a p−G−chain

of V , we have that Vi is invariant by x since Vi is weakly closed in P . So x induces an automorphism

of Vi+1/Vi, (i = 0, . . . , n− 1), of order dividing p− 1. Then, by assumption x induces the identity. It

follows, by [12, p. 178] that x induces the identity on V, that is x ∈ CG(V ). Then by [7] we have that

V G has a normal Sylow p-complement, say K. Of course K ≤ Op′(G). If Op′(G) = 1, then V = V G

and we are done. So we may assume that Op′(G) 6= 1. But G/Op′(G) satisfies the same hypotheses as

G. So by induction (V Op′(G)/Op′(G))Op′(G/Op′(G)) = V Op′(G)/Op′(G) is normal in G/Op′(G), that

is V Op′(G) EG. q.e.d.

Remarks 4.4. We prove that if we exclude one of the two hypotheses in Proposition 4.2, then the

conclusion is not true.

a) Consider the simple group PSL(2, 17). Then the Sylow p-subgroups for p odd are cyclic. In

particular a Sylow 3-subgroup P has order 9. Let V be a subgroup of order 3. Then V is

strongly closed and obviously has a p−G−chain. However V is not a Sylow 3-subgroup of its

normal closure. The reason depends on the fact that |NG(V ) : CG(V )|, 3− 1) 6= 1.

b) Let G ∼= Sz(22n+1) be a Suzuki group and P ∈ Syl2(G). Then Z(P ) = Ω1(P ) and so V = Z(P )

is strongly closed in P with respect to G. Here, obviously we have (|NG(V ) : CG(V )|, 2−1) = 1,

but V is not a Sylow 2-subgroup of V G. The reason depends on the fact that V has not strict

p−G−chain although it has obviously a p−G−chain.
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