The prime graph conjecture for integral group rings of some alternatings groups

Document Type: Ischia Group Theory 2012

Author

UNITED ARAB EMIRATES UNIVERSITY

Abstract

We investigate the classical H. Zassenhaus conjecture‎ ‎for integral group rings of alternating groups $A_9$ and $A_{10}$ of degree‎ ‎$9$ and $10$‎, ‎respectively‎. ‎As a consequence of our‎ ‎previous results we confirm the Prime Graph‎ ‎Conjecture for integral group rings of $A_n$ for all $n \leq 10$‎.

Keywords

Main Subjects


V.~A. Artamonov and A.~A. Bovdi (1991). Integral group rings: groups of invertible elements and classical {$K$}-theory. Algebra. {T}opology. {G}eometry, Vol. 27 ({R}ussian), Itogi Nauki i Tekhniki, 3--43, 232, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989. Translated in J. Soviet Math.. 57 (2), 2931-2958
V.~Bovdi, A.~Grishkov and A.~Konovalov (2009). Kimmerle conjecture for the {H}eld and {O}'{N}an sporadic simple groups. Sci. Math. Jpn.. 69 (3), 353-361
V. Bovdi and M.~Hertweck (2008). Zassenhaus conjecture for central extensions of ${S}_{5}$. J. Group Theory. 11 (1), 63-74
V.~Bovdi, C.~H{"o}fert and W.~Kimmerle (2004). On the first {Z}assenhaus conjecture for integral group rings. Publ. Math. Debrecen. 65 (3-4), 291-303
V.~Bovdi and A.~Konovalov (2007). Integral group ring of the first {M}athieu simple group. In Groups St. Andrews 2005. Vol. 1, volume 339 of London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge. , 237-245
V.~Bovdi and A.~Konovalov (2008). Integral group ring of the {M}athieu simple group {$Msb{23}$}. Comm. Algebra. 36 (7), 2670-2680
V.~Bovdi and A.~Konovalov (2009). Integral group ring of {R}udvalis simple group. Ukra"i n. Mat. Zh.. 61 (1), 3-13
V.~Bovdi and A.~Konovalov (2012). Integral group ring of the {M}athieu simple group {$M_{24}$}. J. Algebra Appl., 1250016, 10pp. 11 (1)
V.~Bovdi and A.~Konovalov (2010). Torsion units in integral group ring of {H}igman-{S}ims simple group. Studia Sci. Math. Hungar.. 47 (1), 1-11
V.~Bovdi, A.~Konovalov and S.~Linton (2008). Torsion units in integral group ring of the {M}athieu simple group ${rm M}sb {22}$. LMS J. Comput. Math.. 11, 28-39
V.~Bovdi, A.~Konovalov and E.~Marcos (2008). Integral group ring of the {S}uzuki sporadic simple group. Publ. Math. Debrecen. 72 (3-4), 487-503
V.~Bovdi, A.~Konovalov, and S.~Siciliano (2007). Integral group ring of the {M}athieu simple group {$Msb{12}$}. Rend. Circ. Mat. Palermo (2). 59 (1), 125-136
V.~A. Bovdi, E.~Jespers and A.~B. Konovalov (2011). Torsion units in integral group rings of {J}anko simple groups. Math. Comp.. 80 (273), 593-615
V.~A. Bovdi and A.~B. Konovalov, (2007). Integral group ring of the {M}c{L}aughlin simple group. Algebra Discrete Math.. 2, 43-53
V.~A. Bovdi, A.~B. Konovalov and S.~Linton (2011). Torsion units in integral group rings of {C}onway simple groups. Internat. J. Algebra Comput.. 21 (4), 615-634
M.~Caicedo, L.~Margolis and {'A}.~del R{'{i}}o (2012). Zassenhaus conjecture for cyclic-by-abelian groups. to appear in Journal of the London Mathematical Society. , 1-15
J.~Cohn and D.~Livingstone (1965). On the structure of group algebras. {I}. Canad. J. Math.. 17, 583-593
GAP -- Groups, Algorithms, and Programming, Version 4.4.12 (2008). href{http://www.gap-system.org}{http://www.gap-system.org}.
J.~Gildea (2013). Zassenhaus conjecture for integral group ring of simple linear groups. to appear J. Algebra Appl.. , 1-13
M.~Hertweck (2006). On the torsion units of some integral group rings. Algebra Colloq.. 13 (2), 329-348
M.~Hertweck (2008). Zassenhaus conjecture for {$A_6$}. Proc. Indian Acad. Sci. Math. Sci.. 118 (2), 189-195
M.~Hertweck (2007). Partial augmentations and {B}rauer character values of torsion units in group rings. to appear in Comm. Algebra, (E-print verb+arXiv:math.RA/0612429v2+). , 1-16
W.~Kimmerle (2006). On the prime graph of the unit group of integral group rings of finite groups. In Groups, rings and algebras, volume 420 of Contemp. Math., pages 215--228. Amer. Math. Soc., Providence, RI.
I.~S. Luthar and I.~B.~S. Passi (1989). Zassenhaus conjecture for {$Asb 5$}. Proc. Indian Acad. Sci. Math. Sci.. 99 (1), 1-5
Mini-{W}orkshop: {A}rithmetik von {G}ruppenringen (2007). Abstracts from the mini-workshop held November 25–December 1, 2007, Organized by Eric Jespers, Zbigniew Marciniak, Gabriele Nebe and Wolfgang Kimmerle. Oberwolfach Reports, Vol. 4 no. 4, Oberwolfach Rep.. 4 (4), 3209-3239
K.~Roggenkamp and L.~Scott (1987). Isomorphisms of {$p$}-adic group rings. Ann. of Math. (2). 126 (3), 593-647
M.~A.~M. Salim (2007). Torsion units in the integral group ring of the alternating group of degree 6. Comm. Algebra. 35 (12), 4198-4204
M.~A.~M. Salim (2011). Kimmerle's conjecture for integral group rings of some alternating groups. Acta Math. Acad. Paedagog. Nyh'azi. (N.S.). 27 (1), 9-22
A.~Weiss (1991). Torsion units in integral group rings. J. Reine Angew. Math.. 415, 175-187
H.~Zassenhaus (1974). On the torsion units of finite group rings. In Studies in mathematics (in honor of A. Almeida Costa) (Portuguese), Instituto de Alta Cultura, Lisbon. , 119-126