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THE PRIME GRAPH CONJECTURE FOR INTEGRAL GROUP RINGS OF

SOME ALTERNATING GROUPS

MOHAMED A. SALIM

Communicated by Patrizia Longobardi

Abstract. We investigate the classical H. Zassenhaus conjecture for integral group rings of alternating

groups A9 and A10 of degree 9 and 10, respectively. As a consequence of our previous results we confirm

the Prime Graph Conjecture for integral group rings of An for all n ≤ 10.

1. Introduction and main results

Let G be a finite group and let V (ZG) denote the group of all normalized units of the integral group

ring ZG of G. In [30], H. Zassenhaus proposed the following conjecture

(ZC): Every torsion unit u in V (ZG) conjugates to some element g in G within the rational group

algebra QG.

Let π(H) denote the Gruenberg-Kegel (prime) graph of a group H (not necessarily finite); i.e., the

graph whose vertices are labeled by primes p for which there exists an element of order p in H and

with an edge from p to a distinct prime q if and only if H has an element of order pq. In [25] (see also

[23]), the following weaker version of (ZC) was proposed. We may call it the Prime Graph Conjecture:

(PGC): π(V (ZG)) = π(G) for any finite group G.

The question about (ZC) remains open as no counterexample is known up to date. For nilpotent

groups, (ZC) has been proved independently by K.W. Roggenkamp and L.L. Scott in [26] and by

A. Weiss in [29]. But their method can not be applied to simple groups. However, using a new

method based on the partial augmentation of a torsion unit, I.S. Luthar and I.B.S. Passi in [24]

confirmed (ZC) for the alternating group A5 of degree 5. Also, in [27, 28, 21] a positive answer for
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(PGC) was given for several new classes of groups, in particular for the alternating groups A6, A7 and

A8.

Recently, the (PGC) has been investigated in several papers. A positive answer has been given for

solvable groups, Frobenius groups and almost for several simple groups in [23], [3] and [2, 5, 6, 7, 8,

9, 10, 11, 12, 13, 14, 15, 19], respectively. Also, for non simple groups, see [3, 4, 16].

Here we continue our study of (ZC) for alternating groups. Our main results are given in the

following two theorems.

Theorem 1.1. Let G denote the alternating group A9. For a torsion unit u in V (ZG) of order |u|,
denote the partial augmentation of u by

P (u) = (ν2a, ν2b, ν3a, ν3b,ν3c, ν4a, ν4b, ν5a, ν6a, ν6b,

ν7a, ν9a, ν9b, ν10a, ν12a, ν15a, ν15b) ∈ Z17.

The following hold:

(i) There are no units of order 14, 21 and 35 in V (ZG).

(ii) If |u| ∈ {5, 7}, then u is rationally conjugate to some g ∈ G.

(iii) If |u| = 2, then the tuple of the partial augmentations of u belongs to the set

{ P (u) ∈ Z17 | (ν2a, ν2b) ∈ { (0, 1), (2,−1),(1, 0), (−1, 2) },

νkx = 0, kx 6∈ {2a, 2b} }.

(iv) If |u| = 3, then the tuple of the partial augmentations of u belongs to the set

{ P (u) ∈ Z17 | (ν3a, ν3b, ν3c) ∈ { (0,−1, 2), (1,−1, 1), (1, 0, 0),

(−1, 0, 2), (0, 0, 1), (0, 2,−1),

(0,−2, 3), (0, 1, 0), (−1, 1, 1) },

νkx = 0, kx 6∈ {3a, 3b, 3c} }.

(v) If |u| = 10, then the tuple of the partial augmentations of u belongs to the set

{ P (u) ∈ Z17 | (ν2a, ν2b, ν5a, ν10a) ∈ { (0, 0, 0, 1), (1, 1, 0,−1) },

νkx = 0, kx 6∈ {2a, 2b, 5a, 10a} }.

Theorem 1.2. Let G denote the alternating group A10. For a torsion unit u in V (ZG) of order |u|,
denote the partial augmentation of the element u by

P (u) = (ν2a, ν2b, ν3a, ν3b,ν3c, ν4a, ν4b, ν4c, ν5a,

ν5b, ν6a,ν6b, ν6c, ν7a, ν8a, ν9a, ν9b,

ν10a, ν12a, ν12b, ν15a, ν21a, ν21b) ∈ Z23.

The following hold:

(i) There are no units of order 14 and 35 in V (ZG).

(ii) If |u| ∈ {5, 7}, then u is rationally conjugate to some g ∈ G.
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(iii) If |u| = 2, then the tuple of the partial augmentations of u belongs to the set

{ P (u) ∈ Z23 | (ν2a, ν2b) ∈ { (0, 1), (−2, 3), (2,−1),

(1, 0), (−1, 2) }, νkx = 0, kx 6∈ {2a, 2b} }.

(iv) If |u| = 3, then the tuple of the partial augmentations of u belongs to the set

{ P (u) ∈ Z23 | (ν3a, ν3b, ν3c) ∈ { (0,−1, 2), (0, 3,−2), (1, 0, 0),

(0, 0, 1), (0, 2,−1), (−1, 2, 0),

(1, 1,−1), (0, 1, 0), (−1, 1, 1) },

νkx = 0, kx 6∈ {3a, 3b, 3c} }.

As an immediate consequence of the first parts of Theorems 1.1, 1.2 and [21, 27, 28] we obtain the

solution of the Prime Graph Conjecture for An:

Corollary 1.3. For all n ≤ 10, if G = An, then π(G) = π(V (ZG)).

2. Preliminaries

Let G be a finite group and let C = {C1, Ckx | x ∈ {a, b, . . .}, k ≥ 2} be the collection of all

conjugacy classes of G, where the first index denotes the order of the elements of this conjugacy class

and C1 = {1}. Supposing that the torsion unit u =
∑
αgg ∈ V (ZG) has order k, denote the partial

augmentation of u with respect to the conjugacy class Cnt by νnt = εCnt(u) =
∑

g∈Cnt
αg. Denote the

tuple of partial augmentations of the unit u by

P (u) = (νkx | x ∈ {a, b, . . .}, k ≥ 2) ∈ Zl,

where l + 1 is the number of conjugacy classes of G.

From Higman-Berman’s Theorem [1] one knows that ν1 = α1 = 0 and∑
Cnt∈C

νnt = 1.

Hence, for any character χ of G, we get that χ(u) =
∑
νntχ(hnt), where hnt is a representative of

a conjugacy class Cnt. Throughout the paper the p-Brauer character table of the group G will be

denoted by BCT(p), which can be found using the computational algebra system GAP [18]. Clearly,

if G ∈ {A9, A10}, then the prime number p has value p ∈ {2, 3, 5, 7}.

Through the proofs of the main results we use the following propositions from [17, 20, 22, 24].

Proposition 2.1. (see [24, 22]) Let either p = 0 or p be a prime divisor of |G| and let F be the

associated prime field. Suppose that u ∈ V (ZG) has finite order k and assume k and p are coprime in

case p 6= 0. If z is a primitive k-th root of unity and χ is either a classical character or a p-Brauer

character of G then for every integer l the number

(2.1) µl(u, χ, p) =
1

k

∑
d|k

TrF (zd)/F {χ(ud)z−dl}
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is a non-negative integer.

For p = 0 we will use the notation µl(u, χ, ∗) for µl(u, χ, 0).

Proposition 2.2. (see [17]) The order of any unit u ∈ V (ZG) is a divisor of the exponent of G.

Proposition 2.3. (see [24]) Let u be a torsion unit of V (ZG). Let C be a conjugacy class of G. If

a ∈ C and p is a prime dividing the order of a but not the order of u then εC(u) = 0.

M. Hertweck ([20], Proposition 3.1; [22], Lemma 5.6) obtained the next results. These already yield

that several partial augmentations of the torsion units are zero.

Proposition 2.4. Let G be a finite group and let u be a torsion unit in V (ZG). If x is an element

of G whose p-part, for some prime p, has order strictly greater than the order of the p-part of u, then

εx(u) = 0.

Proposition 2.5. (see [24]) Let u ∈ V (ZG) be of order k. Then u is conjugate in QG to an element

g ∈ G if and only if for each d dividing k there is precisely one conjugacy class C with partial

augmentation εC(ud) 6= 0.

3. Proof of the Theorems

Proof of Theorem 1.1. Let G = A9. It is well known that |G| = 181440 = 26 · 34 · 5 · 7 and exp(G) =

1260 = 22 · 32 · 5 · 7. The p-Brauer character tables are available for primes p ∈ {2, 3, 5, 7}. The group

G possesses elements of orders 2, 3, 4, 5, 6, 7, 9, 10, 12 and 15. First we investigate units of orders

2, 3, 5, 7 and 10. Secondly, according to Proposition 2.2, the order of each torsion unit divides the

exponent of G, so the possible orders for units are: 14, 18, 20, 24, 30, 35, 45 and 63. We prove that

units of orders 14, 21 and 35 do not appear in V (ZG).

• Let u be an involution. Then we have ν2a + ν2b = 1 by Propositions 2.3 and 2.4. According to

(2.1) we get the following system of three inequalities:

µ0(u, χ2, ∗) = 1
2(4ν2a + 8) ≥ 0; µ1(u, χ2, ∗) = 1

2(−4ν2a + 8) ≥ 0;

µ0(u, χ2, 3) = 1
2(3ν2a − ν2b + 7) ≥ 0,

which has the four integral solutions listed in part (iii) of the Theorem.

• Let u be a unit of order 3. Then ν3a + ν3b + ν3c = 1 by Propositions 2.3 and 2.4. Put t1 =

5ν3a − ν3b + 2ν3c and t2 = 4ν3a + ν3b − 2ν3c. Then by (2.1) we have that

µ0(u, χ2, ∗) = 1
3(2t1 + 8) ≥ 0; µ1(u, χ2, ∗) = 1

3(−t1 + 8) ≥ 0;

µ0(u, χ5, ∗) = 1
3(18ν3a + 27) ≥ 0; µ1(u, χ5, ∗) = 1

3(−9ν3a + 27) ≥ 0;

µ0(u, χ3, 2) = 1
3(−2t2 + 8) ≥ 0; µ1(u, χ3, 2) = 1

3(t2 + 8) ≥ 0.

From the first two inequalities we get that t1 ∈ {−4,−1, 2, 5, 8} and from the next two we get that

ν3a ∈ {−1, 0, 1, 2, 3}. Considering the last two inequalities, we obtain the 6 non-trivial and 3 trivial

integral solutions listed in part (iv) of the Theorem.
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• Let u be a unit of order either 5 or 7. Then by Propositions 2.3 and 2.4, the only nonzero

partial augmentation is ν5a = 1 or ν7a = 1, respectively. According to Proposition 2.5, such unit u is

rationally conjugate to an element g ∈ G.

• Let u be a unit of order 10. Then ν2a + ν2b + ν5a + ν10a = 1 by Propositions 2.3 and 2.4. Put

t1 = 4ν2a + 3ν5a − ν10a, t2 = ν2a − 3ν2b + ν5a + ν10a and t3 = 7ν2a + 3ν2b + 2ν5a + 2ν10a. Since u5 is

an involution, we need to consider the following four cases:

χ(u5) ∈ {χ(2a), χ(2b), 2χ(2a)− χ(2b), −χ(2a) + 2χ(2b)}.

Consider each case separately:

Case 1. Let χ(u5) = χ(2a) and χ(u2) = χ(5a). By (2.1) we obtain the following system of

inequalities:

µ1(u, χ2, ∗) = 1
10(t1 + 1) ≥ 0; µ5(u, χ2, ∗) = 1

10(−4t1 + 16) ≥ 0;

µ0(u, χ3, ∗) = 1
10(4t2 + 26) ≥ 0; µ5(u, χ3, ∗) = 1

10(−4t2 + 24) ≥ 0;

µ1(u, χ3, ∗) = 1
10(t2 + 19) ≥ 0; µ1(u, χ5, ∗) = 1

10(t3 + 18) ≥ 0;

µ0(u, χ5, ∗) = 1
10(4t3 + 42) ≥ 0; µ5(u, χ5, ∗) = 1

10(−4t3 + 28) ≥ 0.

It is easy to check that t1 = −1, t2 = 1 and t3 ∈ {−8, 2}, which has the following integral solution:

(0, 0, 0, 1).

Case 2. Let χ(u5) = χ(2b) and χ(u2) = χ(5a). By (2.1) we have

µ0(u, χ2, ∗) = 1
10(4t1 + 20) ≥ 0; µ2(u, χ2, ∗) = 1

10(−4t1 + 5) ≥ 0;

µ0(u, χ3, ∗) = 1
10(4t2 + 22) ≥ 0; µ5(u, χ3, ∗) = 1

10(−4t2 + 28) ≥ 0;

µ1(u, χ3, ∗) = 1
10(t2 + 23) ≥ 0; µ1(u, χ5, ∗) = 1

10(t3 + 22) ≥ 0;

µ0(u, χ5, ∗) = 1
10(4t3 + 38) ≥ 0; µ5(u, χ5, ∗) = 1

10(−4t3 + 32) ≥ 0;

µ0(u, χ2, 3) = 1
10(12ν2a − 4ν2b + 8ν5a − 8ν10a + 14) ≥ 0.

It follows that t1 ∈ {−5, 5}, t2 ∈ {−3, 7} and t3 ∈ {−2, 8}, which has the following integral solution:

(1, 1, 0,−1).

Case 3. Let χ(u5) = 2χ(2a)− χ(2b) and χ(u2) = χ(5a). By (2.1) we have

µ1(u, χ2, ∗) = 1
10(t1 − 3) ≥ 0; µ5(u, χ2, ∗) = 1

10(−4t1 + 12) ≥ 0;

µ0(u, χ3, ∗) = 1
10(4t2 + 30) ≥ 0; µ5(u, χ3, ∗) = 1

10(−4t2 + 20) ≥ 0;

µ1(u, χ3, ∗) = 1
10(t2 + 15) ≥ 0; µ1(u, χ5, ∗) = 1

10(t3 + 14) ≥ 0;

µ0(u, χ5, ∗) = 1
10(4t3 + 46) ≥ 0; µ5(u, χ5, ∗) = 1

10(−4t3 + 24) ≥ 0;

µ0(u, χ7, ∗) = 1
10(−20ν2a + 12ν2b + 22) ≥ 0.

It follows that t1 = 3, t2 ∈ {−5, 5} and t3 ∈ {−4, 6}, which has no integral solution.



180 Int. J. Group Theory 2 no. 1 (2013) 175-185 M. A. Salim

Case 4. Let χ(u5) = −χ(2a) + 2χ(2b) and χ(u2) = χ(5a). Using (2.1) we obtain the following

system of inequalities:

µ0(u, χ2, ∗) = 1
10(4t1 + 16) ≥ 0; µ2(u, χ2, ∗) = 1

10(−t1 + 1) ≥ 0;

µ0(u, χ3, ∗) = 1
10(4t2 + 18) ≥ 0; µ5(u, χ3, ∗) = 1

10(−4t2 + 32) ≥ 0;

µ1(u, χ3, ∗) = 1
10(t2 + 27) ≥ 0; µ1(u, χ5, ∗) = 1

10(t3 + 26) ≥ 0;

µ0(u, χ5, ∗) = 1
10(4t3 + 34) ≥ 0; µ5(u, χ5, ∗) = 1

10(−4t3 + 36) ≥ 0.

It follows that t1 = 1, t2 = 3 and t3 ∈ {−6, 4}, which has no integral solution.

• Let u be a unit of order 14. Then we have ν2a + ν2b + ν7a = 1 by Propositions 2.3 and 2.4. Put

t1 = 4ν2a + ν7a and t2 = ν2a − 3ν2b. Since χ(u7) has order 2, according to the previous cases we need

to consider the following four cases:

χ(u7) ∈ {χ(2a), χ(2b), 2χ(2a)− χ(2b), −χ(2a) + 2χ(2b)}.

Consider each case separately:

Case 1. Let χ(u7) = χ(2a) and χ(u2) = χ(7a). Then by (2.1) we have that

µ0(u, χ2, ∗) = 1
14(6t1 + 18) ≥ 0; µ7(u, χ2, ∗) = 1

14(−6t1 + 10) ≥ 0;

µ0(u, χ3, ∗) = 1
14(6t2 + 22) ≥ 0; µ7(u, χ3, ∗) = 1

14(−6t2 + 20) ≥ 0;

µ1(u, χ3, ∗) = 1
14(t2 + 20) ≥ 0,

which has no integral solutions.

Case 2. Let χ(u7) = χ(2b) and χ(u2) = χ(7a). Then by (2.1) we have that

µ0(u, χ2, ∗) = 1
14(6t1 + 14) ≥ 0; µ7(u, χ2, ∗) = 1

14(−6t1 + 14) ≥ 0;

µ1(u, χ2, ∗) = 1
14(t1 + 7) ≥ 0;

µ0(u, χ3, ∗) = 1
14(6t2 + 26) ≥ 0; µ7(u, χ3, ∗) = 1

14(−6t2 + 16) ≥ 0,

which has no integral solutions.

Case 3. Let χ(u7) = 2χ(2a) − χ(2b) and χ(u2) = χ(7a). Then by (2.1) we obtain the following

system of inequalities

µ1(u, χ2, ∗) = 1
14(t1 − 1) ≥ 0; µ7(u, χ2, ∗) = 1

14(−6t1 + 6) ≥ 0;

µ0(u, χ3, ∗) = 1
14(6t2 + 26) ≥ 0; µ7(u, χ3, ∗) = 1

14(−6t2 + 16) ≥ 0.

It follows that t1 = 1 and t2 = −2 which has no integral solutions.

Case 4. Let χ(u7) = −χ(2a) + 2χ(2b) and χ(u2) = χ(7a). Then by (2.1) we have that

µ0(u, χ2, ∗) = 1
14(6t1 + 10) ≥ 0; µ2(u, χ2, ∗) = 1

14(−t1 + 3) ≥ 0;

µ0(u, χ3, ∗) = 1
14(6t2 + 14) ≥ 0; µ7(u, χ3, ∗) = 1

14(−6tr2 + 28) ≥ 0.

It follows that t1 = 3 and t2 = 0 which has no integral solutions.
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• Let u be a unit of order 21. Then ν3a + ν3b + ν3c + ν7a = 1 by Propositions 2.3 and 2.4. Put

t1 = 5ν3a − ν3b + 2ν3c + ν7a and t2 = ν3a − ν3b. Since χ(u7) has order 3, according to previous cases

we need to consider the following nine cases:

χ(u7) ∈ {χ(3a), χ(3b), χ(3c), − 2χ(3b) + 3χ(3c),

χ(3a)− χ(3b) + χ(3c), − χ(3a) + χ(3b) + χ(3c)

−χ(3a) + 2χ(3c), 2χ(3b)− χ(3c), −χ(3b) + 2χ(3c)}.

Consider each case separately:

Case 1. Let χ(u7) = χ(3a) and χ(u3) = χ(7a). Then by (2.1) we have that:

µ0(u, χ2, ∗) = 1
21(12t1 + 24) ≥ 0; µ7(u, χ2, ∗) = 1

21(−6t1 + 9) ≥ 0;

µ7(u, χ3, ∗) = 1
21(18t2 + 24) ≥ 0; µ0(u, χ3, ∗) = 1

21(−36t2 + 15) ≥ 0,

which has no integral solutions.

Case 2. Let χ(u7) = χ(3b) and χ(u3) = χ(7a). Then by (2.1) we have the following system of two

inequalities:

µ0(u, χ2, ∗) = 1
21(12t1 + 12) ≥ 0; µ3(u, χ2, ∗) = 1

21(−2t1 + 5) ≥ 0.

Clearly, it has no integral solution.

Case 3. Let χ(u7) = χ(3c) and χ(u3) = χ(7a). Then by (2.1) we have that:

µ0(u, χ2, ∗) = 1
21(12t1 + 18) ≥ 0; µ7(u, χ2, ∗) = 1

21(−6t1 + 12) ≥ 0;

µ1(u, χ2, ∗) = 1
21(t1 + 5) ≥ 0.

It has no integral solution.

Case 4. Let χ(u7) = −2χ(3b) + 3χ(3c) and χ(u3) = χ(7a). According to (2.1) we are able to

construct the following system of inequalities:

µ1(u, χ2, ∗) = 1
21(t1 − 1) ≥ 0; µ7(u, χ2, ∗) = 1

21(−6t1 + 6) ≥ 0;

µ3(u, χ3, ∗) = 1
21(6t2 + 9) ≥ 0; µ0(u, χ3, ∗) = 1

21(−36t2 + 9) ≥ 0,

which has no integral solutions.

Case 5. Let χ(u7) = χ(3a)− χ(3b) + χ(3c) and χ(u3) = χ(7a). Then by (2.1) we have the system:

µ1(u, χ2, ∗) = 1
21(t1 − 1) ≥ 0; µ7(u, χ2, ∗) = 1

21(−6t1 + 6) ≥ 0;

µ3(u, χ3, ∗) = 1
21(6t2 + 9) ≥ 0; µ0(u, χ3, ∗) = 1

21(−36t2 + 9) ≥ 0,

which has no integral solutions.

Case 6. Let χ(u7) = −χ(3b) + 2χ(3c) and χ(u3) = χ(7a). Then by (2.1) we have the system of four

inequalities:

µ0(u, χ2, ∗) = 1
21(12t1 + 24) ≥ 0; µ7(u, χ2, ∗) = 1

21(−6t1 + 9) ≥ 0;

µ7(u, χ3, ∗) = 1
21(18t2 + 24) ≥ 0; µ0(u, χ3, ∗) = 1

21(−36t2 + 15) ≥ 0,

which has no integral solutions.



182 Int. J. Group Theory 2 no. 1 (2013) 175-185 M. A. Salim

Case 7. Let χ(u7) = −χ(3a)+2χ(3c) and χ(u3) = χ(7a). Then by (2.1) we get the following system

of inequalities:

µ0(u, χ2, ∗) = 1
21(5t1 + 12) ≥ 0; µ3(u, χ2, ∗) = 1

21(−12t1 + 5) ≥ 0,

which has no integral solutions.

Case 8. Let χ(u7) = −χ(3a) + χ(3b) + χ(3c) and χ(u3) = χ(7a). According to (2.1) we are able to

construct the following system of inequalities:

µ0(u, χ2, ∗) = 1
21(12t1 + 6) ≥ 0; µ3(u, χ2, ∗) = 1

21(−2t1 − 1) ≥ 0,

which has no integral solutions.

Case 9. Let χ(u7) = 2χ(3b) − χ(3c) and χ(u3) = χ(7a). Then by (2.1) we obtain the following

unsolvable system of inequalities:

µ0(u, χ2, ∗) = 1
21(t1 + 6) ≥ 0; µ3(u, χ2, ∗) = 1

21(−t1 − 1) ≥ 0.

• Let u be a unit of order 35. Then ν5a+ν7a = 1 by Propositions 2.3 and 2.4. Clearly χ(u7) = χ(5a)

and χ(u5) = χ(7a). Put t1 = 3ν5a + ν7a. Then by (2.1) we have the system of inequalities:

µ0(u, χ2, ∗) = 1
35(24t1 + 26) ≥ 0; µ7(u, χ2, ∗) = 1

35(−6t1 + 11) ≥ 0,

which has no integral solution. �

Proof of Theorem 1.2. Let G = A10. It is well known that |G| = 1814400 = 27 · 34 · 52 · 7 and

exp(G) = 2520 = 23 · 32 · 5 · 7. The group G possesses elements of orders 2, 3, 4, 5, 6, 7, 8, 9, 10, 12,

15 and 21. First we investigate units of orders 2, 3, 5 and 7. Secondly, according to Proposition 2.2,

the order of each torsion unit divides the exponent of G, so the possible orders for units are: 14, 18,

20, 24, 30, 35, 45 and 63. We prove that units of orders 14 and 35 do not appear in V (ZG).

Now we consider each case separately.

• Let u be a unit of order 2. Then ν2a + ν2b = 1 by Propositions 2.3 and 2.4. Put t = 5ν2a + ν2b.

By (2.1) we obtain that

µ0(u, χ2, ∗) = 1
2(t+ 9) ≥ 0; µ1(u, χ2, ∗) = 1

2(−t+ 9) ≥ 0,

which has the 5 integral solutions listed in part (iii) of the Theorem.

• Let u be a unit of order 3. Then we have ν3a + ν3b + ν3c = 1 by Propositions 2.3 and 2.4. Put

t1 = 2ν3a + ν3b, t2 = 14ν3a + 2ν3b − ν3c and t3 = 8ν3a − 4ν3b + 2ν3c. According to (2.1) we obtain the

system of inequalities:

µ0(u, χ2, ∗) = 1
3(6t1 + 9) ≥ 0; µ1(u, χ2, ∗) = 1

3(−3t1 + 9) ≥ 0;

µ0(u, χ3, ∗) = 1
3(2t2 + 35) ≥ 0; µ1(u, χ3, ∗) = 1

3(−t2 + 35) ≥ 0;

µ0(u, χ3, 2) = 1
3(−2t3 + 16) ≥ 0; µ1(u, χ3, 2) = 1

3(t3 + 16) ≥ 0.

It is easy to see that this system has 6 non-trivial and 3 trivial integral solutions, which are listed in

Theorem 1.2(iv).
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• Let u be a unit of order 5. Then ν5a + ν5b = 1 by Propositions 2.3 and 2.4. The system of two

inequalities constructed by (2.1)

µ0(u, χ2, ∗) = 1
5(16ν5a − 4ν5b + 9) ≥ 0;

µ0(u, χ3, 2) = 1
5(−16ν5a + 4ν5b + 16) ≥ 0,

has only two trivial integral solutions: (ν5a, ν5b) ∈ {(0, 1), (1, 0)}.
• Let u be a unit of order 7. Then by Propositions 2.3 and 2.4, ν7a = 1 and νkx = 0 for kx 6= 7a.

According to Propositions 2.5, the unit u is rationally conjugate to an element g ∈ G.

• Let u be a unit of order 14. Then ν2a + ν2b + ν7a = 1 by Propositions 2.3 and 2.4. Put

t1 = 5ν2a + ν2b + 2ν7a and t2 = 11ν2a + 3ν2b. Since

χ(u7) ∈ {χ(2a), χ(2b), 2χ(2a)− χ(2b),

−χ(2a) + 2χ(2b), −2χ(2a) + 3χ(2b)}

we need to consider the following five cases:

Case 1. Let χ(u7) = χ(2a) and χ(u2) = χ(7a). By (2.1) we obtain that

µ1(u, χ2, ∗) = 1
14(t1 + 2) ≥ 0; µ7(u, χ2, ∗) = 1

14(−6t1 + 16) ≥ 0;

µ0(u, χ3, ∗) = 1
14(6t2 + 46) ≥ 0; µ1(u, χ3, ∗) = 1

14(t2 + 24) ≥ 0;

µ7(u, χ3, ∗) = 1
14(−6t2 + 24) ≥ 0.

It follows that t1 = 5 and t2 = 4, which has no integral solution.

Case 2. Let χ(u7) = χ(2b) and χ(u2) = χ(7a). According to (2.1)

µ0(u, χ2, ∗) = 1
14(6t1 + 22) ≥ 0; µ7(u, χ2, ∗) = 1

14(−6t1 + 20) ≥ 0;

µ1(u, χ2, ∗) = 1
14(t1 + 6) ≥ 0.

From the first two equations we get t1 = 1, which contradicts the third one. So this system has no

integral solutions.

Case 3. Let χ(u7) = 2χ(2a)− χ(2b) and χ(u2) = χ(7a). By (2.1) we have

µ1(u, χ2, ∗) = 1
14(t1 − 2) ≥ 0; µ7(u, χ2, ∗) = 1

14(−6t1 + 12) ≥ 0;

µ0(u, χ3, ∗) = 1
14(6t2 + 54) ≥ 0; µ1(u, χ3, ∗) = 1

14(t2 + 16) ≥ 0;

µ7(u, χ3, ∗) = 1
14(−6t2 + 16) ≥ 0.

It follows that t1 = 2 and t2 = 2, which has no integral solution.

Case 4. Let χ(u7) = −χ(2a) + 2χ(2b) and χ(u2) = χ(7a). By (2.1)

µ0(u, χ2, ∗) = 1
14(6t1 + 18) ≥ 0; µ2(u, χ2, ∗) = 1

14(−t1 + 4) ≥ 0;

µ0(u, χ3, ∗) = 1
14(6t2 + 30) ≥ 0; µ1(u, χ3, ∗) = 1

14(t2 + 40) ≥ 0;

µ7(u, χ3, ∗) = 1
14(−6t2 + 40) ≥ 0.

Clearly, t1 = 4 and t2 = 2. It is easy to check that such system of equations has no integral solution.
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Case 5. Let χ(u7) = −2χ(2a) + 3χ(2b) and χ(u2) = χ(7a). By (2.1) we have the following system

of inequalities:

µ0(u, χ2, ∗) = 1
14(6t1 + 14) ≥ 0; µ2(u, χ2, ∗) = 1

14(−t1) ≥ 0;

µ0(u, χ3, ∗) = 1
14(6t2 + 22) ≥ 0; µ1(u, χ3, ∗) = 1

14(t2 + 48) ≥ 0;

µ7(u, χ3, ∗) = 1
14(−6t2 + 48) ≥ 0.

It follows that t1 = 0 and t2 = 8, which has no integral solutions.

• Let u be of order 35. Then by Propositions 2.3 and 2.4 we get that

ν5a + ν5b + ν7a = 1.

Put t1 = 4ν5a − ν5b + 2ν7a. We consider the following two cases:

Case 1. Let χ(u7) = χ(5a) and χ(u5) = χ(7a). Using (2.1) we obtain that

µ0(u, χ2, ∗) = 1
35(24t1 + 37) ≥ 0; µ7(u, χ2, ∗) = 1

35(−6t1 + 17) ≥ 0,

which has no integral solutions.

Case 2. Let χ(u7) = χ(5b) and χ(u5) = χ(7a). By (2.1) we construct the system of two inequalities:

µ0(u, χ2, ∗) = 1
35(24t1 + 17) ≥ 0; µ5(u, χ2, ∗) = 1

35(−4t1 + 3) ≥ 0,

which has no integral solutions. �
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