THE n-ARY ADDING MACHINE AND SOLVABLE GROUPS

J. DA SILVA ROCHA AND S. NAJATI SIDKI

Communicated by Alireza Abdollahi

Abstract. We describe under various conditions abelian subgroups of the automorphism group $\text{Aut}(T_n)$ of the regular n-ary tree T_n, which are normalized by the n-ary adding machine $\tau = (e, \ldots, e, \tau)\sigma_\tau$ where σ_τ is the n-cycle $(0, 1, \ldots, n-1)$. As an application, for $n = p$ a prime number, and for $n = 4$, we prove that every soluble subgroup of $\text{Aut}(T_n)$, containing τ is an extension of a torsion-free metabelian group by a finite group.

1. Introduction

Adding machines have played an important role in dynamical systems, and in the theory of groups acting on trees: see [1, 6, 7, 3, 5].

An element α in the automorphism group $A_n = \text{Aut}(T_n)$ of the n-ary tree T_n, is represented as $\alpha = \alpha|_\phi = (\alpha|_0, \ldots, \alpha|_{n-1})\sigma_\alpha$ where ϕ is the empty sequence from the free monoid \mathcal{M} generated by $Y = \{0, 1, \ldots, n-1\}$, where $\alpha|_i \in A_n$, for $i \in Y$, are called 1st level states of α and where σ_α (the activity of α) is a permutation in the symmetric group Σ_n on Y extended ‘rigidly’ to act on the tree; if $\sigma_\alpha = e$, we say that α is inactive.

In applying the same representation to $\alpha|_0$ we produce $\alpha|_0$ for all $i \in Y$ and we produce in general $\{\alpha|_u \mid u \in \mathcal{M}\}$ the set of states of α. Following this notation, the n-ary adding machine is represented as $\tau = (e, \ldots, e, \tau)\sigma_\tau$ where e is the identity automorphism and σ_τ is the regular permutation $\sigma = (0, 1, \ldots, n-1)$. In this sense, the adding machine is an infinite variant of the regular permutation which appears often in geometric and combinatorial contexts.

MSC(2010): Primary: 20F05; Secondary: 05C05; 20E08; 20F16.

Keywords: Adding machine, Tree automorphisms, Automata, Solvable Groups.

Received: 20 April 2013, Accepted: 4 June 2013.

*Corresponding author.
A characteristic feature of τ is that its n-th power τ^n is the diagonal automorphism of the tree (τ, \ldots, τ). This fact implies that the centralizer of the cyclic group $\langle \tau \rangle$ in A_n is equal to its topological closure $\overline{\langle \tau \rangle}$ in the group A_n when considered as a topological group with respect to the the natural topology induced by the tree. The pro-cyclic group $\langle \tau \rangle$ is isomorphic to $\mathbb{Z}/n\mathbb{Z}$, the ring of n-adic integers

$$\xi = \sum_{i \geq 0} a_i n^i \ (0 \leq a_i \leq n-1 \text{ for all } i).$$

A large variety of subgroups of A_n which contain τ have been constructed, including groups which are torsion-free and just non-solvable without free subgroups of rank 2 (see, [2, 8] and generalizations thereof [10]). Furthermore, the free group of rank 2 has been represented on the binary tree as a group generated by two conjugates of the adding machine τ each having a finite number of states [11]. On the other hand, the restricted structure of its centralizer indicate that solvable groups which contain τ have restricted structure. For nilpotent groups we show

Proposition. Let G be a nilpotent subgroup of A_n which contains the n-adic adding machine τ. Then G is a subgroup of $\langle \tau \rangle$.

The most visible examples of solvable groups containing τ are conjugate to subgroups of those belonging to the infinite sequence of groups

$$\Gamma_0 = N_{A_n}(\overline{\langle \tau \rangle}),$$

$$\Gamma_{i+1} = (\times_n \Gamma_i) \rtimes G_{i+1} \ (i \geq 0)$$

where $\times_n \Gamma_i$ is a direct product of n copies of Γ_i (seen as a subgroup of the 1st level stabilizer of the tree) and where G_i is a solvable subgroup of the symmetric group Σ_n in its canonical action on the tree and containing the cycle σ_τ. We observe that for all i, the groups Γ_i are metabelian by ‘finite solvable subgroups of Σ_n’. It was shown by the second author that for $n = 2$, solvable groups which contain the binary adding machine are conjugate to some subgroups of Γ_i acting on the binary tree [9]. This appears to be the general pattern. However, the description for degrees $n > 2$ requires a classification of solvable subgroups of Σ_n which contain the cycle $\sigma = (0, 1, \ldots, n-1)$[4]. This in itself is an open problem, even for metabelian groups. On the other hand, the answer for primitive solvable subgroups of Σ_n is simple and classical. For then, n is a prime number p or $n = 4$. In case $n = p$, the solvable subgroups G_i can all be taken to be the normalizer $F = N_{\Sigma_n}(\langle \sigma \rangle)$ of order $p(p-1)$ and in case $n = 4$, the G_i’s can all be taken to be the symmetric group Σ_4.

Given this background, the main theorem of this paper is

Theorem A. Let $n = p$, a prime number, or $n = 4$. Then any solvable subgroup of A_n which contains the n-ary machine τ is conjugate to a subgroup of Γ_i for some i.

The result follows first from general analysis of the conditions $[\beta, \beta^{x^n}] = e$ (for some $\beta \in A_n$ and all $x \in \mathbb{Z}$), then their impact on the 1st level states of the subgroup $\langle \beta, \tau \rangle$ and on how these in turn translate successively to conditions on states at lower levels. It is somewhat surprising that the process converges to a clear global description for trees of degrees p and 4.

The first step of this analysis leads to the following description of the normal closure of $\langle \beta \rangle$ under the action of τ.

Theorem B. Let B be an abelian subgroup of A_n normalized by τ, let $\beta = (\beta|_0, \beta|_1, \ldots, \beta|_{n-1}) \sigma_\beta \in B$ and define the subgroup $H = \langle \beta|_i (i \in Y), \tau \rangle$ generated by the first level states of β and τ.

(I) Suppose $\sigma_\beta = (\sigma_\tau)^s$ for some integer s. Then H is metabelian-by-finite. More precisely, let $m = \frac{n}{\gcd(n,s)}$, define the product $\pi_i = \beta|_i \beta|_{i+s} \beta|_{i+2s} \cdots \beta|_{i+(m-1)s}$ (the notation $\beta|_j$ means $\beta|_{\bar{j}}$ where \bar{j} is the representative of j in Y modulo n) and define the subgroup

$$K = \left\langle [\beta|_i, \tau^k], \pi_i \mid k \in \mathbb{Z}, i \in Y \right\rangle$$

Then K is an abelian group and H affords the normal series

$$H \triangleright K \langle \tau \rangle (= O) \triangleright K$$

where the quotient group $\frac{H}{O}$ is a homomorphic image of a subgroup of the wreath product $C_m \wr C_n$ of the cyclic groups C_m, C_n.

(II) Let n be an even number. Then H is a metabelian group if $s = \frac{n}{2}$ or if σ_β is a transposition.

Part (I) of Theorem B will be proven in Sections 4 and 5 and part (II) in Section 7.

Let P be a subgroup of Σ_n. The layer closure of P in A_n is the group $L(P)$ formed by elements of A_n whose states have activities in P. The following result is yet another characterization of the adding machine.

Theorem C. Let n be an odd number and let $L = L(\langle \sigma \rangle)$, the layer closure of $\langle \sigma \rangle$ in A_n. Let s be an integer which is relatively prime to n and let $\beta = (\beta|_0, \beta|_1, \ldots, \beta|_{n-1}) \sigma^s \in L$ be such that $[\beta, \beta^{x^s}] = e$ for all $x \in \mathbb{Z}$. Then β is a conjugate of τ in L.

2. Preliminaries

We start by introducing definitions and notation. The n-ary tree T_n can be identified with the free monoid $\mathcal{M} = \langle 0, 1, \ldots, n-1 \rangle^*$ of finite sequences from $Y = \{0, 1, \ldots, n-1\}$, ordered by $v \leq u$ provided u is an initial subword of v.

The identity element of \mathcal{M} is the empty sequence ϕ. The level function for T_n, denoted by $|m|$ is the length of $m \in \mathcal{M}$; the root vertex ϕ has level 0.

![Figure 1. The Binary Tree](image)

The action $\rho : i \to j$ of a permutation $\rho \in \Sigma_n$ will be from the right and written as $(i) \rho = j$ or as $i^\rho = j$. If i, j are integers then the action of ρ on i is to be identified with its action on its
representatives \(\overline{j} \) in \(Y \), modulo \(n \). Permutations \(\sigma \) in \(\Sigma_n \) are extended ‘rigidly’ to automorphisms of \(A_n \) by

\[
(y,u)\rho = (y)\sigma, \forall y \in Y, \forall u \in M.
\]

An automorphism \(\alpha \in A_n \) induces a permutation \(\sigma_\alpha \) on the set \(Y \). Consequently, \(\alpha \) affords the representation \(\alpha = \alpha' \sigma_\alpha \) where \(\alpha' \) fixes \(Y \) point-wise and for each \(i \in Y \), \(\alpha' \) induces \(\alpha|_i \) on the subtree whose vertices form the set \(i \cdot M \). If \(j \) is an integer the \(\alpha|_j \) will be understood as \(\alpha|_{\overline{j}} \) where \(\overline{j} \) is the representative of \(j \) in \(Y \) modulo \(n \).

Given \(i \) in \(Y \), we use the canonical isomorphism \(i \cdot u \mapsto u \) between \(i \cdot M \) and the tree \(T_n \), and thus identify \(\alpha|_i \) with an automorphism of \(T_n \); therefore, \(\alpha' \in \mathcal{F}(Y, A_n) \), the set of functions from \(Y \) into \(A_n \), or what is the same, the 1st level stabilizer \(\text{Stab}(1) \) of the tree. This provides us with the factorization \(A_n = \mathcal{F}(Y, A_n) \cdot \Sigma_n \).

Let \(\alpha, \beta, \gamma \in A_n \). Then the following formulas hold

\[
\begin{align*}
\sigma_{\alpha^{-1}} &= (\sigma_\alpha)^{-1}, \quad \sigma_\alpha \sigma_\beta = \sigma_{\alpha \beta}, \\
(\alpha^{-1})|_u &= \left(\alpha|_u\right)^{\alpha^{-1}}, \\
(\alpha \beta)|_u &= (\alpha|_u)(\gamma|_u) \quad \text{where} \quad \gamma|_u = \beta|_u \alpha, \\
\gamma &= \alpha^{-1}\beta \alpha \iff \left(\sigma_{\gamma} = \sigma_{\alpha^{-1}} \sigma_\beta \sigma_\alpha \text{ and } \gamma|_{(i)\sigma_\alpha} = \alpha|_{(i)\sigma_\alpha}^{-1} \beta |_{(i)\sigma_\alpha} \alpha|_{(i)\sigma_\beta}, \forall i \in Y \right), \\
\theta &= [\beta, \alpha] = \beta^{-1} \beta^\alpha \iff \\
\theta|_{(i)\sigma_\alpha} &= \left(\beta|_{(i)\sigma_\alpha} \right)^{-1} \left(\alpha|_{(i)\sigma_\alpha} \right)^{-1} \left(\beta|_{(i)\sigma_\alpha} \right) \left(\alpha|_{(i)\sigma_\alpha} \right), \forall i \in Y. \\
(\alpha^m)|_i &= (\alpha|_i) \left(\alpha|_{(i)\sigma_\alpha} \right) \left(\alpha|_{(i)\sigma_\alpha^2} \right) \cdots \left(\alpha|_{(i)\sigma_\alpha^{m-1}} \right) \\
(\beta^\alpha)|_u &= \left(\beta|_u \alpha^{-1} \right)^{(\alpha|_u)^{-1}}, \quad \text{where} \quad \beta \in \text{Stab}(k) \text{ and } |u| \leq k.
\end{align*}
\]

An automorphism \(\alpha \in A_n \) corresponds to an input-output automaton with alphabet \(Y \) and with set of states \(Q(\alpha) = \{ \alpha|_u \mid u \in M \} \). The automaton \(\alpha \) transforms the letters as follows: if the automaton is in state \(\alpha|_u \) and reads a letter \(i \in Y \) then it outputs the letter \(j = (i) \alpha|_u \) and its state changes to \(\alpha|_{ui} \); these operations can be best described by the labeled edge \(\alpha|_u \xrightarrow{i} j \Rightarrow \alpha|_{ui} \). Following terminology of automata theory, every automorphism \(\alpha|_u \) is called the state of \(\alpha \) at \(u \).

The tree \(T_n \) is a topological space which is the direct limit of its truncations at the \(n \)-th levels. Thus the group \(A_n \) is the inverse limit of the permutation groups it induces on the \(n \)-th level vertices. This transforms \(A_n \) into a topological group. An infinite product of elements \(A_n \) is a well-defined element of \(A_n \) provided that for any given level \(l \), only finitely many of the elements in the product have non-trivial
action on vertices at level \(l \). Thus, if \(\alpha \in A_n \) and \(\xi = \sum_{i \geq 0} a_i n^i \in \mathbb{Z}_n \) then \(\alpha^\xi = \alpha^{a_0} \cdot \alpha^{n a_1} \cdots \alpha^{n^i a_i} \cdots \) is a well defined element of \(A_n \). The notation \(\alpha|_{\xi} \) is to be understood as \(\alpha|_i \) where \(i = a_0 \).

The topological closure of a subgroup \(H \) in \(A_n \) will be indicated by \(\overline{H} \). We note that if \(H \) is abelian then

\[
\overline{H} = \{ h^\xi \mid h \in H, \xi \in \mathbb{Z}_n \}.
\]

One of the characterizing aspects of the \(n \)-ary adding machine is that the centralizer of \(\tau \) is a pro-cyclic group; namely,

\[
C_{A_n}(\tau) = \langle \tau \rangle = \{ \tau^\xi \mid \xi \in \mathbb{Z}_n \}.
\]

Let \(v = yu \) where \(y \in Y, u \in \mathcal{M} \). The image of \(v \) under the action of \(\alpha \) is

\[
(v)\alpha = (yu)\alpha = (y)\sigma_\alpha (u)\alpha|_y.
\]

The action extends to infinite sequences (or boundary points of the tree) in the same manner. A boundary point of the tree \(c = c_0c_1c_2 \ldots \), where \(c_i \in Y \) for all \(i \), corresponds also to the \(n \)-adic integer \(\xi = \sum \{ c_i n^i | i \geq 0 \} \in \mathbb{Z}_n \). Thus the action of the tree automorphism \(\alpha \) can thus be translated to an action on the ring of \(n \)-adic integers. We will indicate \(c_0 \) by \(\bar{\xi} \) which is \(\xi \) modulo \(n \). In the case of the automorphism \(\tau = (e, e, \ldots, e, \tau, \sigma) \), the action of \(\tau \) on \(c \) is

\[
(c)\tau = \begin{cases}
(c_0 + 1) c_1 c_2 \ldots & \text{if } 0 \leq c_0 \leq n - 2, \\
0(c_1 c_2 \cdots)\tau, & \text{if } c_0 = n - 1,
\end{cases}
\]

which translates to the \(n \)-ary addition

\[
\xi^\tau = \xi + 1.
\]

![Figure 2. The binary adding machine](image)

3. Normalizer of the topological closure \(\overline{\langle \tau \rangle} \)

An element \(\xi = \sum_{i \geq 0} a_i n^i \in \mathbb{Z}_n \) is a unit in \(\mathbb{Z}_n \) if and only if \(\bar{\xi} (= a_0) \) is a unit in \(\mathbb{Z} \) modulo \(n \). The group of automorphisms of \(\mathbb{Z}_n \) is isomorphic to the multiplicative group of units \(U(\mathbb{Z}_n) \). The subgroup of \(U(\mathbb{Z}_n) \) consisting of elements \(\xi \) with \(\bar{\xi} = 1 \) is denoted by \(\mathbb{Z}_n^1 \). This subgroup has the transversal \(\{ j \mid 1 \leq j \leq n - 1, \gcd(j, n) = 1 \} \) in \(U(\mathbb{Z}_n) \) and therefore has index \([U(\mathbb{Z}_n) : \mathbb{Z}_n^1] = \varphi(n) \) where \(\varphi \) is the Euler function.

Given \(\alpha \in A_n \) we denote the diagonal automorphism \((\alpha, ..., \alpha) \) by \(\alpha^{(1)} \) and define inductively \(\alpha^{(i+1)} = (\alpha^{(i)})^{(1)} \) for all \(i \geq 1 \).
3.1. **Powers of** τ. Let $\xi = \sum_{i \geq 0} a_i n^i \in \mathbb{Z}_n$. Then $\sum_{i \geq 1} a_i n^{i-1} = \frac{\xi - \xi}{n}$.

Lemma 3.1. Let $\xi \in \mathbb{Z}_n$. Then

$$
\tau^\xi = (\tau^{\frac{\xi-a_0}{n}}, \ldots, \tau^{\frac{\xi-a_0+1}{n}}, \ldots, \tau^{\frac{\xi-a_0+1}{n}})_{a_0 \text{ terms}}^{a_0}.
$$

Proof. For j an integer with $1 \leq j \leq n - 1$, we have

$$
\tau^j = \left(e, \ldots, e, \tau, \ldots, \tau \right)_{j \text{ terms}}^{\sigma^j},
$$

and $\tau^n = (\tau, \ldots, \tau) = \tau^{(1)}$.

Given $\xi = \sum_{i \geq 0} a_i n^i$, then

\begin{align}
\tau^{a_0} &= (e, \ldots, e, \tau, \ldots, \tau)_{a_0 \text{ terms}}^{\sigma^{a_0}}, \\
\tau^{a_j n^j} &= \tau^{(a_j n^j-1)n} = \left(\tau^{a_j n^j-1} \right)^{(1)}, \\
\tau^\xi &= (\frac{\xi-a_0}{n}, \ldots, \frac{\xi-a_0}{n}, \frac{\xi-a_0+1}{n}, \ldots, \frac{\xi-a_0+1}{n})_{a_0 \text{ terms}}^{\sigma^{a_0}} \\
&= (\frac{\xi-a_0}{n}, \ldots, \frac{\xi-a_0}{n}, \frac{\xi-a_0+1}{n}, \ldots, \frac{\xi-a_0+1}{n})_{\xi \text{ terms}}^{\sigma^{\xi}}.
\end{align}

As we have seen, the description of τ^ξ involves the partition of the interval $[0, \ldots, n - 1]$ into two subintervals. It is convenient to use here the carry 2-cocycle $\delta : \mathbb{Z}_n \times \mathbb{Z}_n \rightarrow \{0, 1\}$ defined by

$$
\delta(\eta, \kappa) = \frac{\eta + \kappa - \eta + \kappa}{n} = \begin{cases}
0, & \text{if } \eta + \kappa < n \\
1, & \text{otherwise}
\end{cases}.
$$

We call this 2-valued function by *Delta-2* (*later on we will introduce a 3-valued function *Delta-3*). Using *Delta-2*, the notation for the power of τ becomes

\begin{equation}
\tau^\xi = \left(\frac{\xi-a_0}{n} + \delta(i, \xi) \right)_{0 \leq i \leq n-1}^{\sigma^{\xi}}.
\end{equation}
3.2. Centralizer of \(\tau \).

Lemma 3.2. \(C_{A_n} (\tau) = \langle \tau \rangle \).

Proof. Let \(\alpha \in A_n \) commute with \(\tau \). Then, \([\sigma_\alpha, \sigma_\tau] = e\) and therefore \(\sigma_\alpha = (\sigma_\tau)^{s_0} \) for some integer \(0 \leq s_0 \leq n - 1 \). Therefore, \(\beta = \alpha \tau^{-s_0} = (\beta|_0, ... , \beta|_{n-1}) \) commutes with \(\tau \) and \(\sigma_\beta = e \). Now,

\[
\beta^* = ((\beta|_{n-1})^*, \beta|_0, ..., \beta|_{n-2}) = \beta
\]

implies \(\beta|_i = \beta|_0 \) for all \(0 \leq i \leq n - 1 \) and \(\beta|_0 \) commutes with \(\tau \). Therefore \(\beta = (\beta|_0)^{(1)} \) and \(\beta|_0 \) replaces \(\alpha \) in the previous argument. Hence, there exists an integer \(s_1 \) such that \(0 \leq s_1 \leq n - 1 \) and \(\gamma = \beta|_0 \tau^{-s_1} = (\gamma|_0)^{(1)} \). From this we conclude

\[
\alpha = \beta \tau^{s_0} = (\beta|_0)^{(1)} \tau^{s_0}
\]

\[
= \left((\gamma|_0)^{(1)} \tau^{s_1}, ..., (\gamma|_0)^{(1)} \tau^{s_1} \right) \tau^{s_0}
\]

\[
= (\gamma|_0)^{(2)} \tau^{ns_1} \tau^{s_0} = (\gamma|_0)^{(2)} \tau^{ns_1+s_0}.
\]

We obtain the desired form inductively, \(\alpha = \tau^\xi \) where

\[
\xi = s_0 + s_1 n + s_2 n^2 + ...
\]

The characterization of nilpotent groups which contain \(\tau \), announced in the introduction, follows.

Proposition 3.3. Let \(G \) be a nilpotent subgroup of \(A_n \) which contains the \(n \)-adic adding machine \(\tau \). Then \(G \) is a subgroup of \(\langle \tau \rangle \).

Proof. Suppose \(G \) is a nilpotent group of class \(k > 1 \) which contains \(\tau \). Then, the center \(Z(G) \) is contained in \(\langle \tau \rangle \). Let \(j \) be the maximum index such that \(Z_j(G) \leq \langle \tau \rangle \) and let \(\alpha \in Z_{j+1}(G) \setminus \langle \tau \rangle \).

Then \([\tau, \alpha] \in Z_j(G)\) and therefore \([\tau, \alpha] = \tau^\xi \) for some \(\xi \in \mathbb{Z}_n \setminus \{0\} \). Therefore

\[
[\tau, 2\alpha] = [\tau, \alpha, \alpha] = [\tau^\xi, \alpha]
\]

\[
= [\tau, \alpha]^\xi = \tau^{\xi^2} \in Z_{j-1}(G)
\]

and more generally, for \(l \geq 1 \), we have \([\tau, l\alpha] = \tau^{\xi^l} \in Z_{j-l+1}(G) \). It follows that \(\tau^{\xi^j} \in Z_0(G) = \{e\} \). Thus, \(\xi^{j-1} = 0 \) and \(\xi = 0 \); a contradiction. \(\square \)
3.3. Normalizer of \(\langle \tau \rangle \).

Lemma 3.4. The group \(\Gamma_0 = N_{A_n} \langle \tau \rangle \) is metabelian. Indeed, the derived subgroup \(\Gamma'_0 \) is contained in \(\langle \tau \rangle \).

Proof. Let \(\alpha, \beta \in \Gamma_0 \), then \(\tau^\alpha = \tau^\xi \) and \(\tau^\beta = \tau^n \) for some \(\eta, \xi \in U(\mathbb{Z}_n) \). Therefore,

\[
\tau^\alpha = \tau^\xi, \tau = (\tau^\xi)^{\alpha^{-1}} = (\tau^{\alpha^{-1}})^\xi, \quad \tau^{\alpha^{-1}} = \tau^{\xi^{-1}}.
\]

Likewise, \(\tau^{\beta^{-1}} = \tau^{n^{-1}} \). Thus, \(\tau^{[\alpha, \beta]} = \tau \) and \(\Gamma'_0 \leq C_{A_n}(\tau) = \langle \tau \rangle \) follows. \(\square \)

We present properties of the Delta-2 function which we will use in the sequel.

Lemma 3.5. For all \(0 \leq i, j < n \) and \(\xi \in \mathbb{Z}_n \) we have

\[
\sum_{i=0}^{n-1} \delta(i, j) = j,
\]

\[
\delta(i, j\xi) = j \left(\frac{\xi - \xi}{n} \right) - \frac{j\xi - j\xi}{n} + \sum_{k=0}^{j-1} \delta(i + k\xi, \xi).
\]

Proof. The first assertion is easy to verify.

The second is obtained from

\[
(\tau^\xi)^{|i} = (\tau^\xi)|_{i} (\tau^\xi)|_{i+\xi} \cdots (\tau^\xi)|_{i+(j-1)\xi},
\]

by substituting

\[
(\tau^\xi)|_{i} = \tau^{\xi - \xi n + \delta(i, \xi)}
\]

in its right hand side and

\[
\tau^{\xi j}|_{i} = \tau^{\frac{j\xi - j\xi}{n} + \delta(i, j\xi)}
\]

in its left. \(\square \)

Proposition 3.6. Given \(\alpha \in A_n \) and \(\xi \in U(\mathbb{Z}_n) \). Then the condition \(\tau^\alpha = \tau^\xi \) is equivalent to conditions (i), (ii) and (iii) below.

(i)

\[
\alpha|_i = (\alpha|_0) \tau^{\mu_i} \quad (1 \leq i \leq n - 1)
\]

where

\[
\mu_i = i \frac{(\xi - \xi)}{n} + \sum_{k=0}^{i-1} \delta((v(\alpha) + k)\xi, \xi)
\]

and where \(v(\alpha) \) is defined by

\[
0 \leq v(\alpha) \leq n - 1,
\]

(0) \(\sigma_\alpha = \frac{v(\alpha)\xi}{\xi}; \)
Therefore, there exists
\[\begin{aligned}
(j) & = (v(\alpha) + j) \xi \\
& (0 \leq j \leq n - 1).
\end{aligned} \]

Furthermore, if \(\xi \in \mathbb{Z}_n^1 \), then \(v(\alpha) = 0 , \)
\((j) = j \xi \) and \(\mu_i = i^{\xi - 1}_n . \)

\textbf{Proof.} Since \(\sigma_\xi^\alpha = \sigma_\xi^\tau \), we have an equality between the permutations
\[((0) \sigma_\alpha , (1) \sigma_\alpha , \ldots , (n - 1) \sigma_\alpha) = (0, \xi, 2\xi, \ldots , (n - 1) \xi) . \]

Therefore, there exists \(v(\alpha) \in Y \) such that
\[(j) \sigma_\alpha = \bar{v(\alpha)} \xi \] and so,
\[\begin{aligned}
(j) & = \bar{v(\alpha)} \xi , \forall j \in Y .
\end{aligned} \]

Now, \(\tau^\alpha = \tau^\xi \) is equivalent to \(\alpha = \tau^{-s} \alpha \tau^s \xi \) for every \(s \in \mathbb{Z} \), which in turn is equivalent to
\[\alpha|_{(i)\sigma_\tau^\xi} = ((\tau^s)|_i)^{-1}(\alpha|_i) (\tau^\xi)|_i \sigma_\alpha , \forall i \in Y , \forall s \in \mathbb{Z} . \]

The latter conditions are equivalent to
\[\begin{aligned}
\alpha|_0 & = \alpha|_{(0)\sigma_\tau^\xi} = ((\tau^n)|_0)^{-1}(\alpha|_0) (\tau^n)|_0 \sigma_\alpha , \\
\alpha|_i & = \alpha|_{(i)\sigma_\tau^\xi} = ((\tau^i)|_0)^{-1}(\alpha|_0 (\tau^i)|_0 \sigma_\alpha , \forall i \in Y \setminus \{0\}
\end{aligned} \]

and these in turn are equivalent to
\[\begin{aligned}
\alpha|_i & = \alpha|_0 \tau^{\xi - n \tau^{-1} + \delta(v(\alpha) \xi, \xi)} = \alpha|_0 \tau^{\mu_i} , \\
\mu_i & = i \left(\frac{\xi - \xi}{n} \right) + \sum_{k=0}^{i-1} \delta((v(\alpha) + k) \xi, \xi) \forall i \in Y \setminus \{0\} .
\end{aligned} \]

If \(\xi \in \mathbb{Z}_n^1 \), then \(\sum_{k=0}^{i-1} \delta(k \xi, \xi) = \sum_{k=0}^{i-1} \delta(k, 1) = 0 . \) The rest of the assertion follows directly. \(\square \)

\textbf{Corollary 3.7.} Let \(\xi \in U(\mathbb{Z}_n) \), \(\sigma_\alpha \) and \(\mu_i \) be as above. Then \(\alpha = (\alpha)^{(1)}_e (e, \tau^{\mu_0}, \ldots , \tau^{\mu_{n-1}}) \sigma_\alpha \) conjugates \(\tau \) to \(\tau^\xi \). In particular, if \(\xi \in \mathbb{Z}_n^1 \), then \(\alpha = (\alpha)^{(1)}_e (e, \tau^{\frac{\xi}{n}} , \tau^{\frac{\xi}{n} + 1} , \ldots , \tau^{(n-1)\frac{\xi}{n} + 1}) \) (denoted by \(\lambda_\xi \)) conjugates \(\tau \) to \(\tau^\xi \).

Although we have computed above an automorphism which inverts \(\tau \), we give another with a simpler description. Define the permutation
\[\varepsilon = (0, n - 1) (1, n - 2) \ldots \left(\left[\frac{n - 2}{2} \right] , \left[\frac{n + 1}{2} \right] \right) . \]

Then \(\varepsilon \) inverts \(\sigma_\tau = (0, 1, \ldots , n - 1) \) and
\[\begin{aligned}
\iota & = \iota^{(1)}_\varepsilon \\
\end{aligned} \]

inverts \(\tau \).

Define
\[\begin{aligned}
\Lambda & = \{ \lambda_\xi | \xi \in \mathbb{Z}_n^1 \} , \\
\Psi & = \{ \lambda_\xi \tau^t | \xi \in \mathbb{Z}_n^1 , t \in \mathbb{Z}_n \} .
\end{aligned} \]
and call Ψ the monic normalizer of (τ).

Proposition 3.8. (i) Λ is an abelian group isomorphic to \mathbb{Z}_n^1;
(ii) $\Psi = \Lambda \ltimes (\tau) \cong \mathbb{Z}_n^1 \ltimes \mathbb{Z}_n$;
(iii) on letting Ψ' denote the derived subgroup of Ψ, we have $\Psi' = (\tau^n)$.

Proof. (i) Let $\xi, \theta \in \mathbb{Z}_n^1$. Then, as $\lambda_\xi, \lambda_\theta$ and $\lambda_{\xi\theta}$ are inactive, it follows that

$$
(\lambda_\xi \lambda_\theta \lambda_{\xi\theta}^{-1})|_i = (\lambda_\xi)|_i (\lambda_\theta)|_i ((\lambda_{\xi\theta})|_i)^{-1}
$$

$$
= \lambda_\xi \tau^{\xi \frac{1}{n}} \lambda_\theta \tau^{\theta \frac{1}{n}} \left(\lambda_{\xi\theta} \tau^{\xi \theta \frac{1}{n}} \right)^{-1} = \lambda_\xi \lambda_\theta \lambda_{\xi\theta}^{-1} \tau^{\xi \frac{1}{n}} \lambda_\theta \tau^{\theta \frac{1}{n}} \tau^{-\xi \theta \frac{1}{n}} \lambda_{\xi\theta}^{-1}
$$

$$
= \lambda_\xi \lambda_\theta \left(\tau^{i \theta \xi \frac{1}{n}} \tau^{i \theta \frac{1}{n}} \tau^{-i \theta \frac{1}{n}} \right) \lambda_{\xi\theta}^{-1} = \lambda_\xi \lambda_\theta \lambda_{\xi\theta}^{-1}, \forall i \in \{0, \ldots, n-1\}.
$$

Therefore, $\lambda_\xi \lambda_\theta = \lambda_{\xi\theta}$. In addition, $\lambda_\xi = e$ if and only if $\xi = 1$.

(ii) This factorization is clear.

(iii) Let $\theta = 1 + \theta'n, \eta \in \mathbb{Z}_n$. Then

$$
[\tau, \lambda_\theta] = \tau^{-\eta} \lambda_\theta \tau^\eta = 1.
$$

$$
\tau^{-\eta} \tau^\eta = \tau^{(\eta-1)} = (\tau^n)^{\eta'}. \quad \square
$$

We prove below the existence of conjugates τ^α of τ in $N_{A_n}(\overline{(\tau)})$, which lie outside (τ). This fact allows us to construct the first important type of metabelian groups $(\tau) (\tau^\alpha)$ containing τ.

Proposition 3.9. Given $\xi, \rho \in \mathbb{Z}_n^1$ with $\xi \neq 1$. Then for all n odd and for all n even such that $2n \mid (\xi - 1)$, an element $\alpha = (\alpha|_0, \ldots, \alpha|_{n-1})$ in A_n satisfies $\tau^\alpha = \lambda_\xi \tau^\rho$ if and only if

$$
\begin{cases}
\alpha|_{i+1} = (\alpha|_0) \lambda_{\xi^{i+1}} \tau^{\xi \frac{1}{n}} (\rho \xi^{i+1} \xi^{-1} - (i+1)) \quad (0 \leq i \leq n-2), \\
\tau^\alpha|_0 = \lambda_{\xi^n} \tau^{\frac{1}{n}} (\rho \xi^{n-1} \xi^{-1}).
\end{cases}
$$

Proof. From $\tau^\alpha = \lambda_\xi \tau^{1+\kappa}$, we obtain using (2.4),

$$
\begin{cases}
\lambda_\xi \tau^{i \xi \frac{1}{n} + \kappa} = (\alpha|_i)^{-1} \alpha|_{i+1}, \text{ if } i \in Y - \{n-1\} \\
\lambda_\xi \tau^{(n-1) \xi \frac{1}{n} + \kappa + 1} = (\alpha|_{n-1})^{-1} \tau \alpha|_0.
\end{cases}
$$

Therefore,

$$
\alpha|_{i+1} = (\alpha|_0) \lambda_\xi \tau^\kappa \lambda_\xi \tau^{i \xi \frac{1}{n} + \kappa} \ldots \lambda_\xi \tau^{i \xi \frac{1}{n} + \kappa}, \text{ for } i = 0, 1, \ldots, n-2,
$$

$$
\alpha|_0 = \tau^{-1} (\alpha|_{n-1}) \lambda_\xi \tau^{(n-1) \xi \frac{1}{n} + \kappa + 1}.
$$

The first equations can be expressed as

$$
\alpha|_{i+1} = (\alpha|_0) \lambda_\xi \tau^\kappa \left(\sum_{j=0}^i \xi^j \left(\frac{\xi^{i+1} \xi^{-1}}{\xi^{-1} - (i+1)} \right) \right)
$$

and the last as

$$
\alpha|_0 = \left(\sum_{j=0}^{n-1} \xi^j \xi \right) \frac{\lambda_\xi \xi^n \tau^{(1+\kappa) \xi^{-1} - (n-1)}}{\xi^{-1} - (i+1)}
$$
\begin{align*}
\alpha|_0 & = \tau^{-1}(\alpha|_0) \lambda \xi^n \tau \frac{1}{n} \left[(1 + \kappa n) \xi^{n-1} - (n-1) \right] \tau \left(n-1 \right) \xi^{-1} + \kappa + 1 \\
& = \tau^{-1}(\alpha|_0) \lambda \xi^n \tau \frac{1}{n} \left[(1 + \kappa n) \xi^{n-1} \right].
\end{align*}

Now, we need to show that \(\tau^{\alpha|_0} = \lambda \xi^n \tau \frac{1}{n} \left[(1 + \kappa n) \xi^{n-1} \right] \) satisfies the same conditions as those for \(\alpha \); that is, both \(\xi^n, \rho' = \frac{1}{n} \left[(1 + \kappa n) \xi^{n-1} \right] \in \mathbb{Z}_n^1 \).

Of course, \(\xi^n \in \mathbb{Z}_n^1 \), so let us consider \(\rho \left(\xi^n - 1 \right) / n(\xi - 1) \). Since \(\xi \in \mathbb{Z}_n^1 \), we can write \(\xi = 1 + \ell n \), and then

\[
\frac{\xi^n - 1}{\xi - 1} \equiv n + \left(\frac{n}{2} \right) \ell n \pmod{n^2},
\]

by using the Binomial Theorem. Since \(\rho \equiv 1 \pmod{n} \), it follows that

\[
\frac{\rho(\xi^n - 1)}{n(\xi - 1)} \equiv 1 + \left(\frac{n}{2} \right) \ell \pmod{n},
\]

and consequently, \(\rho(\xi^n - 1)/n(\xi - 1) \in \mathbb{Z}_n^1 \) if and only if \(n \mid \left(\frac{n}{2} \right) \ell \) (that is, if and only if \((n - 1) \ell \) is even). So \(\rho(\xi^n - 1)/n(\xi - 1) \in \mathbb{Z}_n^1 \) holds for odd \(n \), and for even \(n \) provided that \(2n \mid (\xi - 1) \). \(\square \)

4. Abelian groups \(B \) normalized by \(\tau \)

Let \(B \) be an abelian subgroup of \(A_n \) normalized by \(\tau \). For a fixed \(\beta \in B \), we define the ‘1st level state closure’ of \(\langle \beta, \tau \rangle \) as the group

\[
H = \langle \beta|_i \mid i \in Y \rangle, \tau \rangle.
\]

We will be dealing frequently with the following subgroups of \(H \),

\[
N = \left\langle [\beta|_i, \tau^{k_i}] \mid k_i \in \mathbb{Z}, i \in Y \right\rangle \\
M = N \langle \tau \rangle.
\]

When \(\sigma_\beta = (\sigma_\tau)^s \) for some integer \(s \), \(m = \frac{n}{\gcd(n,s)} \) and

\[
\pi_i = \beta|_{i+s} \beta|_{i+2s} \cdots \beta|_{i+(m-1)s}
\]

we will also be dealing with the subgroups

\[
K = \langle N, \pi_i \mid i \in Y \rangle, \\
O = K \langle \tau \rangle.
\]

We show below that when \(n \) is a power of a prime number \(p^k \), the activity range of \(\beta \) narrows down to a Sylow \(p \)-subgroup of \(\Sigma_n \). This is used to restrict the location of an abelian group \(B \) normalized by \(\tau \), within \(A_n \).
Proposition 4.1. Let \(n = p^k \), \(\sigma = (0,1,\ldots,n-1) \) and \(P \) be a Sylow \(p \)-subgroup \(P \) of \(\Sigma_n \) which contains \(\sigma \). Then

(i) \(P \) is isomorphic to \(((\ldots(\ldots C_p)\ldots) C_p)\ldots C_p\) a wreath product of the cyclic group \(C_p \) of order \(p \) iterated \(k-1 \) times; the normalizer of \(P \) in \(\Sigma_n \) is \(N_{\Sigma_n}(P) = P \langle c \rangle \) where \(c \) is cyclic of order \(p-1 \);

(ii) \(P \) is the unique Sylow \(p \)-subgroup \(P \) of \(\Sigma_n \) which contains \(\sigma \);

(iii) if \(W \) is an abelian subgroup of \(\Sigma_n \) normalized by \(\sigma \) then \(W \) is contained in \(P \).

\[\text{Proof.} \]
(i) The structure of \(P \) as an iterated wreath product is well-known. The center of \(P \) is \(Z = \langle z = \sigma^{p^k-1} \rangle \) and \(C_{\Sigma_n}(z) = P \). Therefore, \(N_{\Sigma_n}(P) = N_{\Sigma_n}(Z) = P \langle c \rangle \) where \(c \) is cyclic of order \(p-1 \).

(ii) If \(\sigma \in P^g \) for some \(g \in \Sigma_n \) then \(z^g \in C_{\Sigma_n}(\sigma) = \langle \sigma \rangle \) and therefore \(\langle z^g \rangle = \langle z \rangle \), \(P^g = P \). Thus, \(P \) is the unique Sylow \(p \)-subgroup of \(\Sigma_n \) to contain \(\sigma \).

(iii) Let \(W \) be an abelian subgroup of \(\Sigma_n \) normalized by \(\sigma \). Let \(V = W\langle \sigma \rangle \) and \(V_0 \) be the stabilizer of 0 in \(V \). Then, since \(\sigma \) is a regular cycle, it follows that \(V = V_0 \langle \sigma \rangle \), \(V_0 \cap \langle \sigma \rangle = \{e\} \). Suppose that there exists a prime \(q \) different from \(p \) which divides the order of \(W \) and let \(Q \) be the unique Sylow \(q \)-subgroup of \(W \). Then \(Q \) is the unique Sylow \(q \)-subgroup of \(V \) and \(Q \leq V_0 \). Therefore, \(Q = \{e\} \) and \(W \) is a \(p \)-group. As \(\sigma \in V \), we conclude \(W \leq P \). \(\square \)

Lemma 4.2. (a) Let \(\gamma \in A_n \). Conditions (i), (ii) below are equivalent:

(i) \([\gamma, \gamma^k] = e \) for all \(k \in \mathbb{Z} \);
(ii) \([\tau^k, \gamma, \gamma] = e \) for all \(k \in \mathbb{Z} \).

Condition (i) implies

(iii) \(\langle [\gamma, \tau^k] \mid k \in \mathbb{Z} \rangle \) is a commutative group.

Condition (iii) implies

\(\langle [\gamma^u, \tau^k] \mid k \in \mathbb{Z} \rangle \) is a commutative group for all indices \(u \).

(b) Let \(n = p^k \). Then any abelian subgroup \(B \) normalized by \(\tau \) is contained in the layer closure \(L = L(N_{\Sigma_n}(P)) \).

\[\text{Proof.} \]
(a) First,

\[[\gamma, \gamma^k] = \gamma^{-1} (\tau^{-k} \gamma^{-1} \tau^k) \gamma (\tau^{-k} \gamma \tau^k) = \gamma^{-1} (\tau^{-k} \gamma^{-1} \tau^k) \gamma (\gamma^{-1} \tau^{-k} \gamma \tau^k) = [\tau^k, \gamma][\gamma, \tau^k] \]

and so,

\[[\gamma, \gamma^k] = e \iff [\gamma, \tau^k]^{-1} = [\gamma, \tau^k]. \]

Furthermore, since

\[[\gamma, \tau^{k_1} \tau^{k_2}] = [\gamma, \tau^{k_2}]^{-1} [\gamma, \tau^{k_1+k_2}] \]

(4.1)
for all integers k_1, k_2, condition (ii) implies
\[
[\gamma, \tau^{k_1}][\gamma, \tau^{k_2}] = [\gamma, \tau^{k_1}]^{\gamma^{-1}\tau^{-k_2}\gamma\tau^{k_2}} = [\gamma, \tau^{k_1}]^{\tau^{-k_2}\gamma\tau^{k_2}} \\
= \left([\gamma, \tau^{-k_2}]^{-1} [\gamma, \tau^{k_1-k_2}] \right)^{\gamma\tau^{k_2}} = \left([\gamma, \tau^{-k_2}]^{-1} [\gamma, \tau^{k_1-k_2}] \right)^{\tau^{k_2}} \\
= [\gamma, \tau^{k_1}] .
\]

Finally, we note that by (2.5),
\[
([\gamma, \tau^{nk}])_{|i}\sigma_\gamma = (\gamma^{-1})_{|i}\sigma_\gamma (\tau^{-nk})_{|i} (\gamma|_i) (\tau^{nk})_{|i}\sigma_\gamma = (\gamma|_i)^{-1} \tau^{-k} (\gamma|_i) \tau^k \\
= [\gamma|_i, \tau^k].
\]

Since $[\gamma, \tau^{kn}]$ is inactive for all $k \in \mathbb{Z}$, we obtain $\{[\gamma|_i, \tau^k] | k \in \mathbb{Z}\}$ is a commutative set for all i. The rest of the assertion follows by induction on the tree level.

(b) Let $\beta \in B$. Since the normal closure of $\langle \sigma_\beta \rangle$ under the action of σ_γ is an abelian subgroup, it follows that $\sigma_\beta \in P$. Furthermore, as $\langle [\beta|_u, \tau^k] | k \in \mathbb{Z}\rangle$ is an abelian group normalized by τ, it follows that $[\sigma_\beta|_u, \sigma] \in P$ and therefore $\sigma^{\sigma_\beta|_u} \in P$. Thus, we conclude $\sigma_{\beta|_u} \in N_{\Sigma^*_n}(P)$ and $\beta \in L$. \hfill \Box

Proposition 4.3. Let $l \geq 1$ and suppose $\alpha, \gamma \in \text{Stab}(l)$ satisfy $[\alpha, \gamma^\tau] = e$ for all $x \in \mathbb{Z}$. Then
\[
[\alpha|_u, (\gamma|_v)^\tau] = e, \forall u, v \in \mathcal{M} \text{ having } |u| = |v| \leq l \text{ and } \forall x \in \mathbb{Z}.
\]

Proof. We start with the case $l = 1$. Write $x = r + kn$ where $r = \overline{x}$.

By (2.4),
\[
(\gamma^\tau)|_{|i}^{rx} = ((\tau^x)|_{|i})^{-1} (\gamma|_i) (\tau^x)|_{|i}, \\
(\gamma^\tau_i)|_{|i} = \tau^{-k-\delta(i-r,r)} (\gamma|_{i-r}) \tau^{k+\delta(i-r,r)}.
\]

As $[\alpha, \gamma^\tau] = e$ and $\alpha, \gamma^\tau \in \text{Stab}(1)$, we have, for all $i, j, r \in Y$ and all $k, x \in \mathbb{Z},$
\[
[\alpha|_i, (\gamma|_j)^\tau] = e, \quad [\alpha|_i, (\gamma|_{i-r})^{-k+\delta(i-r,r)}] = e, \\
[\alpha|_i, (\gamma|_{i-r})^\tau] = e.
\]

The general case $l \geq 1$ follows by induction. \hfill \Box

We apply the above proposition to $\beta \in B$.

Corollary 4.4. Let $\sigma_\beta = e$. Then for all $i, j \in Y$ and for all $x \in \mathbb{Z}$
\[
([\beta|_i], (\beta|_j)^\tau) = e.
\]

We derive further relations in $H = \langle \beta|_i \ (i \in Y) \rangle$. \hfill \Box

Proposition 4.5. Let $\beta \in B$. Then the following relations hold in H for all $v \in \mathbb{Z}$ and for all $i \in Y$:
Proof. (I) Clearly \([\beta, \beta^v] = e \) implies \([\sigma_\beta, \sigma_\beta^v] = e \). It also implies

\[
\left(\beta (i) \sigma_{\beta^v} \right)^{-1} (\beta^v (i))^{-1} (\beta (i) \beta^v) = e,
\]

\[
(\beta^v (i)) \left(\beta (i) \sigma_{\beta^v} \right) = (\beta (i) \beta^v).
\]

\[
\left(\tau^v (i) \sigma_{\beta^v} \right)^{-1} (\beta (i) \sigma_{\beta^v}) (\tau^v (i) (\sigma_{\beta^v})) (\beta (i) \sigma_{\beta^v}) = (\beta (i) \tau^v) (i) \sigma_{\beta^v} (\tau^v).
\]

(II) On changing \(v \) to \(nv \) in (I), we obtain:

\[
\tau^{-v} (\beta (i) \tau^v) (\beta (i) \sigma_{\beta^v}) = (\beta (i) \tau^{-v} (\beta (i) \sigma_{\beta^v}) \tau^v,
\]

\[
\left(\beta (i) \sigma_{\beta^v} \right)^{-1} ((\beta (i) \tau^{-v} (\beta (i) \tau^v) \beta (i) \sigma_{\beta^v}) \right) = (\beta (i) \tau^{-v} (\beta (i) \tau^v) \beta (i) \sigma_{\beta^v}) \tau^v.
\]

(III) From (II), we derive

\[
[\beta (i) \tau^v] (\beta (i) \sigma_{\beta^v}) = [\beta (i) \sigma_{\beta^v}, \tau^v] (\beta (i) \sigma_{\beta^v}) = ... = [\beta (i) \tau^v].
\]

\[\square\]
5. The case $\beta \in B$ with $\sigma_\beta \in \langle \sigma_r \rangle$

This section is devoted to the proof of the second part of Theorem B. For this purpose, we introduce the following 3-variable combination of Delta-2 functions

$$\Delta_s(i, t) = \delta(i, t - i) - \delta(i - s, t - i)$$

which we call the Delta-3 function.

Lemma 5.1. Let $\beta \in A_n$ such that $[\beta, \beta^{x^2}] = e$ for any $x \in \mathbb{Z}$ and let $\sigma_\beta = \sigma^x_r$ for some $s \in Y$. Then,

$$\tau^{\Delta_s(i, t)} (\beta|_{i-s}) [\beta|_{i-s}, \tau^z] (\beta|_t) = (\beta|_{t-s}) (\beta|_i) [\beta|_i, \tau^z] \tau^{\Delta_s(i+s, t+s)}$$

for all $i, t \in \{0, 1, \ldots, n - 1\}$, $z \in \mathbb{Z}$.

Proof. Since $\sigma_\beta = \sigma^x_r$, we have $\sigma^{x^2}_\beta = \sigma^x_r = \sigma^x_r$.

From (2.4) and (2.5), we obtain

$$\tau^{-\frac{z-x}{n}} \delta(j-x, x) (\beta|_{j-x}) \tau^{-\frac{z-x}{n}} \delta(j-x+s, x) (\beta|_{j+s}) = (\beta|_j) \tau^{-\frac{z-x}{n}} \delta(j+s-x, x) (\beta|_{j+s-x}) \tau^{-\frac{z-x}{n}} \delta(j+2s-x, x)$$

Setting $k = \frac{x-y}{n}$ and $r = \frac{z}{n}$ and using (5.1), we have

$$\tau^{-k} \delta(j-r, r) (\beta|_{j-r}) \tau^k \delta(j+s-r, r) (\beta|_{j+s}) = (\beta|_j) \tau^{-k} \delta(j+s-r, r) (\beta|_{j+s-r}) \tau^k \delta(j+2s-r, r),$$

for all $r, j \in Y$ and all $k \in \mathbb{Z}$.

Also on setting $t = j + s, i = j + s - r$ and $z = k + \delta(j + s - r, r) (i = k + \delta(i, t - i))$ and using (5.2), we obtain

$$\tau^{-z} \delta(i, t - i) - \delta(i-s, t-i) (\beta|_{i-s}) \tau^z \beta|_{t} = (\beta|_{t-s}) \tau^{-z} \beta|_{i+1} \tau^z - \delta(i, t - i) + \delta(i+s, t-i),$$

for all $t, i \in \{0, 1, \ldots, n - 1\}$ and all $z \in \mathbb{Z}$.

It follows that

$$\tau^\delta(i, t - i) - \delta(i-s, t-i) (\beta|_{i-s}) \tau^z \beta|_{t} = (\beta|_{t-s}) \tau^\delta(i, t - i) + \delta(i+s, t-i) \tau^{-\delta(i, t - i) - \delta(i+s, t-i)}$$

for all $t, i \in \{0, 1, \ldots, n - 1\}$ and all $z \in \mathbb{Z}$. \square

We develop below some properties of the Δ_s function to be used in the sequel.

Proposition 5.2. The Delta-3 function satisfies

(i) $\Delta_s(i, t) = \delta(i, -s) - \delta(t, -s) = \begin{cases}
0, & \text{if } \bar{i}, \bar{t} \geq \bar{s} \text{ or } \bar{i}, \bar{t} < \bar{s} \\
1, & \text{if } \bar{i} < \bar{s} \leq \bar{t} \\
-1, & \text{if } \bar{i} < \bar{s} \leq \bar{t} \end{cases}$,
(ii) \(\Delta_s(i, t) = -\Delta_s(t, i) \),

(iii) \(\Delta_s(i + s, t + s) = -\Delta_s(i, t) \),

(iv) \(\Delta_s(i, t) = \Delta_s(i, z) + \Delta_s(z, t) \),

(v) \(\sum_{k=0}^{n-1} \Delta_s(i + ks, t + ks) = 0 \),

(vi) \(\sum_{k=0}^{n-1} \Delta_s(k, t) = \begin{cases} n - \bar{s}, & \text{if } \bar{t} < \bar{s} \\ -\bar{s}, & \text{if } \bar{t} \geq \bar{s} \end{cases} \), for all \(i, t, z \in \mathbb{Z} \).

Proof.

(i) Using the definition \(\delta(i, j) = \frac{i + j - i + j}{n} \) we have

\[
\Delta_s(i, t) = \frac{i + t - i - t}{n} - \frac{i - s + t - i - t - s}{n} = \frac{\bar{i} + \bar{s} - \bar{i} - \bar{s}}{n} - \frac{\bar{t} + \bar{s} - \bar{t} - \bar{s}}{n}
\]

\[
= \delta(i, -s) - \delta(t, -s) = \begin{cases} 0, & \text{if } \bar{t}, \bar{i} \geq \bar{s} \text{ or } \bar{t}, \bar{i} < \bar{s} \\ 1, & \text{if } \bar{t} < \bar{s} \leq \bar{i} \\ -1, & \text{if } \bar{i} < \bar{s} \leq \bar{t} \end{cases}
\]

(ii) Follows from (i).

(iii) Calculate

\[
\Delta_s(i + s, t + s) = \delta(i + s, t - i) - \delta(i, t - i)
\]

\[
= - (\delta(i, t - i) - \delta(i + s, t - i)) = -\Delta_s(i, t).
\]

(iv) This part follows from (i).

(v) From the definition of the Delta-2 function

\[
\sum_{k=0}^{n-1} \delta(i + ks, t - i) = \sum_{k=0}^{n-1} \delta(i + (k - 1)s, t - i).
\]

(vi) Finally, we have

\[
\sum_{k=0}^{n-1} \Delta_s(k, t) = \sum_{k=0}^{\bar{s}-1} \Delta_s(k, t) + \sum_{k=\bar{s}}^{n-1} \Delta_s(k, t)
\]

\[
= \begin{cases} n - \bar{s}, & \text{if } \bar{t} < \bar{s} \\ -\bar{s}, & \text{if } \bar{t} \geq \bar{s} \end{cases}.
\]

□

With the use of the Delta-3 function we obtain
Proposition 5.3. The following relations are verified in $H = \langle \beta_i \mid (i \in Y), \tau \rangle$, for all $x, z \in \mathbb{Z}$ and all $i, t \in Y$:

(I) $\tau^{\Delta_s(i, t)} (\beta|_{i-s}) (\beta|_t) = (\beta|_{t-s}) (\beta|_i) \tau^{\Delta_s(i+s, t+s)}$;
(II) $[\beta|_{i-s}, \tau^{\alpha}_{\beta|_i}] \tau^{\Delta_s(i+s, t+s)} = [\beta|_i, \tau^{\alpha}]$;
(III) $[[\beta|_i, \tau^{\alpha}], [\beta|_t, \tau^{\alpha}]] = e$.

Proof. Returning to Lemma 5.1, we have

$$\tau^{\Delta_s(i, t)} (\beta|_{i-s}) (\beta|_t) = (\beta|_{t-s}) (\beta|_i) \tau^{\Delta_s(i+s, t+s)},$$

Consequently,

$$\tau^{\Delta_s(i, t)} (\beta|_{i-s}) (\beta|_t) = (\beta|_{t-s}) (\beta|_i) \tau^{\Delta_s(i+s, t+s)}$$

and

$$[\beta|_{i-s}, \tau^{\alpha}] (\beta|_t) = [\beta|_{i}, \tau^{\alpha}] \tau^{\Delta_s(i+s, t+s)} = [\beta|_i, \tau^{\alpha}],$$

for all $t, i \in Y$ and all $z \in \mathbb{Z}$.

From (5.4) and (4.1), $N = \langle [\beta|_i, \tau^{k}] \mid k \in \mathbb{Z}, i \in Y \rangle$ is a normal subgroup of H. Moreover, by applying alternately the above equations, we obtain

$$[\beta|_i, \tau^{\alpha}] (\beta|_t) = [\beta|_{i}, \tau^{\alpha}] \tau^{\Delta_s(i+s, t+s)},$$

for all $t, i \in Y$ and all $z \in \mathbb{Z}$.

By applying alternately the above equations, we obtain

$$[\beta|_i, \tau^{\alpha}] = [\beta|_{i}, \tau^{\alpha}] \tau^{\Delta_s(i+s, t+s)}.$$
Corollary 5.4. Let $\beta \in A_n$ such that $[\beta, \beta^x] = e$ for every $x \in \mathbb{Z}$ with $\sigma_\beta = \sigma_\beta^s$ for some $s \in \{0, 1, \ldots, n - 1\}$. Then

$$M = \left\langle [\beta_i, \tau^{k_i}] \mid k_i \in \mathbb{Z}, 0 \leq i \leq n - 1 \right\rangle$$

is a normal metabelian subgroup of H.

Proof. By Proposition 5.3, $N = \langle [\beta_i, \tau^{k_i}] \mid k_i \in \mathbb{Z}, 0 \leq i \leq n - 1 \rangle$ is abelian and normal in H. Since $N\tau \in Z(H/N)$, it follows that $M = N\langle \tau \rangle$ is a normal subgroup of H and is clearly metabelian. □

We are ready to prove part (I) of Theorem B.

Theorem 5.5. Let $\beta \in A_n$ be such that $[\beta, \beta^x] = e, \forall x \in \mathbb{Z}$ and $\sigma_\beta = \sigma_\beta^s$ for some $s \in Y$ and $H = \langle \beta_0, \ldots, \beta_n, \tau \rangle$. Recall $\pi_j = \beta_j|\beta|\beta|_{j+2} \cdots \beta|_{j+(m-1)s}$. Then,

(i) the group $K = \langle [\beta_i, \tau^2], \pi_j \mid i,j \in Y, x \in \mathbb{Z} \rangle$ is an abelian normal subgroup of H and the group $O = K\langle \tau \rangle$ is a metabelian normal subgroup of H;

(ii) the quotient group H/O is a homomorphic image of a subgroup of $C_m \wr C_n$.

In particular, H is metabelian-by-finite.

Proof. (i) Recall

$$N = \left\langle [\beta_i, \tau^{k_i}] \mid k_i \in \mathbb{Z}, i \in Y \right\rangle,$$

$$K = N\langle \pi_j \mid j \in Y \rangle$$

where $m = \frac{n}{\gcd(n,s)}$. Then, by Proposition 5.3, N is an abelian normal subgroup of H.

By (5.4), we have

$$[\beta_i, \tau^x]^{\pi_j} = [\beta_i, \tau^x]^{\tau^{\Delta_k(i+k+1)s} \beta|_{j+k} \cdots \beta|_{j+(m-1)s}}$$

$$= [\beta_i, \tau^x]^{\tau^{\Delta_k(i+k+1)s} \beta|_{j+k} \cdots \beta|_{j+(m-1)s}}$$

$$= [\beta_i, \tau^x]^{\tau^{\Sigma_{k=0}^{m-1} \Delta_k(i+k+1)s, j+k}}$$

Thus,

(5.5) $[[\beta_i, \tau^z], (\beta^m)|_j] = e, \forall i,j \in Y, \forall z \in \mathbb{Z}$

Since $\sigma_\beta^m = e$, we have by Corollary 4.4

(5.6) $[(\beta^m)|_i, (\beta^m)|_j] = e, \forall i,j \in Y$.

Moreover,

(5.7) $(\beta^m)|_i^\tau = ((\beta^m)|_i) [(\beta^m)|_i, \tau]$.

Since $[\beta, \beta^x] = e, \forall x \in \mathbb{Z}$, it follows that $[\beta^m, \beta^x] = e, \forall x \in \mathbb{Z}$.

Therefore, by (2.5),
\[e = (\beta^m)_{i}^{-1}(\beta^{\tau^x})_{i}^{-1}(\beta^m)_{i}|(\beta^{\tau^x})_{i}, \forall x \in \mathbb{Z}, \forall i \in Y. \]

Now, as \(\sigma_{\beta} = \sigma_{\beta}^i \) and \(\sigma_{\beta}^m = e \), we reach

(5.8) \[(\beta^m)_{i+s} = (\beta^m)_{i}|(\beta^{\tau^x})_{i}, \forall x \in \mathbb{Z}, \forall i \in Y. \]

By (2.4), the following
\[(\beta^{\tau^x})_{i} = (\tau^x)_{i}^{-1}(\beta^{\tau^x})_{i}^{-1}(\beta^x)_{i}^{-1}(\beta^m)_{i}(\beta^{\tau^x})_{i}, \forall x \in \mathbb{Z}, \forall i \in Y. \]
holds for all \(i \in Y \) and all \(x \in \mathbb{Z} \).

From which we derive
(5.9) \[(\beta^{\tau^x})_{i} = \tau^{-\frac{x - \tau - \delta(i-x,x)}{m}} \beta_{i-x}^{\tau} \tau^{\frac{x - \tau - \delta(i-x+s,x)}{m}} \]
for all \(i \in Y \) and all \(x \in \mathbb{Z} \).

Therefore, by (5.8) and (5.9),
\[(\beta^m)_{i+s} = (\beta^m)_{i}|(\tau^{-\frac{x - \tau - \delta(i-x,x)}{m}} \beta_{i-x}^{\tau} \tau^{\frac{x - \tau - \delta(i-x+s,x)}{m}}), \]
for all \(i \in Y \) and all \(x \in \mathbb{Z} \).

On writing \(x = kn + \tau = kn + r, r \in \mathbb{Z} \) in the above equation, we obtain
\[(\beta^m)_{i+s} = (\beta^m)_{i}|(\tau^{-k-\delta(i-r,r)} \beta_{i-r}^{\tau} \tau^{k+\delta(i-r+s,r)} \]
\[\Rightarrow (\beta^m)_{i+s} = (\beta^m)_{i}|(\beta_{i-r})^{\tau^{-k-\delta(i-r,r)} \tau^{k+\delta(i-r+s,r)}} \]
\[\Rightarrow (\beta^m)_{i+s} = (\beta^m)_{i}|(\beta_{i-r})^{\tau^{-k-\delta(i-r+s,r)} \tau^{k+\delta(i-r,r)}} \]
for all \(i, r \in Y \) and all \(k \in \mathbb{Z} \).

By (5.5), (5.7) and using the fact that \(N \) is abelian and normal in \(H \), we find
\[(\beta^m)_{i+s}^{\delta(i-r,r)-\delta(i-r+s,r)} = (\beta^m)_{i}|(\beta_{i-r})^{\tau^{-k-\delta(i-r,r)} \tau^{k+\delta(i-r+s,r)}} \]
for all \(i, r \in Y \).

On setting \(j = i - r \), we get
(5.10) \[(\beta^m)_{i+s}^{\Delta_{-s}(i-r,i)} = (\beta^m)_{i}|(\beta_{i-r})^{\tau^{\Delta_{-s}(i-r,i)}} \]
for all \(i, j \in Y \).

Further, by using equations (5.5), (5.6), (5.7), (5.10) and
(5.11) \[(\beta^m)_{i} = \pi_{i}, \]
we conclude that also \(K \) is an abelian normal subgroup of \(H \).
Now, \(O = K \langle \tau \rangle \) is metabelian. Moreover it is normal in \(H \), because
\[
\tau^{\beta i} = \tau \tau^{-1} \tau^{\beta i} = \tau [\tau, \beta]_i \in O
\]
for all \(i \in Y \).

(ii) Consider the following Fibonacci type group
\[
X = \langle b_0, \ldots, b_{n-1} \mid b_i b_{j+s} = b_j b_{i+s}, b_i b_{n-1+s} \cdots b_{i+(n-1)s} = e, \forall i, j \in Y \rangle
\]
where the bar notation indicates ‘modulo \(n \)’.

The Equation (5.3) shows that \(\frac{H}{O} \) is a homomorphic image of \(X \). We will prove that \(X \) is isomorphic to a subgroup of the wreath product \(C_m \wr C_n \).

As a matter of fact the group \(C_m \wr C_n \) has the presentation
\[
\langle a, b \mid a^n = e, b^a = a^b, b^{a+s} = b^{a+s}, \ldots b^{a+(m-1)s} = e, \forall i, j \in Y \rangle.
\]

On defining \(b = a^{s}u^{-1} \), we have
\[
u^{m} = e
\]
\[
\Rightarrow (a^{-s}b)^m = e
\]
\[
\Rightarrow (a^{-s}b \cdots a^{-s}b)^{a^{-s}} = e
\]
\[
\Rightarrow b^{a+s}b^{a+s} \cdots b^{a+s} = e.
\]

Also, the commutation relation
\[
u^a u^a = u^a v^a
\]
implies
\[
(b^{-1}a^s)^a (b^{-1}a^s)^a = (b^{-1}a^s)^a (b^{-1}a^s)^a
\]
\[
\Rightarrow (a^{-s}b)^a (a^{-s}b)^a = (a^{-s}b)^a (a^{-s}b)^a
\]
\[
\Rightarrow b^{a+s}a^{-s}b^{a+s} = b^{a+s}a^{-s}b^{a+s}
\]
\[
\Rightarrow b^{a+s}b^{a+s} = b^{a+s}b^{a+s}.
\]

By using Tietze transformations we conclude that \(C_m \wr C_n \) has the presentation
\[
\langle a, b \mid a^n = e, b^{a+s}b^{a+s} = b^{a+s}b^{a+s}, b^a b^a \cdots b^{a+(m-1)s} = e, \forall i, j \in Y \rangle.
\]

Then, on introducing \(b_i = b^i, i = 0, \ldots, n-1 \), the above presentation is expressed as
\[
\langle a, b_0, \ldots, b_{n-1} \mid a^n = e, b_i = b_0^i, b_j b_{j+s} = b_j b_{j+s}, b_i b_{n-1+s} \cdots b_{i+(m-1)s} = e, \forall i, j \in Y \rangle.
\]

\[\square\]

The next results leads to a proof of Theorem C.
Lemma 5.6. Let $\sigma = (0, 1, \ldots, n-1) \in \Sigma_n$ and let L be the layer closure of $\langle \sigma \rangle$ in A_n. Suppose $\beta = (\beta_0, \beta_1, \ldots, \beta_{n-1}) \sigma \beta \in L$ satisfies $[\beta, \beta^x] = e$ for all $x \in \mathbb{Z}$. Write $\sigma_\beta = \sigma^x$ and $\sigma_{\beta|_i} = \sigma^{m_i}$ for all $i \in Y$. Then for all $i, t \in Y$, the following congruence holds

$$\Delta_s(i, t) + m_{-t-s} + m_t \equiv m_{-t-s} + m_i + \Delta_s(i + s, t + s) \mod n.$$

Proof. Since $\sigma_{\beta|_i} = \sigma^{m_i}$, we conclude by (5.3),

$$\sigma^n \equiv \sigma^{m_i + \Delta(i, t)} \equiv \sigma^{m_{-t-s} + m_i + \Delta_s(i + s, t + s)}$$

and therefore, $\Delta_s(i, t) + m_{-t-s} + m_t \equiv m_{-t-s} + m_i + \Delta_s(i + s, t + s) \mod n.$ \hfill \Box

Lemma 5.7. Maintain the notation of the previous lemma and let $s = 1$. Then,

$$\sigma_{(\beta^s)_0} = \sigma_{(\beta_0)(\beta_1)\cdots(\beta_{n-1})} = \sigma.$$

Proof. The case $n = 2$ is covered by Proposition 6 of [9].

Now let n be an odd prime. From

$$\Delta_1(i, t) + m_{-t-1} + m_t \equiv m_{-t-1} + m_i + \Delta_1(i + 1, t + 1) \mod n$$

we conclude

$$\sum_{i=0}^{n-2} \sum_{t=i+1}^{n-1} (\Delta_1(i, t) + m_{-t-1} + m_t) \equiv \sum_{i=0}^{n-2} \sum_{t=i+1}^{n-1} (m_{-t-1} + m_i + \Delta_1(i + 1, t + 1)) \mod n.$$

Now,

$$\sum_{i=0}^{n-2} \sum_{t=i+1}^{n-1} \Delta_1(i, t) \quad \text{Prop 5.2(i)} \quad \sum_{t=0}^{n-1} \Delta_1(0, t) \quad \text{Prop 5.2(ii)} \quad \sum_{t=0}^{n-1} \Delta_1(0, t)$$

$$\sum_{t=0}^{n-1} \Delta_1(0, t) \quad \text{Prop 5.2(ii)} \quad \sum_{t=0}^{n-1} -\Delta_1(t, 0) \quad \text{Prop 5.2(ii)} \quad \sum_{t=0}^{n-1} -\Delta_1(t, 0) \quad \text{Prop 5.2(ii)} \quad (n-1),$$

$$\sum_{i=0}^{n-2} \sum_{t=i+1}^{n-1} \Delta_1(i + 1, t + 1) \quad \text{Prop 5.2(i)} \quad \sum_{i=0}^{n-2} \sum_{i=0}^{n-2} \Delta_1(i + 1, 0) \quad \text{Prop 5.2(ii)} \quad \sum_{i=0}^{n-1} \Delta_1(i, 0) \quad \text{Prop 5.2(ii)} \quad (n-1),$$

$$\sum_{i=0}^{n-2} \sum_{t=i+1}^{n-1} (m_{-t-1} + m_t) = 2(n-1)m_{n-1} + (n-2)\sum_{k=0}^{n-1} m_k$$

and

$$\sum_{i=0}^{n-2} \sum_{t=i+1}^{n-1} (m_{-t-1} + m_t) = n \sum_{k=0}^{n-1} m_k.$$

Since n is odd, we have

$$\sum_{k=0}^{n-1} m_k \equiv 1 \mod n.$$
and therefore, $\sigma_{(\beta|_0)\cdots(\beta|_{n-1})} = \sigma^{m_0 + \cdots + m_{n-1}} = \sigma$. \hfill \Box$

Now we prove Theorem C.

Theorem 5.8. Let n be an odd number, $\sigma = (0, \ldots, n-1) \in \Sigma_n$ and let L be the layer closure of $\langle \sigma \rangle$ in A_n. Let s be an integer relatively prime to n and $\beta = (\beta|_0, \beta|_1, \ldots, \beta|_{n-1}) \sigma^s \in L$ be such that $[\beta, \beta^s] = e$ for all $x \in \mathbb{Z}$. Then β is a conjugate of τ in A_n.

Proof. We start with the case $s = 1$. The element

$$\alpha(1) = (e, \beta|_0^{-1}, (\beta|_0(\beta|_1))^{-1}, \ldots, ((\beta|_0) \cdots (\beta|_{n-2}))^{-1}) \in \text{Stab}(1)$$

conjugates β to

$$\beta^{\alpha(1)} = (e, \ldots, e, (\beta|_0) \cdots (\beta|_{n-1})).$$

By Lemma 5.7 we find $\sigma_{(\beta|_0)\cdots(\beta|_{n-1})} = \sigma$. Moreover by Proposition 4.3

$$[(\beta^n)|_0, ((\beta^n)|_0)^s] = [(\beta|_0) \cdots (\beta|_{n-1}), ((\beta|_0) \cdots (\beta|_{n-1}))^s] = e,$$

for all integers x. Therefore $(\beta|_0) \cdots (\beta|_{n-1})$ satisfies the hypothesis of the theorem. The process can be repeated until we obtain a sequence $(\alpha(k))_{k \in \mathbb{N}}$ such that $\beta^{\alpha(1)\alpha(2)\cdots\alpha(k-1)} = \tau$, where $\alpha(k) \in \text{Stab}(k)$ satisfies $\alpha(k)|_u = \alpha(k)|_v$ for all $u, v \in M$ with $|u| = |v| = k - 1$.

Now, suppose more generally s is such that $\gcd(s, n) = 1$ and let k be the minimum positive integer for which $sk \equiv 1 \mod(n)$. Then β^k satisfies the hypothesis of the first part and so, there exists $\alpha \in L$ such that $(\beta^k)^\alpha = \tau$. Since k is invertible in \mathbb{Z}_n, there exists $\gamma \in A_n$ such that $\tau^{-1} = \tau^k$. Thus, $\beta^{\alpha \gamma^{-1}} = \tau$. \hfill \Box

6. *Solvable groups for $n = p$, a prime number*

We will prove in this section the case $n = p$ of Theorem A.

Let B be an abelian subgroup of $Aut(T_p)$ normalized by τ and let $\beta \in B$. By Proposition 4.1 $\sigma_\beta \in \langle \sigma_\tau \rangle$ and therefore we have in effect two cases, namely, $\sigma_\beta = e, \sigma_\tau$.

Proposition 6.1. Suppose $\sigma_\beta \in \langle \sigma_\tau \rangle$. Then, $\sigma_{(\beta|_i)} \in \langle \sigma_\tau \rangle$ for all $i \in Y$.

Proof. By Theorem 5.5 K is an abelian normal subgroup of H and \overline{H} is homomorphic to a subgroup of $C_p \cap C_p$ for $O = K(\tau)$.

By Proposition 4.1 K is a subgroup of $\langle \sigma_\tau \rangle$ modulo $\text{Stab}(1)$. So the same is true for $O = K(\tau)$.

Therefore, H is a p-group modulo $\text{Stab}(1)$. Since H is a p-group modulo $\text{Stab}(1)$ and since $\tau \in H$, it follows that H coincides with $\langle \sigma_\tau \rangle$ modulo $\text{Stab}(1)$, by Proposition 4.1. Hence, necessarily we have $\sigma_{(\beta|_i)} \in \langle \sigma_\tau \rangle$. \hfill \Box

Theorem 6.2. Let p be a prime number and $\beta \in Aut(T_p)$ such that $\sigma_\beta = \sigma_\tau^s$ for some integer s relatively prime to p. Suppose $[\beta, \beta^s] = e$ for all $x \in \mathbb{Z}$. Then β is conjugate to τ in $Aut(T_p)$.

Proof. As the second author showed the case $p=2$ in [9], we will show the case p odd.

Suppose $s = 1$. Recall that

$$\alpha(1) = (e, \beta|_0^{-1}, (\beta|_0^2)^{-1}, \ldots, \beta|_{p-2})^{-1}) \in \text{Stab}(1)$$

conjugates β to its normal form

$$\beta^{\alpha(1)} = (e, \ldots, e, \beta|_0 \cdots \beta|_{p-1})\sigma.$$

By Lemma 5.7 we have $\sigma\beta|_0 \cdots \beta|_{p-1} = \sigma$. Moreover by Proposition 4.3

$$[\beta|_0^p, (\beta|_0^p)_\tau^x] = [\beta|_0 \cdots \beta|_{p-1}, (\beta|_0 \cdots \beta|_{p-1})^\tau] = e,$$

for all integers x. Therefore $\beta|_0 \cdots \beta|_{p-1}$ satisfies the condition of the theorem. This process can be repeated to produce a sequence $(\alpha(k))_{k \in \mathbb{N}}$ such that $\beta^{\alpha(1)}\alpha(2) \cdots \alpha(k) \cdots = \tau$, where $\alpha(k) \in \text{Stab}(k)$ satisfies $\alpha(k)|_u = \alpha(k)|_v$ for all $u, v \in M$ where $|u| = |v| = k - 1$.

In the general case, s is such that $\gcd(p, s) = 1$. Let k be the minimum positive integer which is the inverse of s modulo p. Then, $\sigma|_{\beta^k} = \sigma_\tau$ and β^k satisfies the hypotheses. Thus there exists $\alpha \in A_p$ such that $(\beta^k)^\alpha = \tau$. Let k be the inverse of k in $U(\mathbb{Z}_n)$; then $\beta^\alpha = \tau^k$. There exists $\gamma \in N_{A_p}(<\tau>)$ which conjugates τ to τ^k and so, $(\beta^\alpha)^{\gamma^{-1}} = \tau$.

Lemma 6.3. Let p be a prime number and $\beta \in \text{Aut}(T_p)$ such that $[\beta, \beta^x] = e$ for all $x \in \mathbb{Z}$. Then, there exists a tree level m and a conjugate μ of τ such that $\beta \in \times_{p^m} <\mu>$ and there exists an index u of length m such that $\beta_i|_u = \mu$.

Proof. Let m be the minimum tree level such that $\sigma_{\beta|_u} \neq e$ for some $|u| = m$. Therefore, $\beta \in \text{Stab}(m)$ and $\sigma_{\beta|_u} = \sigma_{\beta^s}$ for some integer s such that $\gcd(p, s) = 1$. By Proposition 4.3 $[\beta|_u, \beta|_u^s] = e$ for all indices v such that $|v| = m$ and for all $k \in \mathbb{Z}$, So, by Theorem 6.2 $\mu = \beta|_u$ is conjugate to τ in $\text{Aut}(T_p)$ and $\beta|_v \in <\mu>$ for all v such that $|v| = m$, by Lemma 3.2. \hfill \square

Theorem 6.4. Let p be a prime number, $\sigma = (0, 1, \ldots, p - 1) \in \Sigma_p$, $F = N_{\Sigma_p}(<\sigma>)$, $\Gamma_0 = N_A(<\tau>)$. Let G be a solvable subgroup of $\text{Aut}(T_p)$ which contains the p-adic adding machine τ. Then, there exists an integer $t \geq 1$ such that G is conjugate to a subgroup of

$$\times_p (\cdots (\times_p (\times_p \Gamma_0 \times F) \times) \cdots) \times F,$$

where \times_p appears t times.

Proof. We may suppose G has derived length $d \geq 2$. Let B be the $(d - 1)$-th term of the derived series of G. By Lemma 6.3 there exists a level t such that B is a subgroup of $V = \times_{p^t} <\mu>$ where $\mu = \tau^\alpha$ for some $\alpha \in \text{Aut}(T_p)$.

We will show that G is a subgroup of

$$\hat{J} = \times_p (\cdots (\times_p (\times_p (\Gamma_0^\alpha \times \Sigma_p) \times \Sigma_p) \cdots) \times \Sigma_p),$$

where \times_p appears t times.
Let $\gamma \in G \setminus \hat{J}$. Then there exists an index w of length t such that $\gamma|_w \not\in (\Gamma_0)^\alpha$. Since B is an abelian subgroup normalized by τ and τ is transitive on all levels of the tree, by Lemma 6.3 there exists $\beta \in B$ such that $\beta|_w = \mu^\eta$ for some $\eta \in U(\mathbb{Z}_p)$.

Write $v = w^\gamma$. Then,

$$
(\beta^\gamma)|_v \overset{227}{=} (\beta|_{v^{\gamma^{-1}}}) \left(\gamma|_v^{\gamma^{-1}}\right) = (\beta|_w)^{\gamma|_w} \not\in \langle \mu \rangle,
$$

and this implies $\beta^\gamma \not\in B \leq \times_p \langle \mu \rangle$ and $\gamma \not\in G$. Hence, G is a subgroup of \hat{J}.

Now, since G is a solvable group containing τ, there exist $G_i (0 \leq i \leq t)$ solvable subgroups of Σ_p containing $\sigma = (0, 1, \ldots, p - 1)$ such that G is a subgroup of

$$
R_t (\alpha) = \times_p (\times_p (\Gamma_0) \rtimes G_1 \rtimes G_2) \cdots \rtimes G_t.
$$

Since for all i, we have $G_i \leq F$ we may substitute every the G_i by F. Finally, $R_t (\alpha)$ is a conjugate of $R_t (1)$ by the diagonal automorphism α^t.

\[\square\]

7. Two cases for n even

We prove in this section part (II) of Theorem B.

7.1. The case $\sigma_\beta = (\sigma_\tau)^{\frac{n}{2}}$.

Theorem 7.1. Let n be an even number, $\beta \in A_n$ such that $\sigma_\beta = \sigma_\tau^{\frac{n}{2}}$ and $[\beta, \beta^{\tau_x}] = e$ for all $x \in \mathbb{Z}$. Then $H = \langle \beta \rangle_i (0 \leq i \leq n - 1) , \tau \rangle$ is a metabelian subgroup of A_n.

Proof. Denote $\Delta_{\frac{n}{2}}(i, j)$ by $\Delta(i, j)$.

Define the subgroup

$$
R = \left\langle [\beta|_i, \tau^k], \beta|_i \beta|_{i+\frac{n}{2}}, \beta|_i^{\frac{n}{2}} \tau^{-\Delta(j, j + \frac{n}{2})} \mid k \in \mathbb{Z} \text{ and } i, j, t \in Y \right\rangle.
$$

We will prove that R is an abelian normal subgroup of H.

(1) R is normal in H:

- $\langle [\beta|_i, \tau^k] \rangle^H \leq R$:

$$
[\beta|_i^{\frac{n}{2}}, \tau^k] \beta|_i^{\frac{n}{2}} \beta|_i, \tau^k \overset{5.3}{=} [\beta|_i, \tau^k]^{\Delta(i, 0)};
$$

- $\langle \beta|_i \beta|_{i+\frac{n}{2}} \rangle^H \leq R$:

$$
(\beta|_i \beta|_{i+\frac{n}{2}})^{\tau^k} = \left(\beta|_i \beta|_{i+\frac{n}{2}}\right)^{[\beta|_i \beta|_{i+\frac{n}{2}}, \tau^k]} = \left(\beta|_i \beta|_{i+\frac{n}{2}}\right)^{[\beta|_i, \tau^k]^{\beta|_i^{\frac{n}{2}} \beta|_i}} \beta|_i^{\frac{n}{2}}, \tau^k
$$

(7.1)

$$
(\beta|_i \beta|_{j+\frac{n}{2}})^{\beta|_j} = \left(\beta|_j^{-1} \beta|_i \beta|_{j+\frac{n}{2}} \beta|_j\right)^{\tau^{\Delta(j, j + \frac{n}{2})} \tau^{-\Delta(j, j + \frac{n}{2})}} \overset{5.3}{=} \left(\beta|_j^{-1} \beta|_i\right)^{\tau^{\Delta(j, j)}} \left(\beta|_j \beta|_{j+\frac{n}{2}} \beta|_i\right)^{\tau^{-\Delta(j, j + \frac{n}{2})}} = \left(\beta|_j^{-1} \beta|_i \beta|_{j+\frac{n}{2}}\right)^{\tau^{\Delta(j, j), \beta|_j \beta|_{j+\frac{n}{2}}, \beta|_i^{\tau^{-\Delta(j, j + \frac{n}{2})}}}}.
$$
\[(5.3) \quad \left(\beta_{\bar{i}}^{-1} \right) \tau^{\Delta(j,\frac{\bar{i}}{2} + \frac{\bar{i}}{2})} \left(\beta_{\bar{j}} \beta_{\bar{i}} + \frac{\bar{i}}{2} \right) \phi_{\bar{i}j} + \phi_{\bar{j}i} \beta_{\bar{i}} \mid \tau - \Delta(j,\frac{\bar{i}}{2} + \frac{\bar{i}}{2}) \]

\[= \tau^{\Delta(j,\frac{\bar{i}}{2} + \frac{\bar{i}}{2})} \left[\tau^{\Delta(j,\frac{\bar{i}}{2} + \frac{\bar{i}}{2})} \beta_{\bar{j}} \right] \beta_{\bar{i}} \mid \tau - \Delta(j,\frac{\bar{i}}{2} + \frac{\bar{i}}{2}) \]

\[\text{Prop} \Rightarrow 5.2 \quad \tau^{\Delta(j,\bar{i})} \left[\tau^{\Delta(j,\bar{i})} \beta_{\bar{j}} \right] \beta_{\bar{i}} \mid \tau^{\Delta(j,\bar{i})} \]

\[\left(\beta_{\bar{i}} \right)^{\beta_{\bar{j}}} \tau^{-\Delta(j,\bar{i} + \frac{\bar{i}}{2})} \leq R : \]

\[\left(\beta_{\bar{j}} \right)^{\beta_{\bar{i}}} \tau^{-\Delta(j,\bar{i} + \frac{\bar{i}}{2})} = \left(\beta_{\bar{j}} \right)^{\beta_{\bar{i}}} \tau^{-\Delta(j,\bar{i} + \frac{\bar{i}}{2})} \]

By Proposition 5.2 and 5.3, we can show

\[\left(\beta_{\bar{i}} \right)^{\beta_{\bar{j}}} \tau^{-\Delta(j,\bar{i} + \frac{\bar{i}}{2})} \]

(II) The subgroup \(R \) is abelian:

\[\left(\beta_{\bar{i}} \right)^{\beta_{\bar{j}}} \tau^{-\Delta(j,\bar{i} + \frac{\bar{i}}{2})} \mid \tau^{\Delta(j,\bar{i} + \frac{\bar{i}}{2})} \]

\[\left(\beta_{\bar{i}} \right)^{\beta_{\bar{j}}} \tau^{-\Delta(j,\bar{i} + \frac{\bar{i}}{2})} \mid \tau^{\Delta(j,\bar{i} + \frac{\bar{i}}{2})} \]

\[\left(\beta_{\bar{i}} \right)^{\beta_{\bar{j}}} \tau^{-\Delta(j,\bar{i} + \frac{\bar{i}}{2})} \mid \tau^{\Delta(j,\bar{i} + \frac{\bar{i}}{2})} \]

\[\left(\beta_{\bar{i}} \right)^{\beta_{\bar{j}}} \tau^{-\Delta(j,\bar{i} + \frac{\bar{i}}{2})} \mid \tau^{\Delta(j,\bar{i} + \frac{\bar{i}}{2})} \]

\[\left(\beta_{\bar{i}} \right)^{\beta_{\bar{j}}} \tau^{-\Delta(j,\bar{i} + \frac{\bar{i}}{2})} \mid \tau^{\Delta(j,\bar{i} + \frac{\bar{i}}{2})} \]

\[\left(\beta_{\bar{i}} \right)^{\beta_{\bar{j}}} \tau^{-\Delta(j,\bar{i} + \frac{\bar{i}}{2})} \mid \tau^{\Delta(j,\bar{i} + \frac{\bar{i}}{2})} \]

\[\left(\beta_{\bar{i}} \right)^{\beta_{\bar{j}}} \tau^{-\Delta(j,\bar{i} + \frac{\bar{i}}{2})} \mid \tau^{\Delta(j,\bar{i} + \frac{\bar{i}}{2})} \]
\[
(\beta_i | \beta_i | i+\frac{\beta}{2})^2 = \beta_i | \beta_i | i+\frac{\beta}{2}
\]

Let

\[
(7.6) \quad \alpha = \beta_j | \beta_j | i+\frac{\beta}{2} | \tau - (j+\frac{\beta}{2}), \beta_j | i+\frac{\beta}{2}.
\]

Then,

\[
\left(\beta_j | \beta_j | i+\frac{\beta}{2} \right)^2 \beta_j | \beta_j | i+\frac{\beta}{2} | \tau - (j+\frac{\beta}{2}), \beta_j | i+\frac{\beta}{2}
\]

\[
= \left(\beta_j | \beta_j | i+\frac{\beta}{2} \right)^2 \beta_j | \beta_j | i+\frac{\beta}{2} | \tau - (j+\frac{\beta}{2}), \beta_j | i+\frac{\beta}{2}
\]

\[
= \left(\beta_j | \beta_j | i+\frac{\beta}{2} \right)^2 \beta_j | \beta_j | i+\frac{\beta}{2} | \tau - (j+\frac{\beta}{2}), \beta_j | i+\frac{\beta}{2}
\]

\[
\alpha = \beta_j | \beta_j | i+\frac{\beta}{2} | \tau - (j+\frac{\beta}{2}), \beta_j | i+\frac{\beta}{2}
\]
Moreover, since
\[R(\beta_i) R(\beta_j) = R(\beta_i) (\beta_j) \overset{\text{Prop. 5.3}}{=} R\tau^{\Delta(j,i+\frac{n}{2})}\beta_{j+i+\frac{n}{2}} \tau^{\Delta(j,i+\frac{n}{2})} \]
\[= R\beta_{j+i+\frac{n}{2}} \tau^{2\Delta(j,i+\frac{n}{2})} = R\beta_i^{-1} \beta_j^{-1} \tau^{2\Delta(j,i+\frac{n}{2})} \]
\[= R\beta_j \beta_i \tau^{\Delta(j,i+\frac{n}{2})} \tau^{\Delta(i,j+\frac{n}{2})} + 2\Delta(j,i+\frac{n}{2}) \]
\[\overset{\text{Prop. 5.2}}{=} R\beta_i R\beta_j \]
and
\[R\beta_i = R\beta_i^{-1}, \quad R\beta_i^2 = R\tau^{\Delta(i,j+\frac{n}{2})}, \quad \forall i \in Y, \]
we conclude \(\frac{H}{R} \) is a homomorphic image of
\[\mathbb{Z} \times C_2 \times \cdots \times C_2, \]
\[\frac{n}{2} \text{ terms} \]

7.2. The case \(\sigma_\beta \) transposition.

Theorem 7.2. Let \(n \) be an even number and \(B \) an abelian subgroup of \(A_n \) normalized by \(\tau \). Suppose \(\beta = (\beta_0, \beta_1, \ldots, \beta_{n-1}) \in B \) where \(\sigma_\beta \) is a transposition. Then \(H = \langle \beta_i \ (0 \leq i \leq n-1), \tau \rangle \) is a metabelian group.

We prove progressively that
\[N = \left\langle [\beta_i, \tau^k] \mid k \in \mathbb{Z}, i \in Y \right\rangle, \]
\[U = \left\langle N, \beta_j \mid j \neq 0, \frac{n}{2} \right\rangle, \]
\[V = \left\langle U, \beta_{\frac{n}{2}}, \tau (\beta_0)^2 \right\rangle \]
are normal abelian subgroups of \(H \), from which it follows that \(\frac{H}{V} \) is cyclic and therefore \(H \) metabelian.

Lemma 7.3. If the degree of the tree \(n \) is even and \(\sigma_\beta \) is a transposition, then \(\sigma_\beta \) is \(\langle \tau \rangle \)-conjugate to the transposition \((0, \frac{n}{2}) \).

Proof. On conjugating by an appropriate power of \(\sigma_\tau \), we may assume \(\sigma_\beta = (0, j) \). The conjugate of \(\sigma_\beta \) by \(\sigma_i^j \) is the transposition \((i, j+i) \). In particular, \((j, 2j) \) is a conjugate which is supposed to commute with \((0, j) \). Therefore, \(\{0, j\} = \{j, 2j\}, \ 2j = 0 \mod(n), \ n = 2n' \) and \(j = n' \). \(\square \)
We go back to part (I) of the Proposition 4.5.

\[
(\tau^v|_{(i)\sigma^{-v}})^{-1}\left(\beta|_{(i)\sigma^{-v}}\right) \left(\tau^v|_{(i)\sigma^{-v}\sigma_{\beta}}\right) \left(\beta|_{(i)\sigma^{-v}\sigma_{\beta}\sigma_{\beta}}\right)
= (\beta|_{i}) \left(\tau^v|_{(i)\sigma_{\beta}\sigma^{-v}}\right)^{-1}\left(\beta|_{(i)\sigma_{\beta}\sigma^{-v}}\right) \left(\tau^v|_{(i)\sigma_{\beta}\sigma^{-v}\sigma_{\beta}}\right)
\]

and set in it \(j = (i)\sigma^{-v}, v = kn + r, r = v\) to obtain

\[
(\tau^v)|_{j}^{-1}\beta|_{j}(\tau^v)|_{(j)\sigma_{\beta}\beta|_{(j)\sigma_{\beta}\sigma^{-v}}}
= \beta|_{(j)\sigma_{v}(\tau^v)|_{(j)\sigma_{v}\sigma_{\beta}\sigma_{\beta\sigma_{\beta}}}^{-1}}\beta|_{(j)\sigma_{v}\sigma_{\beta}\sigma_{\beta}(\tau^v)|_{(j)\sigma_{v}\sigma_{\beta}\sigma_{\beta}}}.
\]

Proposition 7.4. The following cases hold for different pairs \((j, r)\).

- For \(j = 0\) there are 3 subcases
 - If \(r = 0\), then
 \[
 [\beta|_{0}, \tau^{k}]^{\beta|_{0}} = [\beta|_{0}, \tau^{k}], \forall k \in \mathbb{Z};
 \]
 - If \(r = \frac{n}{2}\), then
 \[
 \beta|_{0} \tau \beta|_{0} = \beta|_{\frac{n}{2}} \tau^{-1} \beta|_{\frac{n}{2}},
 \]
 and
 \[
 [\beta|_{0}, \tau^{k}]^{\tau(0)} = [\beta|_{0}, \tau^{k}], \forall k \in \mathbb{Z}.
 \]
 - If \(r \neq 0\) and \(r \neq \frac{n}{2}\), then
 \[
 \tau^{\delta(\frac{n}{2}, r)} \beta|_{0} \beta|_{(\frac{n}{2} + r)} = \beta|_{r} \tau^{\delta(\frac{n}{2}, r)} \beta|_{0}, \forall r \in Y - \{0, \frac{n}{2}\}
 \]
 and
 \[
 [\beta|_{0}, \tau^{k}]^{\beta|_{0}} = [\beta|_{0}, \tau^{k}], \forall k \in \mathbb{Z}.
 \]

- For \(j = \frac{n}{2}\) there are 3 subcases
 - If \(r = 0\), then
 \[
 [\beta|_{\frac{n}{2}}, \tau^{k}]^{\beta|_{0}} = [\beta|_{0}, \tau^{k}], \forall k \in \mathbb{Z};
 \]
 - If \(r = \frac{n}{2}\), then
 \[
 \tau^{-1} \beta|_{\frac{n}{2}} \tau = \beta|_{\frac{n}{2}} \tau,
 \]
 and
 \[
 [\beta|_{\frac{n}{2}}, \tau^{k}]^{\beta|_{0}} = [\beta|_{0}, \tau^{k}], \forall k \in \mathbb{Z};
 \]
– If \(r \neq 0 \) and \(r \neq \frac{n}{2} \), then
\[
\tau^{-\delta(\frac{n}{2}, r)\beta\beta}|_r = \beta|_{\frac{n}{2} + r}, \forall r \in Y - \{0, \frac{n}{2}\}
\]
and
\[
[\beta|_{\frac{n}{2}}, \tau^k]^{\beta\beta}|_r = [\beta|_{\frac{n}{2}}, \tau^k], \forall k \in \mathbb{Z}, \forall r \in Y - \{0, \frac{n}{2}\}. \tag{7.18}
\]

• For \(j \neq 0 \) and \(j \neq \frac{n}{2} \), there are 5 subcases:

 – If \(j \neq n - r \) and \(j \neq \frac{n}{2} - r \), then, by substitution \(t = j + r \), we have
\[
\beta|_j \beta_t = \beta|_t \beta_j, \forall j, t \in Y - \{0, \frac{n}{2}\} \tag{7.19}
\]
and
\[
[\beta|_j, \tau^k]^{\beta\beta}|_t = [\beta|_j, \tau^k], \forall j, t \in Y - \{0, \frac{n}{2}\} \tag{7.20}
\]

 – If \(j = n - r \) and \(0 < r < \frac{n}{2} \), then, by substitution \(t = j - \frac{n}{2} \), we have
\[
\tau^{-1}\beta|_{t + \frac{n}{2}} \tau \beta|_0 = \beta|_0 \beta|_{t + \frac{n}{2}}, \forall t \in \{1, 2, \ldots, \frac{n}{2} - 1\} \tag{7.21}
\]
and
\[
[\beta|_{t + \frac{n}{2}}, \tau^k]^{\tau \beta|_o} = [\beta|_t, \tau^k], \forall j \in \{1, 2, \ldots, \frac{n}{2} - 1\} \tag{7.22}
\]

 – If \(j = n - r \) and \(\frac{n}{2} < r \leq n - 1 \), then
\[
\beta|_j \beta|_0 = \beta|_0 \beta|_{\frac{n}{2} + j}, \forall j \in \{1, \ldots, \frac{n}{2} - 1\} \tag{7.23}
\]
and
\[
[\beta|_j, \tau^k]^{\beta\beta}|_0 = [\beta|_{\frac{n}{2} + j}, \tau^k], \forall k \in \mathbb{Z}, \forall j \in \{1, \ldots, \frac{n}{2} - 1\} \tag{7.24}
\]

 – If \(j = \frac{n}{2} - r \) and \(0 < r < \frac{n}{2} \), then
\[
\beta|_{\frac{n}{2}} \beta|_j = \beta|_{\frac{n}{2} + j} \tau^{-1}\beta|_{j + \frac{n}{2} \tau}, \forall j \in \{1, \ldots, \frac{n}{2} - 1\} \tag{7.25}
\]
and
\[
[\beta|_{\frac{n}{2}}, \tau^k]^{\beta\beta}|_{\frac{n}{2}} \tau^{-1} = [\beta|_{\frac{n}{2} + j}, \tau^k], \forall k \in \mathbb{Z}, \forall j \in \{1, \ldots, \frac{n}{2} - 1\} \tag{7.26}
\]

 – If \(j = \frac{n}{2} - r \) and \(\frac{n}{2} < r \leq n - 1 \), then
\[
\beta|_{\frac{n}{2}} \beta|_j = \beta|_{\frac{n}{2} + j} \beta|_{\frac{n}{2}}, \forall j \in \{1, \ldots, \frac{n}{2} - 1\} \tag{7.27}
\]
and
\[
[\beta|_{\frac{n}{2}}, \tau^k] = [\beta|_{\frac{n}{2} + j}, \tau^k]^{\beta\beta}|_{\frac{n}{2}}, \forall k \in \mathbb{Z}, \forall j \in \{1, \ldots, \frac{n}{2} - 1\} \tag{7.28}
\]
Proof. We will prove (7.19) and (7.20). As $j \notin \{0, \frac{n}{2}, n - r, \frac{n}{2} - r\}$, we have

\[
(j) \sigma^v \tau = (j) \sigma \sigma^v \tau = j + r,
\]

\[
(j) \beta = (j) \sigma^v \sigma^{-v} \beta = (j) \sigma^v \sigma^v \sigma^{-v} \beta = j.
\]

Therefore,

\[
\left((\tau^v)^{-1} \beta_{j}(\tau^v) \right)^{-1} \beta_{j+r} = \beta_{j+r}(\tau^v)^{-1} \beta_{j}(\tau^v), \forall \nu \in \mathbb{Z}
\]

\[
\iff \left(\tau^{-k-\delta(j,r)} \beta_{j+r} = \beta_{j+r} \tau^{-k-\delta(j,r)} \beta_{j+r}, \forall k \in \mathbb{Z} \right)
\]

\[
\iff \left(\beta_{j}[\beta_{j}, \tau^{k+\delta(j,r)}] \beta_{j+r} = \beta_{j+r} \beta_{j}[\beta_{j}, \tau^{k+\delta(j,r)}], \forall k \in \mathbb{Z} \right)
\]

(7.29)

\[
\beta_{j} \beta_{t} = \beta_{t} \beta_{j}, \forall j, t \in Y - \left\{0, \frac{n}{2} \right\}
\]

and

(7.30)

\[
[\beta_{j}, \tau^{k}]^{\beta_{t}} = [\beta_{j}, \tau^{k}], \forall j, t \in Y - \left\{0, \frac{n}{2} \right\}.
\]

\[
\square
\]

Lemma 7.5. The group $N = \langle [\beta_{i}, \tau^{k}] | k \in \mathbb{Z}, i \in Y \rangle$ is an abelian normal subgroup of H.

Proof. Define

\[
N_{i} = \langle [\beta_{i}, \tau^{k}] | k \in \mathbb{Z} \rangle
\]

for each $i \in Y$. Then, $N = \langle N_{i} | i \in Y \rangle$, each N_{i} is an abelian subgroup normalized by τ and

(7.31)

\[
[\beta_{i}, \tau^{k}]^{\beta_{j}} = [\beta_{i}, \tau^{k}], \forall k \in \mathbb{Z}, \forall i, j \in Y, j \neq 0, \frac{n}{2}
\]

We have $[N_{i}, N_{j}] = 1$, $\forall i, j \in Y, j \neq 0, \frac{n}{2}$, because

\[
[\beta_{i}, \tau^{k}][\beta_{j}, \tau^{t}] = [\beta_{i}, \tau^{k}][\beta_{j}^{-1} \tau^{-t} \beta_{j} \tau^{t}] \overset{(7.31)}{=} [\beta_{i}, \tau^{k}]^{\tau^{-t} \beta_{j} \tau^{t}} \overset{(1.1)}{=} ([\beta_{i}, \tau^{-t} \beta_{j} \tau^{t}])^{\beta_{j} \tau^{t}} \overset{(7.31)}{=} \left([\beta_{i}, \tau^{-t}]^{-1} [\beta_{i}, \tau^{k-t}] \right)^{\tau^{t}}
\]

\[
[\beta_{i}, \tau^{k}]^{\tau^{-t} \beta_{j} \tau^{t}} = [\beta_{i}, \tau^{k}], \forall k, t \in \mathbb{Z}, \forall i, j \in Y, j \neq 0, \frac{n}{2}
\]

Furthermore, $[N_{0}, N_{\frac{n}{2}}] = 1$, because

\[
[\beta_{\frac{n}{2}}, \tau^{k}]^{\beta_{0} \tau^{t}} = [\beta_{\frac{n}{2}}, \tau^{k}][\beta_{0}^{-1} \tau^{-t} \beta_{0} \tau^{t}] \overset{(1.1)}{=} [\beta_{\frac{n}{2}}, \tau^{k}]^{\tau^{-t} \beta_{0} \tau^{t}} \overset{(7.31)}{=} \left([\beta_{0}, \tau^{-t}]^{-1} [\beta_{0}, \tau^{k-t}] \right)^{\tau \beta_{0} \tau^{t}} \overset{(7.31)}{=} \left([\beta_{\frac{n}{2}}, \tau^{-t}]^{-1} [\beta_{\frac{n}{2}}, \tau^{k-t}] \right)^{\tau^{t}}
\]
\[(1.1) [\beta|_{\frac{n}{2}}, \tau^k]^{\tau^{-t}\tau^t} = [\beta|_{\frac{n}{2}}, \tau^k], \forall k, t \in \mathbb{Z}. \]

Therefore \(N \) is abelian.

Now, equation (7.31) implies
\[
(7.32) \quad N_i = N_i^{\beta|_j} = N_i^{\beta|^{-1}_j}, \forall i, j \in Y, j \neq 0, \frac{n}{2};
\]
equation (7.11) implies
\[
(7.33) \quad \begin{cases} N_{\frac{n}{2}} = N_0^{\beta|_{\frac{n}{2}}}, N_0 = N_0^{\beta|^{-1}_{\frac{n}{2}}}; \end{cases}
\]
equations (4.1), (7.11) imply
\[
(7.34) \quad \begin{cases} N_{\frac{n}{2}} = N_0^{\beta|_0}, N_0 = N_0^{\beta|^{-1}_0}; \end{cases}
\]
equation (7.14) implies
\[
(7.35) \quad \begin{cases} N_0 = N_0^{\beta|_0}, N_{\frac{n}{2}} = N_0^{\beta|^{-1}_{\frac{n}{2}}}; \end{cases}
\]
equations (4.1), (7.16) imply
\[
(7.36) \quad \begin{cases} N_0 = N_0^{\beta|_{\frac{n}{2}}}, N_{\frac{n}{2}} = N_0^{\beta|^{-1}_{\frac{n}{2}}}; \end{cases}
\]
equations (4.1), (7.22) imply
\[
(7.37) \quad \begin{cases} N_j = N_j^{\beta|_0}, N_j + \frac{n}{2} = N_j^{\beta|^{-1}_0}, \forall j \in \{1, \ldots, \frac{n}{2} - 1\}; \end{cases}
\]
equation (7.24) implies
\[
(7.38) \quad \begin{cases} N_{j + \frac{n}{2}} = N_j^{\beta|_0}, N_j = N_j^{\beta|^{-1}_0}, \forall j \in \{1, \ldots, \frac{n}{2} - 1\}; \end{cases}
\]
equations (4.1) and (7.26) imply
\[
(7.39) \quad \begin{cases} N_{j + \frac{n}{2}} = N_j^{\beta|_{\frac{n}{2}}}, N_j = N_j^{\beta|^{-1}_{\frac{n}{2}}}, \forall j \in \{1, \ldots, \frac{n}{2} - 1\}; \end{cases}
\]
equation (7.28) implies
\[
(7.40) \quad \begin{cases} N_j = N_j^{\beta|_{\frac{n}{2}}}, N_j + \frac{n}{2} = N_j^{\beta|^{-1}_{\frac{n}{2}}}, \forall j \in \{1, \ldots, \frac{n}{2} - 1\}. \end{cases}
\]
Thus (7.31)-(7.40) prove
\[
N = \langle N_i \mid i \in Y \rangle = \langle [\beta|_i, \tau^k] \mid \forall i, k \in \mathbb{Z} \rangle
\]
is an abelian normal subgroup of \(H \).

\[\square \]

Lemma 7.6. The group \(U = \langle N, \beta|_j \mid j \neq 0, \frac{n}{2} \rangle \) is a normal abelian subgroup of \(H \).
Proof. Lemma 7.5 and equations (7.13), (7.18), (7.19) and (7.20) show that U is abelian.

The fact that N is normal in H, together with the following assertions proves that U is normal in H.

Let $J = \langle \beta_0, \beta_{\frac{n}{2}}, \tau \rangle$. Then, for $j \in Y - \{0, \frac{n}{2}\}$, we have

(I) $\langle \beta|_j \rangle^J \leq U$:

\[
\begin{align*}
\beta|_j^{\tau^I} &= \beta|_j[\beta|_j, \tau^I]; \\
\beta|_j^{\beta|_0} &= \beta|_{j+\frac{n}{2}}; \\
\beta|_j^{\beta|_0^{-1}} &= \beta|_{j+\frac{n}{2}} \tau^{-1} \beta|_{j+\frac{n}{2}} \tau = \beta|_{j+\frac{n}{2}}[\beta|_{j+\frac{n}{2}}, \tau]; \\
\beta|_j^{\beta|_j} &= \beta|_{j+\frac{n}{2}} \tau^{-1} \beta|_{j+\frac{n}{2}} \tau = \beta|_{j+\frac{n}{2}}[\beta|_{j+\frac{n}{2}}, \tau]; \\
\beta|_j^{\beta|_j^{-1}} &= \beta|_{j+\frac{n}{2}}.
\end{align*}
\]

(II) $\langle \beta|_{j+\frac{n}{2}} \rangle^J \leq U$:

\[
\begin{align*}
\beta|_{j+\frac{n}{2}}^{\tau^I} &= \beta|_{j+\frac{n}{2}}[\beta|_{j+\frac{n}{2}}, \tau^I]; \\
\beta|_{j+\frac{n}{2}}^{\beta|_0} &= \beta|_{j+\frac{n}{2}}[\beta|_{j+\frac{n}{2}}, \tau^I]; \\
\beta|_{j+\frac{n}{2}}^{\beta|_0^{-1}} &= \beta|_{j+\frac{n}{2}} \tau^{-1} \beta|_{j+\frac{n}{2}} \tau = \beta|_{j+\frac{n}{2}}[\beta|_{j+\frac{n}{2}}, \tau]; \\
\beta|_{j+\frac{n}{2}}^{\beta|_j} &= \beta|_{j+\frac{n}{2}} \tau^{-1} \beta|_{j+\frac{n}{2}} \tau = \beta|_{j+\frac{n}{2}}[\beta|_{j+\frac{n}{2}}, \tau]; \\
\beta|_{j+\frac{n}{2}}^{\beta|_j^{-1}} &= \beta|_{j+\frac{n}{2}}.
\end{align*}
\]

Hence, U is a normal abelian subgroup of H. \hfill \Box

Lemma 7.7. $V = \langle U, \beta|_{\frac{n}{2}} \beta|_0, \tau \beta|_0^2 \rangle$ is a normal abelian subgroup of H.

Proof. Lemma 7.6 together with the following assertions proves that V is a normal abelian subgroup of H.

Given $j \in Y - \{0, \frac{n}{2}\}$, $k \in \mathbb{Z}$, and $J = \langle \beta|_0, \beta_{\frac{n}{2}}, \tau \rangle$, we prove

(1) $\beta|_{\frac{n}{2}} \beta|_0 \in C_H(U)$:

\[
\begin{align*}
(\beta|_j)^{\beta|_j \beta|_0} &= (\beta|_j + \frac{n}{2})^{\tau \beta|_0} \beta|_j; \\
(\beta|_{j+\frac{n}{2}})^{\beta|_{j+\frac{n}{2}} \beta|_0} &= (\beta|_{j+\frac{n}{2}})^{\tau \beta|_0} \beta|_{j+\frac{n}{2}}; \\
[\beta|_j, \tau^k]^{\beta|_j \beta|_0} &= [\beta|_j, \tau^k]^{\tau^{-1} \tau \beta|_0} \beta|_0 \beta|_{j+\frac{n}{2}, \tau^k} \tau \beta|_0 \\
&= \beta|_{j+\frac{n}{2}} \beta|_0.
\end{align*}
\]
\[
[\beta_{j+\frac{n}{2}}, \tau \beta]^{[\beta_{j+\frac{n}{2}}]} \beta_{\beta_{\beta}} \quad \text{(7.24)} \quad [\beta_{j}, \tau \beta][\beta_{\beta}] \quad \text{(7.24)} \quad [\beta_{j+\frac{n}{2}}, \tau \beta];
\]
\[
[\beta_{0}, \tau \beta]^{[\beta_{\beta}]} \quad \text{(7.14)} \quad [\beta_{\frac{n}{2}}, \tau \beta][\beta_{\beta}] \quad \text{(7.14)} \quad [\beta_{0}, \tau \beta];
\]
\[
[\beta_{\beta}, \tau \beta]^{[\beta_{\beta}]} = [\beta_{\beta}, \tau \beta]^{[\beta_{\beta}]} \tau^{-1} \tau \beta \quad \text{(7.11)} \quad [\beta_{\beta}, \tau \beta];
\]

(II) \(\tau \beta_{0} \in C_{H}(U)\):

\[
\beta_{j}^{[\beta_{j}]} = \beta_{j}^{[\beta_{j}]} \quad \text{(7.21)} \quad \beta_{j}^{[\beta_{j}] \beta_{\beta}} \quad \text{(7.21)} \quad \beta_{j}^{[\beta_{j}]};
\]
\[
(\beta_{j+\frac{n}{2}})^{[\beta_{0}, \tau \beta]} \beta_{j+\frac{n}{2}} \quad \beta_{j+\frac{n}{2}}^{[\beta_{j+\frac{n}{2}}]};
\]
\[
[\beta_{0}, \tau \beta]^{[\beta_{\beta}]} \quad \text{(7.11)} \quad [\beta_{\frac{n}{2}}, \tau \beta][\beta_{\beta}] \quad \text{(7.14)} \quad [\beta_{0}, \tau \beta];
\]
\[
[\beta_{\beta}, \tau \beta]^{[\beta_{\beta}]} \quad \text{(7.14)} \quad [\beta_{\beta}, \tau \beta]^{[\beta_{\beta}]} \quad \text{(7.14)} \quad [\beta_{\beta}, \tau \beta];
\]
\[
[\beta_{j}, \tau \beta]^{[\beta_{\beta}]} \quad \text{(7.24)} \quad [\beta_{j}, \tau \beta]^{[\beta_{\beta}]} \quad \text{(7.24)} \quad [\beta_{j}, \tau \beta];
\]

(III) \(\tau \beta_{0} \in C_{H}(\beta_{\beta})\):

\[
(\beta_{\beta}^{[\beta_{0}]} \beta_{0})^{[\beta_{0}]} = \beta_{0}^{-2} \tau^{-1} \beta_{0} \beta_{0}^{[\beta_{0}]} \quad \text{(7.15)} \quad \beta_{0}^{-2} \tau^{-1} \beta_{0} \beta_{0}^{-1} \beta_{0} \beta_{0}^{[\beta_{0}]} \beta_{0}
\]
\[
= \beta_{0}^{-2} \tau^{-1} \beta_{0} \beta_{0}^{-1} \beta_{0} \beta_{0}^{-1} \beta_{0} \beta_{0} = (\tau \beta_{0}^{[\beta_{0}]} \beta_{0}^{-1} \beta_{0} \beta_{0}^{-1} \beta_{0} \beta_{0}^{[\beta_{0}]} \beta_{0} \beta_{0}) \quad \text{(7.15)} \quad \beta_{0}^{-2} \tau^{-1} \beta_{0} \beta_{0}^{-1} \beta_{0} \beta_{0} \beta_{0}^{[\beta_{0}]} \beta_{0}
\]
\[
= \beta_{0}^{-2} \tau^{-1} \beta_{0} \beta_{0}^{-1} \beta_{0} \beta_{0} \beta_{0} = 1.
\]
(IV) $\langle \tau \beta |^2_o \rangle^J \leq V$:

$$(\tau \beta |^2_0)^{\tau^k} = \tau (\beta |^2_0)^{\tau^k} = \tau \beta |^2_o [\beta |^2_0, \tau^k] = \tau \beta |^2_o [\beta |^2_0, \tau^k]$$.

$$(\tau \beta |^2_0)^{[\beta |^2_0]} = \beta |^2_0^{-1} \tau \beta |^2_0 \beta |^2_0 = \tau \beta |^2_0^{-1} \tau \beta |^2_0 \beta |^2_0 = \tau [\beta, \beta |^2_0]$$

$$(7.41) \quad (\tau \beta |^2_0)^{[\beta |^2_0]} = \beta |^2_0 [\beta, \beta |^2_0] = \tau \beta |^2_0 [\beta |^2_0, \tau^{\beta |^2_0}]$$

$$(\tau \beta |^2_0)^{[\beta |^2_0]} = \beta |^2_0 \tau, \beta |^2_0 = \tau \beta |^2_0 [\beta |^2_0, \tau^{\beta |^2_0}]$$

$$(\tau \beta |^2_0)^{\beta |^2_0} = (\tau \beta |^2_0)^{[\beta |^2_0]} [\beta |^2_0, \tau^{\beta |^2_0}]$$

(V) $\langle \beta |^2_0 \beta |^2_0 \rangle^J \leq V$:

$$(\beta |^2_0 \beta |^2_0)^{\tau^k} = \beta |^2_0 \beta |^2_0 [\beta |^2_0, \tau^k] = \beta |^2_0 \beta |^2_0 [\beta |^2_0, \tau^k]$$

$$(7.42) \quad (\beta |^2_0 \beta |^2_0)^{\beta |^2_0} = \beta |^2_0^{-1} \beta |^2_0 \beta |^2_0 = \beta |^2_0^{-1} \beta |^2_0^{-1} \tau \beta |^2_0$$

$$(7.43) \quad \beta |^2_0 \beta |^2_0 (7.42) (\beta |^2_0 \beta |^2_0)^{-1}$$

$$(7.44) \quad (\beta |^2_0 \beta |^2_0)^{\beta |^2_0} = (\beta |^2_0 \beta |^2_0)^{-1} (\beta |^2_0 \beta |^2_0)^{-1}$$
8. Solvable groups for $n = 4$

Let B be an abelian subgroup of $A_4 = Aut(T_4)$ normalized by τ and let $\beta \in B$. Then, by Proposition 4.1, $\sigma_\beta \in D = \langle (0,1,2,3), (0,2) \rangle$, the unique Sylow 2-subgroup of Σ_4 which contains $\sigma = \sigma_\tau = (0,1,2,3)$.

The normalizer of $\langle \tau \rangle$ here is $\Gamma_0 = N_{A_4} \langle \langle \tau \rangle \rangle = \langle \Psi, \iota \rangle$ where Ψ is the monic normalizer and where $\iota = \iota^{(1)}(0,3)(1,2)$ inverts τ.

Given a group W, the subgroup generated by squares of its elements is denoted by W^2.

Lemma 8.1. Let $L = L(D)$ be the layer closure of D above. If $\gamma \in L^2$ then $\gamma \tau$ is conjugate to τ.

Proof. If $\alpha \in L$ then $\sigma_{\alpha^2} \in \langle \sigma^2 \rangle$ and the product in some order of the states $(\alpha^2)_{i\in\{0,1,2,3\}}$ belongs to $S = L^2$.

Let $\gamma \in S$. Then $\gamma \tau$ is transitive on the 1st level of the tree and $(\gamma \tau)^3$ is inactive with conjugate 1st level states, where the first state is

$$(\gamma|_0)(\gamma|_1)(\gamma|_2)(\gamma|_3)\tau \text{ if } \sigma_\gamma = e,$$

and

$$(\gamma|_0)(\gamma|_3)(\gamma|_2)(\gamma|_1)\tau \text{ if } \sigma_\gamma = \sigma^2,$$

in both cases the element is contained in $S\tau$. Therefore, $\gamma \tau$ is transitive on the 2nd level of the tree. Now use induction to prove that $\gamma \tau$ is transitive on all levels of the tree. As $\gamma \tau$ is transitive on all levels of the tree, then $\gamma \tau$ is conjugate to τ. \hfill \Box

8.1. **Cases** $\sigma_\beta \in \{(0,3)(1,2), (0,1)(2,3)\}$. We will show that these cases cannot occur. We note that σ_τ conjugates $(0,1)(2,3)$ to $(0,3)(1,2)$. Since the argument for β applies to β^τ, it is sufficient to consider the first case.

Suppose $\sigma_\beta = (0,1)(2,3)$. Then,

$$\beta^\tau = (\tau^{-1}(\beta|_3), \beta|_0, \beta|_1, \beta|_2\tau)(\sigma_\beta)^{\sigma^\tau}.$$

On substituting $\alpha = \beta^\tau$ in $\theta = [\beta, \alpha]$ and in (2.5)

(8.1) \hspace{1cm} $\theta|_{(i)\sigma_\alpha} = (\beta|_{(i)\sigma_\alpha})^{-1} (\alpha|_{(i)})^{-1} (\alpha|_{(i)\sigma_\beta})$, $\forall i \in Y.$

we get $\theta = e$ and

(8.2) \hspace{1cm} $e = (\beta|_{(i)\sigma_\beta})^{-1} (\beta^\tau|_{(i)})^{-1} (\beta|_{(i)})^{-1} (\beta^\tau|_{(i)\sigma_\beta})$, $\forall i \in Y$

and so for the index $i = 0$, we obtain

$$e = (\beta|_3)^{-1} (\tau^{-1}(\beta|_3))^{-1} (\beta|_0)(\beta|_0),$$

$$e = (\beta|_3)^{-2} \tau (\beta|_0)^2$$

which is impossible.
8.2. Cases $\sigma_{\beta} \in \{(0, 2), (1, 3)\}$.

Lemma 8.2. Let $\alpha, \gamma \in \text{Aut}(T_4)$ be such that
\[
\sigma_{\alpha}, \sigma_{\gamma} \in \langle (0, 1, 2, 3), (0, 2) \rangle,
\]
\[
\tau^{-1}\alpha^2 = \gamma^2 \tau,
\]
\[
[\alpha, \tau^k] \gamma = [\gamma, \tau^k]
\]
for all $k \in \mathbb{Z}$. Then,
\[
\sigma_{\alpha}, \sigma_{\gamma} \in \langle \sigma \rangle, \quad \sigma_{\alpha} \sigma_{\gamma} = \sigma^{\pm 1}.
\]

Proof. From the second and third equations above, we have $\sigma_{\alpha}^2 \sigma_{\gamma} = \sigma_{\alpha}^2 \sigma$ and $[\sigma_{\alpha}, \sigma_{\gamma}^k]_{\gamma} = [\sigma_{\gamma}, \sigma_{\gamma}^k]$.

(i) Suppose $\sigma_{\gamma}^2 = e$. Then $\sigma_{\alpha}^2 = \sigma^2$ and therefore, $\sigma_{\alpha} = \sigma^{\pm 1}$, $[\sigma_{\alpha}, \sigma_{\gamma}^k]_{\gamma} = [\sigma_{\gamma}, \sigma_{\gamma}^k]$ for all k; thus, $\sigma_{\gamma} \in \langle \sigma \rangle$ and $\sigma_{\gamma} \in \langle \sigma^2 \rangle$, $\sigma_{\alpha} \sigma_{\gamma} = \sigma^{\pm 1}$ follows.

(ii) Suppose $o(\sigma_{\gamma}) = 4$. Then, $\sigma_{\gamma} = \sigma^{\pm 1}$ and $\sigma_{\alpha}^2 = e$. Since $[\sigma_{\alpha}, \sigma_{\gamma}^k]_{\gamma} = e$ for all k, we obtain $\sigma_{\alpha} \in \langle \sigma \rangle$, $\sigma_{\alpha}^2 = e$ and $\sigma_{\alpha} \in \langle \sigma^2 \rangle$. Therefore, $\sigma_{\alpha} \sigma_{\gamma} = \sigma^{\pm 1}$. □

(1) Suppose $\sigma_{\beta} = (0, 2)$. Then by the analysis in Section 7.2, we conclude
\[
V = \langle [\beta_i, \tau^k], \beta_1, \beta_3, \beta_2 \beta_0, \tau \beta_0^2 \mid i \in Y, k \in \mathbb{Z} \rangle
\]
is an abelian normal subgroup of H.

By Lemma 8.1, $\tau \beta_0^2 = \mu$ is a conjugate of τ. As V is abelian, there exist $\xi, t_1, t_2 \in \mathbb{Z}_4$ such that
\[
\mu = \tau \beta_0^2, \beta_2 = \mu \xi, \beta_1 = \mu t_1, \beta_3 = \mu t_2.
\]

Therefore,
\[
\beta_2 = \mu \xi^{-1} \beta_0^{-1}, \tau = \mu \beta_0^{-2}.
\]

On substituting $\gamma = \beta_0$ and $\alpha = \beta_2$ in (7.14) and (7.15), by Lemma 8.2 we obtain $\sigma_{\alpha} \gamma = \sigma_{\beta_2} \beta_0 = \sigma^{\pm 1}$. Thus, from $\beta_2 \beta_0 = \mu \xi$, we reach $\xi \in U(\mathbb{Z}_4)$.

By (7.15), we have
\[
\beta_2 \tau^{-1} = \tau \beta_0^2.
\]

It follows then that
\[
\mu \xi \beta_0^{-1} \mu \xi \beta_0^{-1} \beta_0^2 \mu^{-1} = \mu,
\]
\[
\left(\mu \xi \right)^{\beta_0} = \mu^{2-\xi}.
\]

Therefore,
\[
(8.3) \quad \mu \beta_0 = \mu \frac{2-\xi}{\xi}
\]
where $\frac{2-\xi}{\xi} \in \mathbb{Z}_4^1$.

By Equation (7.23) we have
\[
\beta_1 \beta_0 = \beta_3.
\]
It follows that

\[
(\mu t_1)^{\beta_0} = \mu t_2, \quad \mu t_1^{2-\xi \tau} = \mu t_2, \quad t_2 = t_1 \frac{2-\xi}{\xi}.
\]

We have reached the form of \(\beta\),

\[
\beta = (\beta_0, \mu t_1, \mu \xi \beta_0^{-1}, \mu t_1^{2-\xi \tau})(0, 2)
\]

where \(\mu = \tau^\alpha\) for some \(\alpha \in \text{Aut}(T_4)\).

Since \(\mu \beta_0 = \mu^{2-\xi \tau}\), we have \(\beta_0 = \left(\lambda_{2-\xi} \tau^m\right)^\alpha\) for some \(m \in \mathbb{Z}_4\).

Hence,

\[
\mu t_1 = (\tau t_1)^\alpha,
\]

\[
\mu \xi \beta_0^{-1} = \left(\tau \left(\lambda_{2-\xi} \tau^m\right)^{-1}\right)^\alpha
\]

\[
= \left(\lambda_{\frac{2-\xi}{\xi}} \tau^{(\xi-m)\frac{2-\xi}{\xi}}\right)^\alpha.
\]

Thus

\[
\beta = \left(\lambda_{2-\xi} \tau^m, \tau t_1, \lambda_{\frac{2-\xi}{\xi}} \tau^{(\xi-m)\frac{2-\xi}{\xi}}, \tau t_1^{2-\xi \tau}\right)^\alpha(0, 2)
\]

and

\[
\tau = \mu \beta_0^{-2}
\]

\[
= \left(\tau \left(\lambda_{2-\xi} \tau^m\right)^{-2}\right)^\alpha
\]

\[
= \left(\lambda_{\frac{2-\xi}{\xi}} \tau^{(1-2m)\frac{2-\xi}{\xi}}\right)^\alpha.
\]

We note that in case \(\xi = 1\), \(\beta\) has the form

\[
\beta = (\tau^m, \tau t_1, \tau^{1-m}, \tau t_1)^\alpha(0, 2)
\]

where \(\tau = (\tau^{1-2m})^\alpha\); therefore,

\[
\beta = (\tau^{\frac{m}{1-2m}}, \tau^{\frac{1-m}{1-2m}}, \tau^{\frac{1-m}{1-2m}}, \tau^{\frac{1-m}{1-2m}})(0, 2).
\]

(2) Suppose \(\sigma \beta = (1, 3)\). Then, \(\gamma = \beta^\tau\) satisfies \([\gamma, \gamma^k] = e\). Therefore, the previous case applies and

\[
\gamma = \left(\lambda_{\frac{2-\xi}{\xi}} \tau^m, \tau t_1, \lambda_{\frac{2-\xi}{\xi}} \tau^{(\xi-m)\frac{2-\xi}{\xi}}, \tau t_1^{2-\xi \tau}\right)^\alpha(0, 2),
\]

where

\[
\tau = \left(\lambda_{\frac{2-\xi}{\xi}} \tau^{(1-2m)(\frac{2-\xi}{\xi})^2}\right)^\alpha = (e, e, e, \left(\lambda_{\frac{2-\xi}{\xi}} \tau^{(1-2m)(\frac{2-\xi}{\xi})^2}\right)^\alpha_\tau)
\]

Hence, \(\beta\) has the form

\[
\beta = \gamma^{\tau^{-1}} = (\tau t_1, \lambda_{2-\xi} \tau^{1+m-\xi}, \tau t_1^{2-\xi \tau}, \lambda_{\frac{2-\xi}{\xi}} \tau^{(1-m)\frac{2-\xi}{\xi}})^\alpha(1, 3).
\]
8.3. **The case** \(\sigma_\beta = (\sigma_\tau)^2 = (0, 2) (1, 3) \). We know that

\[
V = \left\langle N, \beta_i | \beta_{i+2}, \beta_j^2 \tau^{-\Delta(j, j+2)} | i, j \in Y \text{ and } k \in \mathbb{Z} \right\rangle
\]

is an abelian normal subgroup of \(H \) and

\[
(8.4) \quad \tau^{\Delta(i, j)} \beta_{i+2} \beta_j^{\tau^{\Delta(i, j)}} = \beta_{j+2}^i,
\]

by analysis of the case [7.1]

From Lemmas 8.1 and 8.2, we have

\[
\tau \beta_0 = \mu, \quad \beta_2 = \mu \xi_0, \quad \beta_1 = \mu \xi_1, \quad \tau \beta_1^2 = \mu \xi_2
\]

where \(\mu = \tau^\alpha \) and \(\xi_0, \xi_1, \xi_2 \in U(\mathbb{Z}_4) \). Therefore,

\[
(8.5) \quad \tau = \mu \beta_0^{\alpha-2}
\]

\[
(8.6) \quad \beta_2 = \mu \xi_0 \beta_0^{\alpha-1}
\]

\[
(8.7) \quad \beta_1 = \mu \xi_1 \beta_1^{\alpha-1}
\]

\[
(8.8) \quad \tau = \mu \xi_2 \beta_1^{\alpha-2}.
\]

Now, we let \(i, j \) take their values from \(Y \) in (8.4). Note that \((i, j) \) and \((j, i)\) produce equivalent equations and the case where \(i = j \) is a tautology. Thus we have to treat the cases \((i, j) = (0, 1), (0, 2), (1, 3), (2, 3), (0, 3), (1, 2)\). Indeed, the last two cases turn out to be superfluous.

(i) Substitute \(i = 0, j = 2 \) in (8.4), to obtain

\[
(8.9) \quad \beta_2^2 \tau^{-1} = \tau \beta_0^2
\]

Use (8.5) and (8.6) in (8.9) to get

\[
\mu \xi_0 \beta_0^{\alpha-1} \mu \xi_0 \beta_0^{\alpha-1} \beta_0^{\alpha-2} \mu^{-1} = \mu
\]

and so,

\[
(\mu \xi_0)^{\beta_0} = \mu^{2-\xi_0}.
\]

Therefore,

\[
(8.10) \quad \mu^{\beta_0} = \mu^{2-\xi_0}
\]

Since \(\frac{2-\xi_0}{\xi_0} \in \mathbb{Z}_4 \), we find

\[
(8.11) \quad \beta_0 = \left(\lambda \frac{2-\xi_0}{\xi_0} \tau m_0 \right)^\alpha.
\]

From (8.6),
\[(8.12) \quad \beta|_2 = \mu^{\xi_0} \beta|_0^{-1} = \left(\tau^{\xi_0 - m_0} \lambda \frac{\xi_0}{\xi_1} \right)^{\alpha} = \left(\lambda \frac{\xi_0}{\xi_1} \tau^{(\xi_0 - m_0) \frac{\xi_0}{\xi_1}} \right)^{\alpha}. \]

(ii) Substitute \(i = 1, j = 3 \) in \((8.4) \) to get
\[(8.13) \quad \beta|_3^2 \tau^{-1} = \tau \beta|_1^2. \]

On using \((8.7) \) and \((8.8) \) in \((8.13) \), we obtain
\[\mu^{\xi_1} \beta|_1^{-1} \mu^{\xi_1} \beta|_1^{-1} \beta|_2^{-1} \mu^{-\xi_2} = \mu^{\xi_2} \]
and so,
\[(\mu^{\xi_1})\beta|_1 = \mu^{2\xi_2 - \xi_1}. \]

Therefore,
\[(8.14) \quad \mu^\beta|_1 = \mu^{\frac{2\xi_2 - \xi_1}{\xi_1}}. \]

Since \(\frac{2\xi_2 - \xi_1}{\xi_1} \in \mathbb{Z}_4 \), we have
\[(8.15) \quad \beta|_1 = \left(\lambda \frac{\xi_1}{2\xi_2 - \xi_1} \tau^{m_1} \right)^{\alpha}. \]

By \((8.7) \), we find
\[(8.16) \quad \beta|_3 = \mu^{\xi_1} \beta|_1^{-1} = \left(\tau^{\xi_1 - m_1} \lambda \frac{\xi_1}{2\xi_2 - \xi_1} \right)^{\alpha} = \left(\lambda \frac{\xi_1}{2\xi_2 - \xi_1} \tau^{(\xi_1 - m_1) \frac{\xi_1}{2\xi_2 - \xi_1}} \right)^{\alpha}. \]

(iii) Substitute \(i = 0, j = 1 \) in \((8.4) \) to get
\[(8.17) \quad \beta|_2 \beta|_1 = \beta|_3 \beta|_0. \]

Use \((8.11), (8.12), (8.15) \) and \((8.16) \) in \((8.17) \), to obtain
\[\lambda \frac{\xi_0}{2 \xi_0} \tau^{(\xi_0 - m_0) \frac{\xi_0}{2 \xi_0}} \lambda \frac{\xi_0}{2 \xi_0} \tau^{m_1} = \lambda \frac{\xi_0}{2 \xi_0} \tau^{(\xi_1 - m_1) \frac{\xi_0}{2 \xi_0}} \lambda \frac{\xi_0}{2 \xi_0} \tau^{m_0} \]
and so,
\[\lambda \frac{\xi_0}{2 \xi_0} \tau^{(\xi_0 - m_0) \frac{\xi_0}{2 \xi_0}} = \lambda \frac{\xi_0}{2 \xi_0} \tau^{(\xi_1 - m_1) \frac{\xi_0}{2 \xi_0}} \tau^{\xi_0} \lambda \frac{\xi_0}{2 \xi_0} \tau^{m_0}. \]

Therefore,
\[(8.18) \quad \left(\frac{\xi_1}{2 \xi_2 - \xi_1} \right)^2 = \left(\frac{\xi_0}{2 - \xi_0} \right)^2 \]
and
\[(8.19) \quad (\xi_0 - m_0) \frac{\xi_0}{2 - \xi_0} \frac{2 \xi_2 - \xi_1}{\xi_1} + m_1 = (\xi_1 - m_1) \frac{\xi_1}{2 \xi_2 - \xi_1} \frac{2 - \xi_0}{\xi_0} + m_0. \]
(iv) Substitute $i = 2, j = 3$ in (8.4) to get

\[(8.20)\] \[\beta|_{0} = \beta|_{2}.\]

Use (8.11), (8.12), (8.15) and (8.16) in (8.20), to obtain

\[\lambda_{2-i_0} \tau^{m_0} \lambda_{\xi_{2-i_1}} \tau^{(\xi_{1-m_1})} \frac{\xi_{2-i_1}}{\xi_{2-i_1}} = \lambda_{2-i_2} \tau^{m_1} \lambda_{\xi_{2-i_0}} \tau^{(\xi_{0-m_0})} \frac{\xi_{2-i_0}}{\xi_{2-i_0}}\]

and so,

\[\lambda_{\xi_{2-i_0}} \tau^{m_0} \frac{\xi_{1}}{\xi_{1}} + (\xi_{1-m_1}) \frac{\xi_{1}}{\xi_{2-i_1}} = \lambda_{\xi_{2-i_0}} \tau^{m_1} \tau^{(\xi_{0-m_0})} \frac{\xi_{0}}{\xi_{2-i_0}}\]

Therefore,

\[
\left(\frac{\xi_{1}}{2\xi_{2} - \xi_{1}}\right)^2 = \left(\frac{\xi_{0}}{2 - \xi_{0}}\right)^2
\]

and

\[(8.21)\] \[m_0 \xi_{2-i_0} + (\xi_{1} - m_1) \frac{\xi_{1}}{2\xi_{2} - \xi_{1}} = m_1 \frac{\xi_{0}}{2 - \xi_{0}} + (\xi_{0} - m_0) \frac{\xi_{0}}{2 - \xi_{0}}.\]

We have from (8.18)

\[(8.22)\] \[\frac{\xi_{0}}{2 - \xi_{0}} = \pm \frac{\xi_{1}}{2\xi_{2} - \xi_{1}}.\]

(a) If

\[\frac{\xi_{0}}{2 - \xi_{0}} = \frac{\xi_{1}}{2\xi_{2} - \xi_{1}},\]

then

\[2\xi_{2} \xi_{0} - \xi_{1} \xi_{0} = 2\xi_{1} - \xi_{1} \xi_{0},\]

and so,

\[(8.23)\] \[\xi_{2} = \frac{\xi_{1}}{\xi_{0}}.\]

From (8.19), we get

\[(8.24)\] \[m_{1} = \frac{\xi_{1} - \xi_{0}}{2} + m_{0}.\]

(b) If

\[\frac{\xi_{0}}{2 - \xi_{0}} = - \frac{\xi_{1}}{2\xi_{2} - \xi_{1}},\]

then by (8.19) and (8.21),

\[m_{0} - \xi_{0} + m_{1} = m_{1} - \xi_{1} + m_{0}\]

\[m_{0} + \xi_{1} - m_{1} = -m_{1} - \xi_{0} + m_{0},\]

which implies $\xi_{1} = \xi_{0} = 0$, which is impossible.

Now by (8.23) and (8.24), we have

\[(8.25)\] \[\beta|_{1} = \left(\lambda_{2-i_{0}} \tau^{\xi_{1} - \xi_{0}} \frac{\xi_{1}}{2} + m_{0}\right)^{\alpha}\]

and

\[(8.26)\] \[\beta|_{3} = \left(\lambda_{\xi_{2-i_{0}}} \tau^{\xi_{1} - \xi_{0}} \frac{\xi_{1} + \xi_{0}}{2} - m_{0}\right)^{\alpha}.\]
Therefore,

$$\beta = (\beta |_0, \beta |_1, \beta |_2, \beta |_3)(0, 2)(1, 3)$$

where $\beta |_0, \beta |_1, \beta |_2$ and $\beta |_3$ are described in (8.11), (8.25), (8.12) and (8.26), respectively, and

$$\tau = \mu \beta |_0^{-2} = \left(\tau \left(\frac{1 - \xi_0}{\xi_0} \right) \right)^{\alpha} \left(\frac{\xi_0}{1 - \xi_0} \right)^{-\tau} \left(\frac{\xi_0}{1 - \xi_0} \right)^{\alpha}.$$

(v) The cases $(i, j) = (1, 2), (0, 3)$ in (8.4) do not add any more information about β. Summarizing, we have found

$$\beta |_0 = \left(\frac{1 - \xi_0}{\xi_0} \right)^{\alpha}, \beta |_1 = \left(\frac{1 - \xi_0}{\xi_0} \right)^{\alpha}$$

$$\beta |_2 = \left(\frac{1 - \xi_0}{\xi_0} \right)^{\alpha}, \beta |_3 = \left(\frac{1 - \xi_0}{\xi_0} \right)^{\alpha}$$

(8.27)

$$\tau = \left(\frac{1 - \xi_0}{\xi_0} \right)^{\alpha} \left(\frac{\xi_0}{1 - \xi_0} \right)^{\alpha}.$$

(8.28)

In the particular case where $\xi_0 = 1$, β has the form

$$\beta = \left(\tau, \tau, \tau, \tau \right)(0, 2)(1, 3)$$

where $\tau = \left(\frac{1 - \xi_0}{\xi_0} \right)^{\alpha}$.

8.4. Cases $\sigma_\beta \in \{ e, \sigma_\tau, \sigma_\tau^{-1} \}$. (1) Suppose $\sigma_\beta = e$ and let β stabilize the kth level of the tree. Then by Proposition 4.3, we have

$$[\beta |_u, \beta |_v^{\tau^k}] = e, \text{ for all } u, v \in M \text{ with } |u| = |v| = k.$$

Therefore, $\hat{N} = \langle \beta |_w | |w| = k, w \in M \rangle$ is abelian and so is its normal closure \hat{M} under $\langle \hat{N}, \tau \rangle$. Also, active elements in \hat{M} are characterized in 8.1, 8.2, 8.3 and 8.4. In particular, there exists $\kappa \in \hat{M}$ such that $\sigma_\kappa = (0, 2)(1, 3)$ and $\beta \in \times_{\kappa} C(\kappa)$.

(2) Suppose $\sigma_\beta = \sigma_\tau = (0, 1, 2, 3)$. Then, clearly the element

$$\beta^2 = (\beta |_0 \beta |_1, \beta |_1 \beta |_2, \beta |_2 \beta |_3, \beta |_3 \beta |_0)(0, 2)(1, 3)$$

satisfies $[\beta^2, (\beta^2)^{\tau^k}] = e$ for all $k \in \mathbb{Z}_4$. Therefore, by the previous analysis, we have

$$\beta |_0 \beta |_1 = \left(\frac{1 - \xi_0}{\xi_0} \right)^{\alpha}.$$

(8.30)
\[(8.31) \quad \beta|_1 \beta|_2 = \left(\frac{\xi_2 - \xi_0}{\xi_0} \right)^{\alpha}, \]
\[(8.32) \quad \beta|_2 \beta|_3 = \left(\frac{\xi_2 - \xi_0}{\xi_0} \right)^{\alpha}, \]
\[(8.33) \quad \beta|_3 \beta|_0 = \left(\frac{\xi_0 - \xi_0}{\xi_0} \right)^{\alpha}, \]
\[(8.34) \quad \tau = \left(\frac{\xi_0 - \xi_0}{\xi_0} \right)^{\alpha}. \]

Hence, multiplying (8.30) by (8.32), we obtain
\[(8.35) \quad \beta|_0 \beta|_1 \beta|_2 \beta|_3 = \left(\frac{\xi_0 - \xi_0}{\xi_0} \right)^{\alpha}. \]

We define
\[(8.36) \quad \psi_\eta = \begin{cases}
\lambda_\eta, & \text{if } \eta \in \mathbb{Z}_4 \\
\theta \lambda_\eta, & \text{if } -\eta \in \mathbb{Z}_4
\end{cases}, \]
\[\theta = \theta^{(1)}(e, \tau^{-1}, \tau^{-1}, \tau^{-1})(1, 3) \]
(an inverter of \(\tau\)) and \(\gamma = (e, (\beta|_0)^{-1}, (\beta|_2)^{-1}, (\beta|_0 \beta|_1 \beta|_2)^{-1}) \left(\alpha^{-1} \psi_{2-\xi_0} \right)^{(1)} \).

We verify, by (8.35), that \(\gamma\) conjugates \(\beta\) to
\[(e, e, e, (\beta|_0 \beta|_1 \beta|_2 \beta|_3)^{(1)}) \left(\alpha^{-1} \psi_{2-\xi_0} \right)^{(1)}\]
which is equal to \(\tau\).

(3) Suppose \(\sigma_\beta = \sigma_\tau^{-1} = (0, 3, 2, 1)\). Then, \(\beta^{-1}\) satisfies the previous case and \(\beta^{-1} = \tau^\gamma\) for some \(\gamma \in \mathcal{A}_4\). Therefore, as \(\theta\) inverts \(\tau\), we have
\[(8.37) \quad \beta = (\beta^{-1})^{-1} = (\tau)^{-1} = (\tau)^{\theta_1}\]

8.5. **Final Step.** We finish the proof of the second part of Theorem A. For the case where the activity of \(\beta\) is a 4-cycle, we use the fact that \(\beta^2 \in B\), which we have already described. Next, from the description of the centralizer of \(\beta^2\), we are able to pin down the form of \(\beta\).

Proposition 8.3. Let \(\beta = (\beta|_0, \beta|_1, \beta|_2, \beta|_3)(0, 2)(1, 3)\) be such that \((\beta|_0)(\beta|_2) = \tau^{\theta_1}\) and \((\beta|_1)(\beta|_3) = \tau^{\theta_2}\), for some \(\theta_1, \theta_2 \in \text{Aut}(T_4)\). Then, \(\beta\) is conjugate to \(\tau^2\).
Proof. Let $\alpha = (e, e, \beta|_{0}^{-1}, \beta|_{1}^{-1})$. Then,

\begin{equation}
\beta^\alpha = (e, e, \beta|_{0}\beta|_{2}, \beta|_{1}\beta|_{3})(0, 2)(1, 3).
\end{equation}

Therefore, substituting $\beta|_{0}\beta|_{2} = \tau^{\theta_1}$ and $\beta|_{1}\beta|_{3} = \tau^{\theta_2}$ in the above equation, we have

\[\beta^\alpha = (e, e, \tau^{\theta_1}, \tau^{\theta_2})(0, 2)(1, 3). \]

Conjugating β^α by $\gamma = (\theta_1^{-1}, \theta_2^{-1}, \theta_1^{-1}, \theta_2^{-1})$ we produce

\[\beta^\alpha\gamma = \tau^2. \]

We show below that active elements of B produce within B elements conjugate to τ^2.

Proposition 8.4. Let $\beta \in B$ with nontrivial σ_β. Then

(i) If $\sigma_\beta = \sigma_\tau^2$, then β is a conjugate of τ^2.

(ii) If $\sigma_\beta \in \{0, 2\}$, then $\beta\tau$ is a conjugate τ^2.

(iii) If $\sigma_\beta \in \{\sigma_\tau, \sigma_\tau^{-1}\}$, then β^2 is a conjugate of τ^2.

Proof. It is enough to prove (i), since (ii), (iii) are just special cases.

If $\sigma_\beta = \sigma_\tau^2$, then

\begin{equation}
\beta|_{0} = \left(\lambda_{2-\xi_0} \tau^{m_0}\right)^\alpha, \beta|_{1} = \left(\lambda_{2-\xi_0} \tau \frac{\xi_{1-\xi_0} + m_0}{2-\xi_0}\right)^\alpha,
\end{equation}

\begin{equation}
\beta|_{2} = \left(\lambda_{2-\xi_0} \tau \frac{(\xi_{0-m_0}) \xi_{0}}{2-\xi_0}\right)^\alpha, \beta|_{3} = \left(\lambda_{2-\xi_0} \tau \frac{\xi_{1+m_0} - m_0}{2-\xi_0}\right)^\alpha,
\end{equation}

\begin{equation}
\tau = \left(\lambda_{2-\xi_0} \tau \frac{(1-2m_0)}{2-\xi_0} \frac{\xi_0}{2-\xi_0}\right)^2,
\end{equation}

where $\xi_0, \xi_1 \in U(\mathbb{Z}_4)$, $m_0 \in \mathbb{Z}_4$.

Therefore,

\[\beta|_{0}\beta|_{2} = \left(\lambda_{2-\xi_0} \tau^{m_0} \lambda_{2-\xi_0} \tau \frac{(\xi_{0-m_0}) \xi_{0}}{2-\xi_0}\right)^\alpha = \left(\lambda_{2-\xi_0} \tau\right)^\alpha = \tau \left(\lambda_{2-\xi_0} \tau\right)^\alpha = \tau \left(\psi_{2-\xi_0}\right)^\alpha \]

\[\beta|_{1}\beta|_{3} = \left(\lambda_{2-\xi_0} \tau \frac{\xi_{1-\xi_0} + m_0}{2-\xi_0} \lambda_{2-\xi_0} \tau \frac{\xi_{1+m_0} - m_0}{2-\xi_0}\right)^\alpha = \left(\lambda_{2-\xi_0} \tau\right)^\alpha = \tau \left(\psi_{2-\xi_0}\right)^\alpha \]

It follows from Proposition \[8.3\] that β is a conjugate of τ^2.

Corollary 8.5. Suppose $\beta \in B$ is an active element. Then, B is conjugate to a subgroup of the centralizer $C(\tau^2)$.

Proposition 8.6. Let $\gamma \in C(\tau^2)$. Then,
\begin{equation}
\gamma = (\tau^{m_0}, \tau^{m_1}, \tau^{m_0+\delta((0)\sigma_\gamma, 2)}, \tau^{m_1+\delta((1)\sigma_\gamma, 2)})\sigma_\gamma,
\end{equation}
where $m_0, m_1 \in \mathbb{Z}_4, \sigma_\gamma \in C_{\Sigma_4}(\sigma^2)$.

Proof. Write $\gamma = (\gamma_0, \gamma_1, \gamma_2, \gamma_3)\sigma_\gamma$. Then $\tau^2 \gamma = \gamma \tau^2$ translates to
\begin{equation}
(e, e, \tau, \tau)(0, 2)(1, 3)(\gamma_0, \gamma_1, \gamma_2, \gamma_3)\sigma_\gamma
= (\gamma_0, \gamma_1, \gamma_2, \gamma_3)\sigma_\gamma(e, e, \tau, \tau)(0, 2)(1, 3),
\end{equation}
and this in turn translates to
\begin{align*}
(\gamma_2, \gamma_3, \tau \gamma_0, \tau \gamma_1)(0, 2)(1, 3)\sigma_\gamma
&= (\gamma_0, \gamma_1, \gamma_2, \gamma_3)(\tau^{\delta((0)\sigma_\gamma, 2)}, \tau^{\delta((1)\sigma_\gamma, 2)}, \tau^{\delta((2)\sigma_\gamma, 2)}, \tau^{\delta((3)\sigma_\gamma, 2)})\sigma_\gamma(0, 2)(1, 3) \\
&= (\gamma_0 \tau^{\delta((0)\sigma_\gamma, 2)}, \gamma_1 \tau^{\delta((1)\sigma_\gamma, 2)}, \gamma_2 \tau^{\delta((2)\sigma_\gamma, 2)}, \gamma_3 \tau^{\delta((3)\sigma_\gamma, 2)})\sigma_\gamma(0, 2)(1, 3)
\end{align*}
Thus, we have
\begin{align*}
\gamma_2 &= \gamma_0 \tau^{\delta((0)\sigma_\gamma, 2)} \\
\gamma_3 &= \gamma_1 \tau^{\delta((1)\sigma_\gamma, 2)} \\
\tau \gamma_0 &= \gamma_2 \tau^{\delta((2)\sigma_\gamma, 2)} \\
\tau \gamma_1 &= \gamma_3 \tau^{\delta((3)\sigma_\gamma, 2)}.
\end{align*}
Hence,
\begin{align*}
\gamma_2 &= \gamma_0 \tau^{\delta((0)\sigma_\gamma, 2)} \\
\gamma_3 &= \gamma_1 \tau^{\delta((1)\sigma_\gamma, 2)} \\
\tau \gamma_0 &= \tau^{\delta((0)\sigma_\gamma, 2)+\delta((2)\sigma_\gamma, 2)} = \tau, \tau \gamma_1 &= \tau^{\delta((1)\sigma_\gamma, 2)+\delta((3)\sigma_\gamma, 2)} = \tau.
\end{align*}
Therefore, there exist $m_0, m_1 \in \mathbb{Z}_4$ such that
\begin{align*}
\gamma_0 &= \tau^{m_0}, \gamma_1 = \tau^{m_1}, \\
\gamma_2 &= \tau^{m_0+\delta((0)\sigma_\gamma, 2)}, \gamma_3 = \tau^{m_1+\delta((1)\sigma_\gamma, 2)}.
\end{align*}
Hence, γ has the form
\begin{equation}
\gamma = (\tau^{m_0}, \tau^{m_1}, \tau^{m_0+\delta((0)\sigma_\gamma, 2)}, \tau^{m_1+\delta((1)\sigma_\gamma, 2)})\sigma_\gamma,
\end{equation}
where $\sigma_\gamma \in C_{\Sigma_4}(\sigma^2)$.

Corollary 8.7. The centralizer of τ^2 in A_4 is
\begin{equation*}
C(\tau^2) = \langle (e, e, \tau, \tau)(0, 2), \tau, (\tau^{m_0}, \tau^{m_1}, \tau^{m_0}, \tau^{m_1}) | m_0, m_1 \in \mathbb{Z}_4 \rangle.
\end{equation*}

Corollary 8.8. Let $\gamma \in C(\tau^2)$ be such that $\sigma_\gamma \in \langle (0, 2)(1, 3) \rangle$. Then
\begin{equation*}
\gamma \in \langle (\tau^{m_0}, \tau^{m_1}, \tau^{m_0}, \tau^{m_1}), \tau^2 | m_0, m_1 \in \mathbb{Z}_4 \rangle.
\end{equation*}
Proposition 8.9. Let $\hat{H} = \langle (\tau^{m_0}, \tau^{m_1}, \tau^{m_0}, \tau^{m_1}), \tau^2 \mid m_0, m_1 \in \mathbb{Z}_4 \rangle$. Then the normalizer $N_{A_4}(\hat{H})$ is the group
\[
\langle C(\tau^2), (\psi_{2m_0+1}, \psi_{2m_1+1}, \psi_{2m_0+1}\tau^{m_0}, \psi_{2m_1+1}\tau^{m_1}) \mid m_0, m_1 \in \mathbb{Z}_4 \rangle,
\]
where, for each $\eta \in U(\mathbb{Z}_4)$, ψ_η is defined by \[8.36\] and
\[
\tau^{\psi_\eta} = \tau^\eta.
\]

Proof. As
\[
(8.44) \quad \alpha = (\psi_{2m_0+1}\psi_{2m_1+1}, \psi_{2m_0+1}\tau^{m_0}, \psi_{2m_1+1}\tau^{m_1}),
\]
conjugates τ^2 to
\[
(\tau^{m_0}, \tau^{m_1}, \tau^{m_0+1}, \tau^{m_1+1})(0, 2)(1, 3),
\]
where $m_0, m_1 \in \mathbb{Z}_4$, and any other element in $N_{A_4}(\hat{H})$ is equal to an element in $C(\tau^2)$ times an element of the form \[8.44\], then $N_{A_4}(\hat{H})$ is the desired subgroup. \hfill \Box

Theorem 8.10. Let G be a solvable subgroup of $\text{Aut}(T_4)$ which contains τ. Then, G is a subgroup of
\[
\times_4 \cdots (\times_4 (\times_4 T^\alpha \times S_4) \times S_4) \cdots) \times S_4
\]
for some $\alpha \in A_4$, where T is the normalizer in A_4 of $C(\tau^2)$.

Proof. As in the case $n = p$, we assume G has derived length $d \geq 2$ and let B be the $(d - 1)$th term of the derived series of G. Then, B is an abelian group normalized by τ. On analyzing the case \[8.4\] and the final step, there exists a level t such that B is a subgroup of $\hat{V} = \times_4 C(\mu^2)$, where $\mu = \tau^\alpha$ for some $\alpha \in A_4$ and where $\sigma_{\mu^2} = (0, 2)(1, 3)$. There also exists $\beta \in B$ such that $\beta|_u = \mu^2$ for some index $u \in \mathcal{M}$.

Moreover, if T is the normalizer of $C(\tau^2)$, then clearly, T^α is the normalizer of $C(\mu^2)$.

We will show now that G is a subgroup of
\[
\hat{J} = \times_4 \cdots (\times_4 (\times_4 T^\alpha \times S_4) \times S_4) \cdots) \times S_4
\]
where the cartesian product \times_4 appears t times.

Let $\gamma \not\in \hat{J}$. Since $\gamma \not\in \hat{J}$, there exists $w \in \mathcal{M}$ having $|w| = t$ and $\gamma|_w \not\in T^\alpha$. Since τ is transitive on all levels of the tree, by Corollary \[8.8\] we can conjugate β by an appropriate power of τ to get $\theta \in B$ such that
\[
\theta|_w = \mu^2 \text{ or } \theta|_w = (\mu^2)^\tau = ((\tau^{m_0}, \tau^{m_1}, \tau^{m_0+1}, \tau^{m_1+1})(0, 2)(1, 3))^\alpha,
\]
where $m_0, m_1 \in \mathbb{Z}_4$. Thus, for $v = w^\gamma$ we have
\[
(\theta^\gamma)|_v \not\in \hat{V} \text{ and } \gamma|_w \not\in C(\mu^2)
\]
which implies $\theta^\gamma \not\in B \leq \hat{V}$ and $\gamma \not\in G$. Hence, G is a subgroup of \hat{J}. \hfill \Box
Acknowledgments

The authors are grateful to Gustavo A. Fernández-Alcober for numerous observations on an earlier version of this paper. We also thank the referee for further helpful remarks.

REFERENCES

Josimar da Silva Rocha
Coordination of Mathematics (COMAT), Universidade Tecnológica Federal do Paraná, 86300-000, Cornélio Procópio-PR, Brazil
Email: jsrocha74@gmail.com

Said Najati Sidki
Department of Mathematics, Universidade de Brasília, 70910-900, Brasília-DF, Brazil
Email: ssidki@gmail.com