• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Advisory Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
International Journal of Group Theory
Articles in Press
Current Issue
Journal Archive
Volume Volume 7 (2018)
Volume Volume 6 (2017)
Volume Volume 5 (2016)
Volume Volume 4 (2015)
Volume Volume 3 (2014)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 2 (2013)
Volume Volume 1 (2012)
Orfi, R. (2014). Maximal subsets of pairwise non-commuting elements of $p$-groups of order less than $p^6$. International Journal of Group Theory, 3(1), 65-72. doi: 10.22108/ijgt.2014.3511
Reza Orfi. "Maximal subsets of pairwise non-commuting elements of $p$-groups of order less than $p^6$". International Journal of Group Theory, 3, 1, 2014, 65-72. doi: 10.22108/ijgt.2014.3511
Orfi, R. (2014). 'Maximal subsets of pairwise non-commuting elements of $p$-groups of order less than $p^6$', International Journal of Group Theory, 3(1), pp. 65-72. doi: 10.22108/ijgt.2014.3511
Orfi, R. Maximal subsets of pairwise non-commuting elements of $p$-groups of order less than $p^6$. International Journal of Group Theory, 2014; 3(1): 65-72. doi: 10.22108/ijgt.2014.3511

Maximal subsets of pairwise non-commuting elements of $p$-groups of order less than $p^6$

Article 6, Volume 3, Issue 1, March 2014, Page 65-72  XML PDF (290 K)
Document Type: Research Paper
DOI: 10.22108/ijgt.2014.3511
Author
Reza Orfi
University of Arak
Abstract
Let $G$ be a non-abelian group of order $p^n$‎, ‎where $n\leq 5$ in which $G$ is not extra special of order $p^5$‎. ‎In this paper we determine the maximal size of subsets $X$ of $G$‎ ‎with the property that $xy\neq yx$ for any $x,y$ in $X$ with‎ ‎$x\neq y$‎.
Keywords
p-group; AC-group; Pairwise non-commuting elements
Main Subjects
20D15 Nilpotent groups, p-groups; 20D60 Arithmetic and combinatorial problems
References
A. Abdollahi, S. Akbari and H. R. Maimani (2006). Non-commuting graph of a group. J. Algbera. 298 (2), 468-492
A. Azad and Cheryl E. Praeger (2009). Maximal subsets of pairwise non-commuting elements of three-dimensional general linear groups. Bull. Aus. Math. Soc.. 80 (1), 91-104
A. Azad, S. Fouladi and R. Orfi (2013). Maximal subsets of pairwise non-commuting elements of some finite $p$-groups. Bull. Iranian Math. Soc.. 39 (1), 187-192
Y. Berkovich (2008). Groups of prime power order. Walter de Gruyter, Berlin. 1
A. Y. M. Chin (2005). On non-commuting sets in an extraspecial $p$-group. J. Group Theory. 8 (2), 189-194
S. Fouladi and R. Orfi (2011). Maximal subsets of pairwise non-commuting elements of some $p$-groups of maximal class. Bull. Aust. Math. Soc.. 84 (3), 447-451
S. Fouladi and R. Orfi (2013). Maximum size of subsets of pairwise non-commuting elements in finite metacyclic $p$-groups. Bull. Aust. Math. Soc.. 87 (1), 18-23
The GAP Group (2008). GAP - - Groups, Algorithms, and Programming. Version 4.4.12, http://www.gap-system.org.
C. R. Leedham-Green and S. McKay (2002). The Structure of Groups of Prime Power Order. of London Mathematical Society Monographs, Oxford University Press, Oxford. 27
R. James (1980). The Groups of Order p^6 p an odd prime. Math. Comp.. 34 (150), 613-637
B. H. Neumann (1976). A problem of Paul Erd$ddot o$s on groups. J. Austral. Math. Soc. Ser. A. 21 (4), 467-472
L. Pyber (1987). The number of pairwise non-commuting elements and the index of the centre in a finite group. J. London Math. Soc. (2). 35, 287-295
D. M. Rocke (1975). p-groups with abelian centralizers. Proc. London Math. Soc. (3). 30, 55-75
Statistics
Article View: 4,196
PDF Download: 2,901
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.