

International Journal of Group Theory ISSN (print): 2251-7650, ISSN (on-line): 2251-7669 Vol. 3 No. 2 (2014), pp. 1-7. © 2014 University of Isfahan

NON-NILPOTENT GROUPS WITH THREE CONJUGACY CLASSES OF NON-NORMAL SUBGROUPS

HAMID MOUSAVI

Communicated by Alireza Abdollahi

ABSTRACT. For a finite group G let $\nu(G)$ denote the number of conjugacy classes of non-normal subgroups of G. The aim of this paper is to classify all the non-nilpotent groups with $\nu(G) = 3$.

1. Introduction

Let G be a finite group. We denote by $\nu(G)$ the number of conjugacy classes of non-normal subgroups of G. Obviously, $\nu(G) = 0$ if and only if G is Hamiltonian. In 1995, Brandl [1] classified finite groups with $\nu(G) = 1$. In 1977, R. La Haye [2] showed that for a group G, $|G'| \leq \rho(G)^{\nu(G)+\varepsilon}$ and $|G/Z(G)| \leq \rho(G)^{\nu(G)+\varepsilon+1}$ where $\rho(G)$ denotes the largest prime p such that G has an element of order p, and $\varepsilon = 1$ if G has an element of order 2, and $\varepsilon = 0$ otherwise. This goes to say that $\nu(G)$ can play an important role in the structure of finite groups, so many authors work on this concept but mostly in p-groups.

The present author in [3] gave a complete classification of finite groups with $\nu(G) = 2$. The aim of this paper is classifying finite non-nilpotent groups with $\nu(G) = 3$. The following theorem is the main result of this paper.

Theorem 1.1. Let G be a non-nilpotent finite group with $\nu(G) = 3$. Then G is isomorphic to one of the following groups:

- (i) SL(2,3).
- (ii) $\mathbb{Z}_3 \times S_3$.

MSC(2010): Primary: 20D99; Secondary: 20E45.

Keywords: Non-normal subgroup, Conjugacy class, Non-nilpotent group. Received: 3 June 2013, Accepted: 24 September 2013.

2 Int. J. Group Theory 3 no. 2 (2014) 1-7

- (iii) $\langle x, y, z | x^{p^n}, y^{q^2}, z^r, [x, y], [x^p, z], [y, z], z^x = z^i \rangle$, where p, q and r are different primes, p | r 1 and $i^p \equiv 1 \pmod{r}$.
- (iv) $\langle x, y, z | x^p, y^q, z^r, [x, y], z^x = z^i, z^y = z^j \rangle$, where p, q and r are different primes, pq | r-1 and $i^p \equiv 1 \pmod{r}, j^q \equiv 1 \pmod{r}$.
- (v) $\langle x, y, z | x^{p^n}, y^q, z^r, [x^p, y], [x^p, z], [y, z], y^x = y^i, z^x = z^j \rangle$ where p, q and r are different primes, $i^p \equiv 1 \pmod{q}, j^p \equiv 1 \pmod{r}$ and $p \mid (q-1, r-1)$.
- (vi) $\langle x, y | x^{p^n}, y^{q^3}, [x^p, y], y^x = y^i \rangle$, where p, q are primes, p | (q-1) and $i^p \equiv 1 \mod q^3$.
- (vii) $D_{4q} = \langle x, y, z | x^2, y^2, z^q, (xz)^2, [x, y], [y, z] \rangle$, where $q \neq 2$ is prime.
- (viii) $\langle x, y, z | x^4, y^2, z^q, z^x z, [y, z], [x, y] \rangle$, where $q \neq 2$ is prime.
- (ix) $\langle x, y, z | x^4, y^4, z^q, x^2y^2, z^xz, x^yx, [z, y] \rangle$, where $q \neq 2$ is prime.
- (x) $\langle x, y | x^{p^n}, y^q, [x^{p^3}, y], y^x = y^i \rangle$, where p, q are primes, $p^3 | q 1$ and $i^{p^3} \equiv 1 \mod q$, $i^{p^2} \not\equiv 1 \mod q$.
- (xi) $\langle x, y, z | x^9, y^2, z^2, y^x z, z^x y z, [z, y] \rangle$.
- (xii) $(\mathbb{Z}_q \times \mathbb{Z}_q) \rtimes \mathbb{Z}_p$, where p, q are odd primes and q = 2p 1 and P acts irreducibly.
- (xiii) $(\mathbb{Z}_q \times \mathbb{Z}_q \times \mathbb{Z}_q) \rtimes \mathbb{Z}_p$, where p, q are primes and $p = q^2 + q + 1$ and P acts irreducibly.

Our notation is standard and can be found in [4]. Throughout this paper, we use \mathbb{Z}_n , D_{2n} and Q_8 for cyclic group of order n, the dihedral group of order 2n and quaternion group of order 8, respectively.

2. Preliminaries

We will repeatedly use the following simple lemmas without even mentioning them.

Lemma 2.1. Let G be a finite group and $H \not \leq G$. Then H has at most one maximal subgroup which is normal in G.

Lemma 2.2. Let G be a finite group and $H \leq G$ has normal complement N in G. Then for any normal subgroup K of H, $KN \leq G$.

Lemma 2.3 (Burnside). [4, Theorem, 7.50] Let G be a finite group and P be a Sylow p-subgroup of G. If P contained in the center of its normalizer, then P has a normal complement in G.

We first show that every group presented in Theorem 1.1 has three conjugacy classes of non-normal subgroups.

Theorem 2.4. For every group presented in Theorem 1.1, $\nu(G) = 3$.

Proof. Let G be one of the groups presented in Theorem 1.1. Then there exists a Sylow p-subgroup P of G such that $P \not\triangleq G$ and P has a normal complement N; as well as P is cyclic except the groups (vii), (viii) and (ix) (in these cases $P \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_4 \times \mathbb{Z}_2$ and $P = Q_8$ respectively) and N is cyclic except groups (i), (ii), (iv), (xi), (xii) and (xiii) (in this cases $N \cong Q_8$, $Z_3 \times \mathbb{Z}_3$, $\mathbb{Z}_r \rtimes \mathbb{Z}_q$, $\mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_q \times \mathbb{Z}_q$ and $\mathbb{Z}_q \times \mathbb{Z}_q \times \mathbb{Z}_q$, respectively). Also G' is cyclic except the groups (i), (xi), (xii) and (xiii),

and G' = N except the groups (ii), (iii), (iv), in which cases $G' \leq N$ is of prime order and group (ix) that is $N \leq G'$.

Let H be a non-normal subgroup which is not conjugate with P. Then $H = (H \cap P)(H \cap N)$. In the groups (xii) and (xiii), P is maximal of order p and acts irreducibly on proper subgroups of N; hence $H \leq N$. For the group (xii), |H| = q and N contains two conjugacy class of non-normal subgroups of size p; and for the group (xiii), |H| = q or q^2 and in each case N contains just one class of non-normal subgroups of size p. We can see obviously that the group (xi) has non-normal subgroups of order 2 and 6.

In the groups (vii),..., (x), N is normal of order q (in the group (vii), (viii) and (x), N = G' and in the group (ix), N is characteristic in G'); so $H \leq P$. For the group (x), H is a maximal or second maximal subgroup of P, which in either case constitutes just one conjugacy class of size q; and for the groups (vii), (viii) and (ix), P has three maximal subgroups and two of them can not be normal. Assume that M_1 and M_2 are maximal subgroups of P which are non-normal in G. Then M_1 and M_2 can not be conjugate, otherwise $P = M_1 M_2 \leq N M_1 \leq G$ so $N M_1 = G$ which is a contradiction.

Since the maximal subgroup of P in the group (vi) is normal and N is cyclic of order q^3 , then any subgroup of P and N is normal in G. Therefore H must contain P and so $|H| = p^n q$ or $p^n q^2$, hence H can not be normal and constitutes just one conjugacy class of size q, in each case.

In the group (v) every subgroup of P and N is normal in G then H must contain P. Therefore H is one of two maximal subgroups of G of index q or r. Since $P = \mathcal{N}_G(P)$, in each case $H \not\triangleq G$ and constitutes just one conjugacy class of size q or r.

Obviously, in the group (iv), G' is a group of order r in N. Hence, either $H \leq N$ or $P \leq H$. Therefore, either H is the normalizer of P which is a maximal subgroup of index r or a subgroup of order q in N.

In the group (iii), again every proper subgroup of P and N is normal in G and $N_G(P)$ is a maximal subgroup of index r. Therefore, $G = \mathcal{N}_G(P)G'$ and $P \leqq H \leqslant \mathcal{N}_G(P)$. Hence, either $H = \mathcal{N}_G(P)$ or H is a subgroup of index rq which is not normal.

Trivially, in the group (ii), $N = Z(G) \times G'$ so either $H = Z(G) \times P = \mathcal{N}_G(P)$ which is maximal of index 3 or H is maximal in N which is not equal with Z(G) or G'. In the latter case $N = \mathcal{N}_G(H)$ is a maximal subgroup of index 2.

Finally, in the group (1), $Z(G) \lneq G' = N = Q_8$, hence either $H = Z(G) \times P = \mathcal{N}_G(P)$ which is maximal of index 4 or H is a maximal subgroup of N.

3. The Classification Theorems

Let G be a non-nilpotent finite group and P be a non-normal Sylow p-subgroup of G. Then $\mathcal{N}_G(P) \not \trianglelefteq G$. Suppose that M is a maximal subgroup of G containing $\mathcal{N}_G(P)$. By the Frattini argument $M \not \trianglelefteq G$. Now we can distinguish four cases as follows:

- (1) $P \leqq \mathcal{N}_G(P) \leqq M;$
- (2) $P \leqq \mathcal{N}_G(P) = M;$

(4) $P = \mathcal{N}_G(P) = M$.

Since $\nu(G) = 3$, in cases (1), (2) and (3), P has at most one maximal subgroup which is non-normal in G, and in case (4), at most two maximal subgroups. Hence in cases (1), (2) and (3), P is cyclic and in case (4), P is cyclic if p is an odd number or $P/\Phi(P) \not\cong \mathbb{Z}_2 \times \mathbb{Z}_2$. So in cases (1), (2) and (3), P has normal complement N in G. Indeed, let L be a complement of P in $\mathcal{N}_G(P)$. If $L \trianglelefteq G$ then $L \leqslant \mathcal{C}_G(P)$, otherwise P must be maximal in $\mathcal{N}_G(P)$ and for any $y \in G \setminus M$, $\langle y \rangle \trianglelefteq G$ so the Hall p'-subgroup of $\langle y \rangle$ must be contained in $\mathcal{C}_G(P)$. Therefore $P \gneqq \mathcal{C}_G(P)$, so we have $P \leqslant Z(\mathcal{N}_G(P))$. In case (4) if Pis abelian then has a normal complement. Also in cases $P \gneqq \mathcal{N}_G(P)$ we have $L = N \cap \mathcal{N}_G(P)$ is a normal complement of P in $\mathcal{N}_G(P)$.

We fixed the above notation for the following theorems.

Theorem 3.1. Let G be a finite non-nilpotent group with $\nu(G) = 3$. Then case (1) can not occur.

Proof. In this case P is a maximal subgroup of $\mathcal{N}_G(P)$ and $\mathcal{N}_G(P)$ is a maximal subgroup of M. Since $\mathcal{N}_G(P) = PL$, then |L| = q for some prime number $q \neq p$. If N has a subgroup L_1 of prime order different from L, we must have $PL_1 \leq G$ so $G = L_1 \mathcal{N}_G(P)$ and $\mathcal{N}_G(P)$ must be maximal in G, a contradiction. Therefore, $L \leq N$ is the only subgroup of prime order. Now from $L \leq \mathcal{C}_N(P)$ we have $N = [N, P]\mathcal{C}_N(P)$, again this is a contradiction because N can be neither cyclic nor quaternion. \Box

Theorem 3.2. Let G be a finite non-nilpotent group with $\nu(G) = 3$ which satisfies (2). Then G is isomorphic to one of the following groups:

- (i) SL(2,3).
- (ii) $\mathbb{Z}_3 \times S_3$.
- (iii) $\langle x, y, z | x^{p^n}, y^{q^2}, z^r, z^x = z^i, [x^p, z], [x, y], [z, y] \rangle$, where p, q and r are different primes, p | r 1 and $i^p \equiv 1 \mod r$.
- (iv) $\langle x, y, z | x^p, y^q, z^r, [x, y], z^x = z^i, z^y = z^j \rangle$, where p, q and r are different primes, pq | r-1 and $i^p \equiv 1 \mod r, j^q \equiv 1 \mod r$.

Proof. Let H be a non-normal subgroup of G which is not conjugate with P and M. Firstly we assume that M dose not contain any conjugate of H, then $L \leq G$ and [P, L] = 1. If K is a non-trivial proper subgroup of L, then $PK \leq G$ so $P \leq G$, which is imposable. Therefore |L| = q for some prime number $q \neq p$. Also we can write $H = H_P H_N$ where H_P is a Sylow p-subgroup of H with normal complement H_N . If $H_P \neq 1$, then any subgroup of N is normal in G so $H_N \leq G$ and we must have $H_P = P^g$ for some $g \in G$ (otherwise $H_P \leq G$ and $H \leq G$). Since $M^g \notin H$, then $L \cap H = 1$, hence $N = L \times H_N$ is abelian. Therefore $L \leq Z(G)$ and $H = PH_N \leq G$, a contradiction.

Now we assume that $H_P = 1$. Then $H \leq N$ and N is non-cyclic. If $\Phi(P) \neq 1$, then $H\Phi(P) \leq G$ and so $H = N \cap H\Phi(P) \leq G$, again we have contradiction, hence |P| = p. Since any subgroup of N which contains L can not be normal in G, then either L is maximal in N and $L \cap H = 1$ or $L \leq H$, H is cyclic of order q^2 and $|N| = q^3$. In the later case $L = \Omega_1(N) \leq G$ and $N \approx Q_8$, so p = 3, because $(P \hookrightarrow S_4)$. Therefore $G \approx SL(2,3)$. In the first case |H| = r is prime. If $r \neq q$, as $H \not \leq N$, then $|G : \mathcal{N}_G(H)| = q$, therefore $\mathcal{N}_G(H)$ must be normal in G, hence $H \leq G$ and we reach a contradiction. Therefore r = q and $L \leq Z(G)$. As $|G : \mathcal{N}_G(H)| = p$ and N contains q + 1 subgroups of order q, we must have p = q - 1, because N dose not contains two maximal subgroups L_1 and L_2 such that PL_1 and PL_2 are normal in G (otherwise $P = PL_1 \cap PL_2 \leq G$ a contradiction). Therefore p = 2, q = 3 and $G \cong L \times [N, P]P \cong \mathbb{Z}_3 \times S_3$.

Now we consider M contains a conjugate of H. Without lose of generality we can assume that $H \leq M$. Let |L| is not prime and $K \leq L$ be of prime order. Since $PK \not \leq G$, then we can assume that H = PK. As H is maximal and normal in M, then H is the only maximal subgroup of M which contains P, therefore L is a cyclic normal subgroup of order q^2 . Since M is maximal in G and any subgroup of N is normal in G, so L is a maximal subgroup of prime index r in N. If r = q, then $|\Omega_1(N)| = q^2$ and we can find subgroups L_1 and L_2 different from L, such that PL_1 and PL_2 are normal in G, which implies that $P \leq G$. Therefore $r \neq q$ and N is cyclic. So that $G \cong [N, P]P \times L$ and is a group presented in (iii).

Now we assume that |L| = q is a prime. Hence P is maximal in M. If $L \notin H$, then $H \notin P$, as P is cyclic and normal in M, then $H \trianglelefteq M$. So LH is normal in G and contains H as a characteristic subgroup, hence $H \trianglelefteq G$, a contradiction. Therefore $L \leqslant H$. If $L \trianglelefteq G$ then $H = (H \cap P)L \trianglelefteq G$ which is impossible, therefore $H = L \nleq G$ is of prime order q. If $\Phi(P) \neq 1$ then $H\Phi(P) \trianglelefteq G$ which implies the contradiction $H \trianglelefteq G$, because [L, P] = 1. Therefore, $\Phi(P) = 1$ and |P| = p. Since L is maximal in N and N can not be abelian (otherwise $L \trianglelefteq G$), so |N| = qr for some prime number $r \neq q$. Assume that $Z \leqslant N$ is of prime order r, then $Z \trianglelefteq G$. Therefore, $G \cong Z \rtimes (P \times L)$ is a group presented in (iv).

Theorem 3.3. Let G be a finite non-nilpotent group with $\nu(G) = 3$ which satisfies (3). Then G is isomorphic to one of the following groups:

- (v) $\langle x, y, z | x^{p^n}, y^q, z^r, [x^p, y], [x^p, z], [y, z], y^x = y^i, z^x = z^j \rangle$ where p, q and r are different primes, $i^p \equiv 1 \mod q, j^p \equiv 1 \mod r$ and p | (q-1, r-1).
- (vi) $\langle x, y | x^{p^n}, y^{q^3}, [x^p, y], y^x = y^i \rangle$, where p, q are primes, p | (q-1) and $i^p \equiv 1 \mod q^3$.

Proof. Assume first that any subgroup of M which is not conjugate with P, is normal in G. Then P is a maximal subgroup of M and $N \cap M$ is a normal subgroup of G of prime order $q \neq p$. We set $K = M \cap N$, so M = PK and for any $g \in G$, $M^g = P^g K$. Since $P = \mathcal{N}_G(P)$, than $Z(G) \leq P$ and any subgroup of G which contains P must be non-normal. Therefore either N just contains two subgroups which are normal in G or K is the only P-invariant subgroups of N. In the latter case N contains a non-normal subgroup of G, otherwise N is cyclic of order q^2 and $\nu(G) = 2$. Hence N is non-cyclic, also similar to proof of pervious theorem we have $\Phi(P) = 1$. If N is a prime power order then either $K = \Omega_1(N)$, so N is generalized quaternion, thus $K \leq Z(G)$, a contradiction, or $N = \Omega_1(N)$ then $N \cong \mathbb{Z}_q \times \mathbb{Z}_q$ and contains q + 1 subgroups of order q, then N contains at least two P-invariant subgroups, because $K \leq G$. We reach a contradiction. If N is not prime power order, then N contains a non-normal subgroup with q conjugates that one of them must be P-invariant, again we have a contradiction.

Therefore N contains exactly two proper non-trivial subgroups which are normal in G. So |N| = qrfor some prime $r \neq q$ and $p \mid (q-1, r-1)$. Therefore, G is a group presented in (v).

Now let $H \not\subseteq M$ be a non-normal subgroup of G which is not conjugate with P. If N is not prime power order then N contains two subgroups K_1 and K_2 of distinct prime order q and r, respectively. Since one of the K_1 or K_2 must be normal in G, say K_1 , then $PK_1 \not\subseteq G$ so $K_1 \leq M$. Either $M = PK_1$ then $r \nmid |M|$ and we have $K_2 \leq G$ or $PK_1 \not\subseteq M$ then again $K_2 \leq G$, because $\nu(G) = 3$, therefore $PK_2 \leq G$ and we reach a contradiction by Frattini argument. Hence N is of prime power order. Let K be a maximal subgroup of N. If $K \leq G$ then $PK \not\leq G$ so $P^gK \leq M$ for some $g \in G$, hence $K = M \cap N$. Otherwise $K \not\leq G$ so $H = K^x \leq M$ for some $x \in P$, again we must have $K = M \cap N$. Therefore $M \cap N$ is the only maximal subgroup of N, which implies that N is cyclic.

If P is maximal in M, then $|M \cap N| = q$ is a prime number. If $M \cap N \leq H$ than $H = H_P H_N \leq G$, because $H_N = M \cap N$ and $|H_P| < |P|$. So $H_N = 1$ and $H(M \cap N) \leq G$. By Frattini argument $G = (M \cap N)\mathcal{N}_G(H)$. Hence $N = (M \cap N)(N \cap \mathcal{N}_G(H))$, as N is cyclic, so $G = \mathcal{N}_G(H)$, which is impossible. Therefore H is a maximal subgroup of M which contains P. Since H must be maximal in M so $|N| = q^3$ and G is a group presented in (vi).

Theorem 3.4. Let G be a finite non-nilpotent group with $\nu(G) = 3$ which satisfies (4). Then G is isomorphic to one of the following groups:

- (vii) $D_{4q} = \langle x, y, z | x^2, y^2, z^q, (xz)^2, [x, y], [y, z] \rangle$, where $q \neq 2$ is prime.
- (viii) $\langle x, y, z | x^4, y^2, z^q, z^x z, [y, z], [x, y] \rangle$, where $q \neq 2$ is prime.
- (ix) $\langle x, y, z | x^4, y^4, z^q, x^2y^2, z^xz, x^yx, [z, y] \rangle$, where $q \neq 2$ is prime.
- (x) $\langle x, y | x^{p^n}, y^q, [x^{p^3}, y], y^x = y^i \rangle$, where p, q are primes, $p^3 | q 1$ and $i^{p^3} \equiv 1 \mod q$, $i^{p^2} \neq 1 \mod q$.
- (xi) $\langle x, y, z | x^9, y^2, z^2, y^x z, z^x y z, [z, y] \rangle$.
- (xii) $(\mathbb{Z}_q \times \mathbb{Z}_q) \rtimes \mathbb{Z}_p$, where p, q are primes and q = 2p 1.
- (xiii) $(\mathbb{Z}_q \times \mathbb{Z}_q \times \mathbb{Z}_q) \rtimes \mathbb{Z}_p$, where p, q are primes and $p = q^2 + q + 1$.

Proof. By the assumption G = PN. First we consider that $P/\Phi(P) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Note that P has two maximal subgroups H and K that are not normal in G. Since $\nu(G) = 3$, both H and K are cyclic; and $[\Phi(P), N] = 1$. If P is non-abelian then $Z(P) = \Phi(P)$ and |P'| = 2, so P is a minimal non-abelian 2-group. Also |N| = q is a prime, because any subgroup of N must be normal in G. Suppose that x, y and z are generators of H, K and N respectively. Obviously $z^x = z^y = z^{-1}$, hence [z, xy] = 1. If $\Phi(P) = 1$ then $x^2 = y^2 = 1$ and $G \cong \mathbb{Z}_q \rtimes (\mathbb{Z}_2 \times \mathbb{Z}_2)$. As $P = \langle x, xy \rangle$ and [z, xy] = 1, so G is the group presented in (vii).

Suppose that $\Phi(P) \neq 1$. If $x^2 \neq y^2$ then $\langle y^2 x \rangle \not \leq G$, because $x^z = xz^2$. Suppose that $x^2 = y^2$ and $x^4 \neq 1$ then $\langle x^{-1}yt \rangle \not \leq P$, where $t^2 = [x, y]$, because $(x^{-1}yt)^2 = 1$ and $(x^{-1}yt)^x = x^{-1}yt[x, y]$. Therefore, $x^2 = y^2$ and $x^4 = 1$; also $\Phi(P) = \langle x^2 \rangle = Z(G)$. Hence |P| = 8 and either $P \cong \mathbb{Z}_4 \times \mathbb{Z}_2$ or $P = Q_8$. In the first case $(xy^{-1})^2 = 1$, $[z, xy^{-1}] = 1$ and $P = \langle x, xy^{-1} \rangle$ and the second case |xy| = 4, [z, xy] = 1 and $P = \langle x, xy \rangle$. So G is the group presented in (viii) or (ix), respectively.

Now consider the case $P/\Phi(P) \ncong \mathbb{Z}_2 \times \mathbb{Z}_2$, so P is cyclic with normal complement N. Since P is maximal then N does not have any subgroup which is normal in G, hence is characteristically simple. Since N contains at most two conjugacy classes of non-normal subgroups of G, then |N| can have at most two prime divisors, thus N must be solvable and so elementary abelian with $|N| \leq q^3$ for some prime number $q \neq p$. Also, we have |N| = q if and only if the maximal and second maximal subgroup of P are non-normal in G. In the sequel we suppose that H and K are non-conjugate non-normal subgroups of G different from P.

First let any subgroup of N be normal in G, then as P is maximal in G, we have |N| = q. We can assume that $H \leq K \leq P$ and H is maximal in K and K is maximal in P. Suppose that $P = \langle x \rangle$, then $x^{p^3} \in \mathcal{C}_P(N)$. Therefore, $G \cong N \rtimes P$ and is the group presented in (x).

Now suppose that N contains at least a subgroup which is not-normal in G so we can assume that $H \leq N$ and |N| > q. If $1 \neq L \leq P$ such that $L \leq G$, from [L, N] = 1 we have LH contains H as characteristic subgroup, so $LH \not\leq G$. Now we can assume that K = LH. Therefore $|P| = p^2$ and also $|N| = q^2$, because H must be maximal in N. Since P acts transitively on q + 1 subgroups of N and [L, H] = 1 we must have p = q + 1 and so p = 3, q = 2. Therefore |G| = 36 and $G \cong (\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_9$ is the group presented in (xi).

Finally, suppose that L = 1, so |P| = p; then both of H and K are subgroups of N and we can assume that |H| = q. If all non-normal subgroups of G except P have same order q, then $|N| = q^2$ and q + 1 = 2p. Since P acts irreducibly on N, then p must be an odd prime number. Therefore, $G \cong (\mathbb{Z}_q \times \mathbb{Z}_q) \rtimes \mathbb{Z}_p$ and G is the group presented in (xii). Otherwise, $|N| = q^3$ and K is maximal in N. So $q^2 + q + 1 = p$ and $G \cong (\mathbb{Z}_q \times \mathbb{Z}_q \times \mathbb{Z}_q) \rtimes \mathbb{Z}_p$ is the group presented in (xiii). \Box

Acknowledgments

The author appreciates the anonymous referee for a careful reading of this article. Also the author thanks the institute for advanced studies in basic sciences(IASBS) for partially supported of this research.

References

- [1] R. Brandl, Groups with few non-normal subgroups, Comm. Algebra, 23 no. 6 (1995) 2091-2098.
- [2] R. La Haye, Some expicit bounds in groups with a finite number of non-normal subgroups, Comm. Algebra, 25 no. 12 (1996) 3803-3821.
- [3] H. Mousavi, On finite groups with few non-normal subgroups, Comm. Algebra, 27 no. 7 (1999) 3143-3151.
- [4] J. J. Rotman, An Introduction to the theory of groups, 4th ed., Springer-Verlag, 1995.

Hamid Mousavi

Department of Mathematics, University of Tabriz, P.O.Box 5166617766, Tabriz, Iran Email: hmousavi@tabrizu.ac.ir