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NON-NILPOTENT GROUPS WITH THREE CONJUGACY CLASSES OF
NON-NORMAL SUBGROUPS

HAMID MOUSAVI

Communicated by Alireza Abdollahi

Abstract. For a finite group G let ν(G) denote the number of conjugacy classes of non-normal

subgroups of G. The aim of this paper is to classify all the non-nilpotent groups with ν(G) = 3.

1. Introduction

Let G be a finite group. We denote by ν(G) the number of conjugacy classes of non-normal

subgroups of G. Obviously, ν(G) = 0 if and only if G is Hamiltonian. In 1995, Brandl [1] classified

finite groups with ν(G) = 1. In 1977, R. La Haye [2] showed that for a group G, |G′| ≤ ρ(G)ν(G)+ε

and |G/Z(G)| ≤ ρ(G)ν(G)+ε+1 where ρ(G) denotes the largest prime p such that G has an element of

order p, and ε = 1 if G has an element of order 2, and ε = 0 otherwise. This goes to say that ν(G)

can play an important role in the structure of finite groups, so many authors work on this concept

but mostly in p-groups.

The present author in [3] gave a complete classification of finite groups with ν(G) = 2. The aim of

this paper is classifying finite non-nilpotent groups with ν(G) = 3. The following theorem is the main

result of this paper.

Theorem 1.1. Let G be a non-nilpotent finite group with ν(G) = 3. Then G is isomorphic to one of

the following groups:

(i) SL(2, 3).

(ii) Z3 × S3.
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(iii) 〈x, y, z |xpn
, yq

2
, zr, [x, y], [xp, z], [y, z], zx = zi〉, where p, q and r are different primes, p | r− 1

and ip ≡ 1( mod r).

(iv) 〈x, y, z |xp, yq, zr, [x, y], zx = zi, zy = zj〉, where p, q and r are different primes, pq | r − 1 and

ip ≡ 1 ( mod r), jq ≡ 1 ( mod r).

(v) 〈x, y, z |xpn
, yq, zr, [xp, y], [xp, z], [y, z], yx = yi, zx = zj〉 where p, q and r are different primes,

ip ≡ 1( mod q), jp ≡ 1( mod r) and p | (q − 1, r − 1).

(vi) 〈x, y |xpn
, yq

3
, [xp, y], yx = yi〉, where p, q are primes, p | (q − 1) and ip ≡ 1 mod q3.

(vii) D4q = 〈x, y, z |x2, y2, zq, (xz)2, [x, y], [y, z]〉, where q 6= 2 is prime.

(viii) 〈x, y, z |x4, y2, zq, zxz, [y, z], [x, y]〉, where q 6= 2 is prime.

(ix) 〈x, y, z |x4, y4, zq, x2y2, zxz, xyx, [z, y]〉, where q 6= 2 is prime.

(x) 〈x, y |xpn
, yq, [xp

3
, y], yx = yi〉, where p, q are primes, p3 | q − 1 and ip

3 ≡ 1 mod q, ip
2 6≡ 1

mod q.

(xi) 〈x, y, z |x9, y2, z2, yxz, zxyz, [z, y]〉.
(xii) (Zq × Zq)o Zp, where p, q are odd primes and q = 2p− 1 and P acts irreducibly.

(xiii) (Zq × Zq × Zq)o Zp, where p, q are primes and p = q2 + q + 1 and P acts irreducibly.

Our notation is standard and can be found in [4]. Throughout this paper, we use Zn, D2n and Q8 for

cyclic group of order n, the dihedral group of order 2n and quaternion group of order 8, respectively.

2. Preliminaries

We will repeatedly use the following simple lemmas without even mentioning them.

Lemma 2.1. Let G be a finite group and H 5 G. Then H has at most one maximal subgroup which

is normal in G.

Lemma 2.2. Let G be a finite group and H 6 G has normal complement N in G. Then for any

normal subgroup K of H, KN E G.

Lemma 2.3 (Burnside). [4, Theorem, 7.50] Let G be a finite group and P be a Sylow p-subgroup of

G. If P contained in the center of its normalizer, then P has a normal complement in G.

We first show that every group presented in Theorem 1.1 has three conjugacy classes of non-normal

subgroups.

Theorem 2.4. For every group presented in Theorem 1.1, ν(G) = 3.

Proof. Let G be one of the groups presented in Theorem 1.1. Then there exists a Sylow p-subgroup

P of G such that P 5 G and P has a normal complement N ; as well as P is cyclic except the groups

(vii), (viii) and (ix) (in these cases P ∼= Z2 × Z2, Z4 × Z2 and P = Q8 respectively) and N is cyclic

except groups (i), (ii), (iv), (xi), (xii) and (xiii) (in this cases N ∼= Q8, Z3 × Z3, Zr o Zq, Z2 × Z2,

Zq × Zq and Zq × Zq × Zq, respectively). Also G′ is cyclic except the groups (i), (xi), (xii) and (xiii),
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and G′ = N except the groups (ii), (iii), (iv), in which cases G′ � N is of prime order and group (ix)

that is N � G′.

Let H be a non-normal subgroup which is not conjugate with P . Then H = (H∩P )(H∩N). In the

groups (xii) and (xiii), P is maximal of order p and acts irreducibly on proper subgroups of N ; hence

H 6 N . For the group (xii), |H| = q and N contains two conjugacy class of non-normal subgroups of

size p; and for the group (xiii), |H| = q or q2 and in each case N contains just one class of non-normal

subgroups of size p. We can see obviously that the group (xi) has non-normal subgroups of order 2

and 6.

In the groups (vii),..., (x), N is normal of order q ( in the group (vii), (viii) and (x), N = G′ and

in the group (ix), N is characteristic in G′); so H 6 P . For the group (x), H is a maximal or second

maximal subgroup of P , which in either case constitutes just one conjugacy class of size q; and for

the groups (vii), (viii) and (ix), P has three maximal subgroups and two of them can not be normal.

Assume that M1 and M2 are maximal subgroups of P which are non-normal in G. Then M1 and M2

can not be conjugate, otherwise P = M1M2 6 NM1 E G so NM1 = G which is a contradiction.

Since the maximal subgroup of P in the group (vi) is normal and N is cyclic of order q3, then any

subgroup of P and N is normal in G. Therefore H must contain P and so |H| = pnq or pnq2, hence

H can not be normal and constitutes just one conjugacy class of size q, in each case.

In the group (v) every subgroup of P and N is normal in G then H must contain P . Therefore H

is one of two maximal subgroups of G of index q or r. Since P = NG(P ), in each case H 5 G and

constitutes just one conjugacy class of size q or r.

Obviously, in the group (iv), G′ is a group of order r in N . Hence, either H 6 N or P 6 H.

Therefore, either H is the normalizer of P which is a maximal subgroup of index r or a subgroup of

order q in N .

In the group (iii), again every proper subgroup of P and N is normal in G and NG(P ) is a maximal

subgroup of index r. Therefore, G = NG(P )G′ and P � H 6 NG(P ). Hence, either H = NG(P ) or

H is a subgroup of index rq which is not normal.

Trivially, in the group (ii), N = Z(G)×G′ so either H = Z(G)× P = NG(P ) which is maximal of

index 3 or H is maximal in N which is not equal with Z(G) or G′. In the latter case N = NG(H) is

a maximal subgroup of index 2.

Finally, in the group (1), Z(G) � G′ = N = Q8, hence either H = Z(G) × P = NG(P ) which is

maximal of index 4 or H is a maximal subgroup of N . �

3. The Classification Theorems

Let G be a non-nilpotent finite group and P be a non-normal Sylow p-subgroup of G. Then

NG(P ) 5 G. Suppose that M is a maximal subgroup of G containing NG(P ). By the Frattini

argument M 5 G. Now we can distinguish four cases as follows:

(1) P � NG(P ) �M ;

(2) P � NG(P ) = M ;
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(3) P = NG(P ) �M ;

(4) P = NG(P ) = M .

Since ν(G) = 3, in cases (1), (2) and (3), P has at most one maximal subgroup which is non-normal

in G, and in case (4), at most two maximal subgroups. Hence in cases (1), (2) and (3), P is cyclic and

in case (4), P is cyclic if p is an odd number or P/Φ(P ) 6∼= Z2×Z2. So in cases (1), (2) and (3), P has

normal complement N in G. Indeed, let L be a complement of P in NG(P ). If L E G then L 6 CG(P ),

otherwise P must be maximal in NG(P ) and for any y ∈ G\M , 〈y〉 E G so the Hall p′-subgroup of

〈y〉 must be contained in CG(P ). Therefore P � CG(P ), so we have P 6 Z(NG(P )). In case (4) if P

is abelian then has a normal complement. Also in cases P � NG(P ) we have L = N ∩ NG(P ) is a

normal complement of P in NG(P ).

We fixed the above notation for the following theorems.

Theorem 3.1. Let G be a finite non-nilpotent group with ν(G) = 3. Then case (1) can not occur.

Proof. In this case P is a maximal subgroup of NG(P ) and NG(P ) is a maximal subgroup of M . Since

NG(P ) = PL, then |L| = q for some prime number q 6= p. If N has a subgroup L1 of prime order

different from L, we must have PL1 E G so G = L1NG(P ) and NG(P ) must be maximal in G, a

contradiction. Therefore, L 6 N is the only subgroup of prime order. Now from L 6 CN (P ) we have

N = [N,P ]CN (P ), again this is a contradiction because N can be neither cyclic nor quaternion. �

Theorem 3.2. Let G be a finite non-nilpotent group with ν(G) = 3 which satisfies (2). Then G is

isomorphic to one of the following groups:

(i) SL(2, 3).

(ii) Z3 × S3.

(iii) 〈x, y, z |xpn
, yq

2
, zr, zx = zi, [xp, z], [x, y], [z, y]〉, where p, q and r are different primes, p | r− 1

and ip ≡ 1 mod r.

(iv) 〈x, y, z |xp, yq, zr, [x, y], zx = zi, zy = zj〉, where p, q and r are different primes, pq | r − 1 and

ip ≡ 1 mod r, jq ≡ 1 mod r.

Proof. Let H be a non-normal subgroup of G which is not conjugate with P and M . Firstly we assume

that M dose not contain any conjugate of H, then L E G and [P,L] = 1. If K is a non-trivial proper

subgroup of L, then PK E G so P E G, which is imposable. Therefore |L| = q for some prime number

q 6= p. Also we can write H = HPHN where HP is a Sylow p-subgroup of H with normal complement

HN . If HP 6= 1, then any subgroup of N is normal in G so HN E G and we must have HP = P g for

some g ∈ G (otherwise HP E G and H E G). Since Mg 
 H, then L ∩H = 1, hence N = L×HN is

abelian. Therefore L 6 Z(G) and H = PHN E G, a contradiction.

Now we assume that HP = 1. Then H 6 N and N is non-cyclic. If Φ(P ) 6= 1, then HΦ(P ) E G and

so H = N ∩HΦ(P ) E G, again we have contradiction, hence |P | = p. Since any subgroup of N which

contains L can not be normal in G, then either L is maximal in N and L ∩ H = 1 or L 6 H, H is

cyclic of order q2 and |N | = q3. In the later case L = Ω1(N) E G and N ∼= Q8, so p = 3, because

(P ↪→ S4). Therefore G ∼= SL(2, 3).
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In the first case |H| = r is prime. If r 6= q, as H 5 N , then |G : NG(H)| = q, therefore NG(H) must

be normal in G, hence H E G and we reach a contradiction. Therefore r = q and L 6 Z(G). As

|G : NG(H)| = p and N contains q+ 1 subgroups of order q, we must have p = q− 1, because N dose

not contains two maximal subgroups L1 and L2 such that PL1 and PL2 are normal in G (otherwise

P = PL1 ∩ PL2 E G a contradiction). Therefore p = 2, q = 3 and G ∼= L× [N,P ]P ∼= Z3 × S3.

Now we consider M contains a conjugate of H. Without lose of generality we can assume that

H 6 M . Let |L| is not prime and K 6 L be of prime order. Since PK 5 G, then we can assume

that H = PK. As H is maximal and normal in M , then H is the only maximal subgroup of M which

contains P , therefore L is a cyclic normal subgroup of order q2. Since M is maximal in G and any

subgroup of N is normal in G, so L is a maximal subgroup of prime index r in N . If r = q, then

|Ω1(N)| = q2 and we can find subgroups L1 and L2 different from L, such that PL1 and PL2 are

normal in G, which implies that P E G. Therefore r 6= q and N is cyclic. So that G ∼= [N,P ]P × L
and is a group presented in (iii).

Now we assume that |L| = q is a prime. Hence P is maximal in M . If L 
 H, then H 6 P , as P

is cyclic and normal in M , then H E M . So LH is normal in G and contains H as a characteristic

subgroup, hence H E G, a contradiction. Therefore L 6 H. If L E G then H = (H ∩P )L E G which

is impossible, therefore H = L 5 G is of prime order q. If Φ(P ) 6= 1 then HΦ(P ) E G which implies

the contradiction H E G, because [L,P ] = 1. Therefore, Φ(P ) = 1 and |P | = p. Since L is maximal

in N and N can not be abelian (otherwise L E G), so |N | = qr for some prime number r 6= q. Assume

that Z 6 N is of prime order r, then Z E G. Therefore, G ∼= Z o (P × L) is a group presented in

(iv). �

Theorem 3.3. Let G be a finite non-nilpotent group with ν(G) = 3 which satisfies (3). Then G is

isomorphic to one of the following groups:

(v) 〈x, y, z |xpn
, yq, zr, [xp, y], [xp, z], [y, z], yx = yi, zx = zj〉 where p, q and r are different primes,

ip ≡ 1 mod q, jp ≡ 1 mod r and p | (q − 1, r − 1).

(vi) 〈x, y |xpn
, yq

3
, [xp, y], yx = yi〉, where p, q are primes, p | (q − 1) and ip ≡ 1 mod q3.

Proof. Assume first that any subgroup of M which is not conjugate with P , is normal in G. Then

P is a maximal subgroup of M and N ∩M is a normal subgroup of G of prime order q 6= p. We

set K = M ∩ N , so M = PK and for any g ∈ G, Mg = P gK. Since P = NG(P ), than Z(G) 6 P

and any subgroup of G which contains P must be non-normal. Therefore either N just contains two

subgroups which are normal in G or K is the only P -invariant subgroups of N . In the latter case

N contains a non-normal subgroup of G, otherwise N is cyclic of order q2 and ν(G) = 2. Hence N

is non-cyclic, also similar to proof of pervious theorem we have Φ(P ) = 1. If N is a prime power

order then either K = Ω1(N), so N is generalized quaternion, thus K 6 Z(G), a contradiction, or

N = Ω1(N) then N ∼= Zq × Zq and contains q + 1 subgroups of order q, then N contains at least two

P -invariant subgroups, because K E G. We reach a contradiction. If N is not prime power order,

then N contains a non-normal subgroup with q conjugates that one of them must be P -invariant,

again we have a contradiction.
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Therefore N contains exactly two proper non-trivial subgroups which are normal in G. So |N | = qr

for some prime r 6= q and p | (q − 1, r − 1). Therefore, G is a group presented in (v).

Now let H �M be a non-normal subgroup of G which is not conjugate with P . If N is not prime

power order then N contains two subgroups K1 and K2 of distinct prime order q and r, respectively.

Since one of the K1 or K2 must be normal in G, say K1, then PK1 5 G so K1 6M . Either M = PK1

then r - |M | and we have K2 E G or PK1 � M then again K2 E G, because ν(G) = 3, therefore

PK2 E G and we reach a contradiction by Frattini argument. Hence N is of prime power order. Let

K be a maximal subgroup of N . If K E G then PK 5 G so P gK 6 M for some g ∈ G, hence

K = M ∩N . Otherwise K 5 G so H = Kx 6 M for some x ∈ P , again we must have K = M ∩N .

Therefore M ∩N is the only maximal subgroup of N , which implies that N is cyclic.

If P is maximal in M , then |M ∩N | = q is a prime number. If M ∩N 6 H than H = HPHN E G,

because HN = M ∩ N and |HP | < |P |. So HN = 1 and H(M ∩ N) E G. By Frattini argument

G = (M ∩ N)NG(H). Hence N = (M ∩ N)(N ∩ NG(H)), as N is cyclic, so G = NG(H), which is

impossible. Therefore H is a maximal subgroup of M which contains P . Since H must be maximal

in M so |N | = q3 and G is a group presented in (vi). �

Theorem 3.4. Let G be a finite non-nilpotent group with ν(G) = 3 which satisfies (4). Then G is

isomorphic to one of the following groups:

(vii) D4q = 〈x, y, z |x2, y2, zq, (xz)2, [x, y], [y, z]〉, where q 6= 2 is prime.

(viii) 〈x, y, z |x4, y2, zq, zxz, [y, z], [x, y]〉, where q 6= 2 is prime.

(ix) 〈x, y, z |x4, y4, zq, x2y2, zxz, xyx, [z, y]〉, where q 6= 2 is prime.

(x) 〈x, y |xpn
, yq, [xp

3
, y], yx = yi〉, where p, q are primes, p3 | q − 1 and ip

3 ≡ 1 mod q, ip
2 6≡ 1

mod q.

(xi) 〈x, y, z |x9, y2, z2, yxz, zxyz, [z, y]〉.
(xii) (Zq × Zq)o Zp, where p, q are primes and q = 2p− 1.

(xiii) (Zq × Zq × Zq)o Zp, where p, q are primes and p = q2 + q + 1.

Proof. By the assumption G = PN . First we consider that P/Φ(P ) ∼= Z2 × Z2. Note that P has two

maximal subgroups H and K that are not normal in G. Since ν(G) = 3, both H and K are cyclic;

and [Φ(P ), N ] = 1. If P is non-abelian then Z(P ) = Φ(P ) and |P ′| = 2, so P is a minimal non-abelian

2-group. Also |N | = q is a prime, because any subgroup of N must be normal in G. Suppose that x,

y and z are generators of H, K and N respectively. Obviously zx = zy = z−1, hence [z, xy] = 1. If

Φ(P ) = 1 then x2 = y2 = 1 and G ∼= Zqo (Z2×Z2). As P = 〈x, xy〉 and [z, xy] = 1, so G is the group

presented in (vii).

Suppose that Φ(P ) 6= 1. If x2 6= y2 then 〈y2x〉 5 G, because xz = xz2. Suppose that x2 = y2

and x4 6= 1 then 〈x−1yt〉 5 P , where t2 = [x, y], because (x−1yt)2 = 1 and (x−1yt)x = x−1yt[x, y].

Therefore, x2 = y2 and x4 = 1; also Φ(P ) = 〈x2〉 = Z(G). Hence |P | = 8 and either P ∼= Z4 × Z2 or

P = Q8. In the first case (xy−1)2 = 1, [z, xy−1] = 1 and P = 〈x, xy−1〉 and the second case |xy| = 4,

[z, xy] = 1 and P = 〈x, xy〉. So G is the group presented in (viii) or (ix), respectively.
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Now consider the case P/Φ(P ) � Z2 × Z2, so P is cyclic with normal complement N . Since P is

maximal then N does not have any subgroup which is normal in G, hence is characteristically simple.

Since N contains at most two conjugacy classes of non-normal subgroups of G, then |N | can have at

most two prime divisors, thus N must be solvable and so elementary abelian with |N | ≤ q3 for some

prime number q 6= p. Also, we have |N | = q if and only if the maximal and second maximal subgroup

of P are non-normal in G. In the sequel we suppose that H and K are non-conjugate non-normal

subgroups of G different from P .

First let any subgroup of N be normal in G, then as P is maximal in G, we have |N | = q. We can

assume that H 6 K 6 P and H is maximal in K and K is maximal in P . Suppose that P = 〈x〉,
then xp

3 ∈ CP (N). Therefore, G ∼= N o P and is the group presented in (x).

Now suppose that N contains at least a subgroup which is not-normal in G so we can assume that

H 6 N and |N | > q. If 1 6= L 6 P such that L E G, from [L,N ] = 1 we have LH contains H as

characteristic subgroup, so LH 5 G. Now we can assume that K = LH. Therefore |P | = p2 and also

|N | = q2, because H must be maximal in N . Since P acts transitively on q + 1 subgroups of N and

[L,H] = 1 we must have p = q + 1 and so p = 3, q = 2. Therefore |G| = 36 and G ∼= (Z2 × Z2)o Z9

is the group presented in (xi).

Finally, suppose that L = 1, so |P | = p; then both of H and K are subgroups of N and we can

assume that |H| = q. If all non-normal subgroups of G except P have same order q, then |N | = q2

and q + 1 = 2p. Since P acts irreducibly on N , then p must be an odd prime number. Therefore,

G ∼= (Zq × Zq)o Zp and G is the group presented in (xii). Otherwise, |N | = q3 and K is maximal in

N . So q2 + q + 1 = p and G ∼= (Zq × Zq × Zq)o Zp is the group presented in (xiii). �
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