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Abstract. Let γ(Sn) be the minimum number of proper subgroups Hi, i = 1, . . . , l of the symmetric

group Sn such that each element in Sn lies in some conjugate of one of the Hi. In this paper we

conjecture that

γ(Sn) =
n

2

(
1− 1

p1

) (
1− 1

p2

)
+ 2,

where p1, p2 are the two smallest primes in the factorization of n ∈ N and n is neither a prime power

nor a product of two primes. Support for the conjecture is given by a previous result for n = pα1
1 pα2

2 ,

with (α1, α2) 6= (1, 1). We give further evidence by confirming the conjecture for integers of the form

n = 15q for an infinite set of primes q, and by reporting on a Magma computation. We make a similar

conjecture for γ(An), when n is even, and provide a similar amount of evidence.

1. Introduction

Let G be the symmetric group Sn or the alternating group An of degree n ∈ N, acting naturally

on the set Ω = {1, . . . , n}. In this paper we study the optimum way of covering the elements of G

by conjugacy classes of proper subgroups. If H1, . . . ,Hl, with l ∈ N, l ≥ 2 are pairwise non-conjugate

proper subgroups of G such that

G =
l⋃

i=1

⋃
g∈G

Hg
i ,

we say that ∆ = {Hg
i | 1 ≤ i ≤ l, g ∈ G} is a normal covering of G and that δ = {H1, . . . ,Hl} is a

basic set for G which generates ∆. We call the elements of ∆ the components and the elements of δ
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the basic components of the normal covering. The minimum cardinality |δ| of a basic set δ for G is

called the normal covering number of G, denoted γ(G) and a basic set of size γ(G) is called a minimal

basic set. Note that the parameters γ(Sn), γ(An) are defined only for n ≥ 3 and n ≥ 4, respectively.

More generally γ(G) is defined for each non-cyclic group G, since cyclic groups cannot be covered by

proper subgroups.

The first two authors introduced the parameter γ(G) in [6], and proved there that aϕ(n) ≤ γ(G) ≤
bn, where ϕ(n) is the Euler totient function and a, b are positive real constants depending on whether

G is alternating or symmetric and whether n is even or odd (see [6, Theorems A and B]).

Recently, in [7, Theorem 1.1], we established a lower bound linear in n, given by cn ≤ γ(G) ≤ 2
3n,

where c is a positive real constant, and in [7, Remark 6.5], which describes a general method for

obtaining explicit values for c, it was shown that in the case where G = Sn with n even, the constant

c can be taken as 0.025 for n > 792000. This settled the question as to whether γ(G) grows linearly

in n, rather than growing more slowly as a constant times ϕ(n). Proof of the improved lower bound

in [7] relies on certain number theoretic results (see [5]), and the value of c obtained is unrealistically

small because of the many approximations needed first to obtain and next to apply those results.

Thus, despite the innovative methods used to achieve the definitive result that γ(Sn) and γ(An) grow

linearly with n, we still do not know, and we wish to know, optimum values for the constant c, both

for γ(Sn) and γ(An).

We know quite a lot (but not everything) about these parameters in the case where n is a prime

power, and we summarise these results in Remark 1.3(c).

Our interest in this paper is in the case where n has at least two distinct prime divisors, that is to

say, n is of the form

(1.1) n = pα1
1 · · · p

αr
r

where r ≥ 2, the pi are primes, αi ∈ N, and pi < pj for i < j. We make first two conjectures about

the normal covering numbers of Sn and An for such values of n. We believe that the value of γ(Sn),

for all such n, as well as the value of γ(An) when n is even, is strongly connected to the following

quantity:

(1.2) g(n) :=
n

2

(
1− 1

p1

)(
1− 1

p2

)
+ 2

where n, p1, p2 are as in (1.1). Note that g(n) is an integer since g(n) − 2 is equal to the number of

natural numbers less than n/2 and not divisible by either p1 or p2(see Proposition 2.4 iii)). In the

case where r = 2 in (1.1), a connection between γ(G) and g(n) emerged from results in [7], which are

summarised in Remark 1.3 (d). These results, and other evidence, motivate the following conjectures,

the first of which will also appear in the forthcoming edition of the Kourovka Notebook [10, Problem

18.23].

Conjecture 1. Let n be as in (1.1) with r ≥ 2 and n 6= p1p2. Then γ(Sn) = g(n).

Conjecture 2. Let n be as in (1.1) with n even, r ≥ 2, and n 6= 2p2 or 12. Then γ(An) = g(n).
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As we note in Remark 1.3 (d), if r = 2 then Conjecture 2 is true, and also Conjecture 1 is true for

odd n (but open for even n). Moreover, extensive computation performed with Magma [1] shows that

both conjectures hold for the first several hundred values of n.

That g(n) is a common upper bound for γ(Sn) and γ(An) for all n ∈ N, with r ≥ 2, is not difficult

to prove (see Proposition 3.1). The issue is to show that g(n) is also a lower bound. We provide in

Theorem 1.1 further evidence for the truth of Conjectures 1 and 2, for infinite families of integers n

with three distinct prime divisors (see also Corollary 5.4).

Theorem 1.1. (a) Let n = 15q, where q is an odd prime such that q ≡ 2 (mod 15) and q 6≡ 12

(mod 13). Then γ(Sn) = g(n) = 4q + 2.

(b) Let n = 6q, where q is a prime, q ≥ 11. Then γ(An) = g(n) = q + 2.

The role of the function g(n) in the study of normal coverings of finite groups seems to go beyond

the symmetric and alternating case: Britnell and Maróti in [3] have recently shown that, if n is as in

(1.1), with r ≥ 2, and q is a prime power, then for all linear groups G with SLn(q) ≤ G ≤ GLn(q), the

upper bound γ(G) ≤ g(n) holds, with equality for r = 2 and for other infinite families of n-dimensional

classical groups with r ≥ 3.

We make now several more remarks about Conjectures 1 and 2.

Remark 1.2. (a) Observe that 1
2

(
1− 1

p1

)(
1− 1

p2

)
≥
(
1− 1

2

) (
1− 1

3

)
= 1

6 . Thus, for all n ∈ N with

r ≥ 2 and n 6= p1p2, Conjecture 1 implies γ(Sn) ≥ n
6 + 2, and thus γ(Sn) ≥ cn with c = 1

6 , a value

much larger than the value 0.025 given in [7, Remark 6.5]. Moreover, if Conjecture 1 is true, then

c = 1
6 is the largest constant such that γ(Sn) ≥ cn for all n ∈ N. Namely Conjecture 1 would imply

that γ(Sn) = g(n) = n
6 + 2 for all multiples n of 6, greater than 6.

(b) The case n = 12 is a genuine exception in Conjecture 2 because γ(S12) = 4 = g(12), while

γ(A12) = 3 (see Lemma 6.1). We note that Lemma 6.1 corrects [6, Proposition 7.8(c)] which is

incorrect just in the case n = 12; this error is repeated in [6, Corollary 7.10] (which asserts that

γ(A12) = 4). We give therefore, in Table 1, a correct version of [6, Table 3].

n 3 4 5 6 7 8 9 10 11 12

γ(Sn) 2 2 2 2 3 3 4 3 5 4

γ(An) - 2 2 2 2 2 3 3 4 3

Table 1. Values of γ(Sn) and γ(An) for small n.

(c) Conjecture 2 does not address the case of G = An with n odd. For n an odd prime, we know

(see Remark 1.3 (c)) that the difference between γ(Sn) and γ(An) is unbounded. If this were the case

also for odd non-prime powers n, then these parameters could not be both equal to g(n). Although

our computer experiments indicate that γ(An) 6= g(n) for some odd integers n, we do not have a

sufficiently good understanding to predict the general behaviour of γ(An) for odd n.
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Our third conjecture relates to the form of a minimal basic set. We state it in Section 2.2 as Con-

jecture 3, since it uses notation introduced in that section. In particular we show, in Proposition 3.2,

that Conjecture 3 implies both Conjecture 1 for n odd, and Conjecture 2. Finally, in this introductory

section, we make a few general comments about the normal covering number.

Remark 1.3. (a) For the purpose of computing γ(G) we can always assume that the basic components

in δ are maximal subgroups of G.

(b) If γ(Sn) is realized by a basic set δ not involving An, then γ(An) ≤ γ(Sn), since in this case the

set of subgroups H ∩An, for H ∈ δ, forms a basic set for An. It is not known whether the inequality

γ(An) ≤ γ(Sn) holds for all n, and this remains an open question.

(c) Suppose that n = pa for a prime p and a positive integer a. For a = 1 we know that, for p odd,

γ(Sp) = p−1
2 (see [6, Proposition 7.1]) while γ(Ap) lies between dp−1

4 e and bp+3
3 c (see [6, Remark 7.2]).

In particular we have γ(Sp)− γ(Ap) ≥ p−9
6 .

Now consider a ≥ 2. Then γ(Sn) = n
2 (1 − 1

p) + 1 if p is odd, and if p = 2 then γ(Sn) lies between
n+8
12 and n+4

4 (see [6, Proposition 7.5]). For alternating groups we have γ(An) = n+4
4 if p = 2 and

n 6= 8 and when p is odd we only know that γ(An) lies between n
4 (1− 1

p) and n
2 (1− 1

p) + 1.

(d) Suppose now that n is as in (1.1) with r = 2. If α1 + α2 = 2, that is to say, if n = p1p2, then

by [6, Proposition 7.6], γ(Sn) = g(n)− 1 if n is odd, while γ(An) = g(n)− 1 if n is even, with g(n) as

in (1.2). Moreover, if α1 + α2 ≥ 3, then it was shown in [6, Proposition 7.8] that γ(Sn) = g(n) if n is

odd, while γ(An) = g(n) if n is even. In particular, these results show that, when r = 2, Conjecture 2

is true, and also Conjecture 1 is true for odd n.

In the light of Remark 1.3(b)–(d) we pose the following problems.

Problem 1. Determine whether or not the inequality γ(An) ≤ γ(Sn) holds for all n ≥ 4. Moreover

is it true that for all even n, up to a finite number of exceptions, we have γ(An) = γ(Sn)?

Problem 2. Determine the values of γ(Sn) for n = 2a ≥ 16, and of γ(An) for all odd prime powers

n.

Problem 3. Determine the values of γ(Sn) for n = 2α1pα2
2 , and of γ(An) for odd integers n = pα1

1 pα2
2 ,

where α1, α2 ∈ N.

2. Notation and basic facts

2.1. Arithmetic. In the study of the normal coverings of symmetric and alternating groups we often

face some arithmetic questions. Thus it is natural to begin with a purely arithmetic section. For

a, b ∈ R, with a ≤ b, we use the usual notation (a, b), [a, b), (a, b], [a, b] to denote the intervals.

Throughout this section, for n ∈ N, assume the notation (1.1), with r ∈ N, that is write n =

pα1
1 · · · pαrr , with pi primes, αi ∈ N, and pi < pj for i < j. Note that we include here the possibility

that n is a prime power.
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Definition 2.1. For each subset K of R := {1, . . . , r}, define the following subsets of N :

PK := {x ∈ N : 1 ≤ x ≤ n, pk | x for all k ∈ K}

PK := {x ∈ N : 1 ≤ x ≤ n, pk - x for all k ∈ K}

and the rational numbers:

pK :=
∏
k∈K

1
pk
, pK :=

∏
k∈K

(
1− 1

pk

)
.

For I, J ⊆ R with I ∩ J = ∅, set

P JI := PI ∩ P J .

Note that PI = P∅
I and P J = P J∅ and, as usual, we consider a product over the empty set to be

equal to 1. From now on we use the notation introduced in Definition 2.1, without further reference.

For the purpose of this paper it is important to obtain the order of P JI ∩ [1, n/2), because that allows

us to give an interpretation of the quantity g(n) as well as to count, in many circumstances, various

sets of partitions or sets of intransitive maximal subgroups of Sn. We start by finding the cardinality

of P JI .

Lemma 2.2. Let n, a, b, c ∈ N, with n = abc and gcd(a, b) = 1. If d | a, then

|{x ∈ N : 1 ≤ x ≤ n, d | x, gcd(x, b) = 1}| = nϕ(b)
bd

.

In particular, for all I, J ⊆ R with I ∩ J = ∅, we have |P JI | = n pIp
J .

Proof. Let n, a, b, c, d ∈ N, with n = abc, gcd(a, b) = 1 and d | a. We set

X = {x ∈ N : 1 ≤ x ≤ n, d | x, gcd(x, b) = 1}

and

Y = {x ∈ N : there exists u ∈ N, u ≤ n/d with x = du, gcd(u, b) = 1}.

Since d | a and gcd(a, b) = 1, we have that gcd(d, b) = 1. It follows that X = Y. In particular |X| is

equal to the number of positive integers less than or equal to n/d = b
(
c
a

d

)
∈ N which are coprime to

b. But, given any k ∈ N, the number of positive integers coprime to b and contained in the interval

[1, bk], is given by kϕ(b). Thus |X| = c
a

d
ϕ(b) =

nϕ(b)
bd

.

Let now I, J ⊆ R with I ∩ J = ∅ and consider a =
∏
i∈I p

αi
i , d =

∏
i∈I pi, b =

∏
j∈J p

αj
j , c = n

ab .

Since I ∩ J = ∅, we have that gcd(a, b) = 1 and thus the above result applies giving

|P JI | =
nb
∏
j∈J(1− 1

pj
)

b
∏
i∈I pi

= n pIp
J .

�

Next we decide, for n even, when the integer n/2 lies in P JI .

Lemma 2.3. Let n ∈ N be even (that is, p1 = 2), and let I, J ⊆ R with I ∩ J = ∅.

i) Suppose α1 = 1. Then n/2 ∈ P JI if and only if I ⊆ {2, . . . , r} and either J = {1} or J = ∅.
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ii) Suppose α1 ≥ 2. Then n/2 ∈ P JI if and only if J = ∅.

Proof. i) Since α1 = 1 , we have that n/2 = pα2
2 · · · pαrr is odd. Suppose that n/2 ∈ P JI . Then 1 /∈ I

so I ⊆ {2, . . . , r}. Moreover, if j ∈ J then pj - n/2 = pα2
2 · · · pαrr and thus the only possibility is j = 1,

so that J ⊆ {1}. It follows that J = {1} or J = ∅. Conversely, it is clear that, if I ⊆ {2, . . . , r} and

either J = {1} or J = ∅, then n/2 ∈ P JI
ii) Since α1 ≥ 2, we have n/2 = 2α1−1 · · · pαrr even and divisible by the same prime factors as n.

Thus if n/2 ∈ P JI , we necessarily have J = ∅. Conversely if J = ∅, then n/2 ∈ P∅
I = PI holds for all

I ⊆ R. �

Proposition 2.4. Let n ∈ N and let I, J ⊆ R with I ∩ J = ∅.

i) If n is odd, then |P JI ∩ [1, n/2)| = bn2pIp
Jc.

ii) If n is even (that is, p1 = 2), then we have the following:

a) Suppose α1 = 1. If J = ∅ and I ⊆ {2, . . . , r}, then |P JI ∩ [1, n/2)| = n pIp
J

2 − 1, and

otherwise |P JI ∩ [1, n/2)| = bn2 pIp
Jc.

b) Suppose α1 ≥ 2. If J = ∅, then |P JI ∩ [1, n/2)| = n pIp
J

2 −1, and otherwise |P JI ∩ [1, n/2)| =
n
2 pIp

J .

iii) If r ≥ 2, and J = {j1, j2} ⊆ R with j1 6= j2, then

|P J ∩ [1, n/2)| = n

2

(
1− 1

pj1

)(
1− 1

pj2

)
= g(n)− 2.

In particular, for all n ∈ N with r ≥ 2, g(n) is a positive integer.

iv) If n > 2 then |PR ∩ [1, n/2)| = ϕ(n)
2 .

Proof. Let A = P JI ∩ (0, n/2) and B = P JI ∩ (n/2, n). Since, trivially, A = P JI ∩ [1, n/2), our aim is to

compute |A|. Consider the bijective map f : Z → Z given by f(x) = n − x, for all x ∈ Z. Note that,

since for all i ∈ R, we have pi | x if and only if pi | n − x, then f(A) = B. In particular |A| = |B|.
Moreover, we have

A ∪B ⊆ P JI ⊆ A ∪B ∪ {n/2, n}

and thus, by Lemma 2.2, observing that A ∩B = ∅,

npIp
J

2
− 1 ≤ |A| ≤ npIp

J

2
,

where the bounds are not necessarily integers.

To decide the exact value of |A| we must take in account when n, n/2 ∈ P JI . It is easy to see that

n ∈ P JI if and only if J = ∅. For the case of n/2 we invoke Lemma 2.3, and we distinguish several

cases.

Assume first that n is odd. If J = ∅, we have n ∈ P JI = PI while n/2 is not an integer. Hence

in this case 2|A| + 1 = |PI | = npI which implies that pI is odd and |A| = bnpIp
J

2 c, since pJ = 1.

If J 6= ∅, then n, n/2 /∈ P JI and thus 2|A| = |P JI | = npIp
J , which implies that pIpJ is even and

|A| = npIp
J

2 = bnpIp
J

2 c. In particular we have now proved part i), and we have also proved parts iii)

and iv) for n odd.
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Next assume that n is even but not divisible by 4. If J = ∅ and I ⊆ {2, . . . , r}, then both

n, n/2 ∈ P JI , so that 2|A|+ 2 = npIp
J and hence npIpJ is even and |A| = npIp

J

2 − 1. If J = {1}, then

n/2 ∈ P JI but n 6∈ P JI , and so 2|A| + 1 = npIp
J which implies that npIpJ is odd and |A| = bnpIp

J

2 c.
In the remaining cases either (1) J = ∅ and 1 ∈ I, or (2) J is neither ∅ nor {1}. In both of these

cases n/2 /∈ P JI ; in case (1) we have n ∈ P JI so that 2|A| + 1 = |P JI | and in case (2) we have n 6∈ P JI
so that 2|A| = |P JI |. Thus in both cases |A| = bnpIp

J

2 c and part ii)a) is proved as well as part iv) with

n ≡ 2 (mod 4): note that the condition n > 2 in iv) guarantees that npR

2 is an integer. The particular

situation with I = ∅ and |J | = 2 arises in case (2) and here we have |A| = npIp
J

2 , which proves part

iii) for n ≡ 2 (mod 4).

Finally assume that n is divisible by 4. If J = ∅, then both n, n/2 ∈ P JI and 2|A|+ 2 = npIp
J ; so

npIp
J is even and |A| = npIp

J

2 −1. If J 6= ∅, then neither n nor n/2 lies in P JI and hence 2|A| = npIp
J ,

so that npIpJ is even and |A| = npIp
J

2 . Thus part ii)b) is proved as well as parts iii) and iv) for n

divisible by 4. �

2.2. Maximal subgroups. Let G = Sn, An. As mentioned in Remark 1.3 (a), in order to determine

γ(G) we may assume that the basic components of a normal covering for G are maximal subgroups

of G. These subgroups may be intransitive, primitive or imprimitive. Each maximal subgroup of An
which is intransitive or imprimitive is obtained as M ∩An, where M is maximal in Sn and respectively

intransitive or imprimitive. Thus to give an overview of the maximal subgroups of G which are

intransitive or imprimitive, it is enough to describe them for G = Sn.

The set of maximal subgroups of Sn which are intransitive is given, up to conjugacy, by

(2.1) P := { Px = Sx × Sn−x : 1 ≤ x < n/2}.

If X ⊆ N ∩ [1, n/2) we use the notation

(2.2) PX := { Px ∈ P : x ∈ X}.

The set of imprimitive maximal subgroups of Sn is given, up to conjugacy, by

W := { Sb o Sm : 2 ≤ b ≤ n/2, b | n,m = n/b}.

Recall that, for n even, the intransitive subgroup Pn/2 = Sn/2 × Sn/2 is not maximal in Sn because it

is contained in the imprimitive subgroup Sn/2 o S2.

Intransitive subgroups play a major role in normal coverings of the symmetric and alternating

group and we conjecture that, apart from at most two components, each minimal basic set consists of

intransitive components. To be more precise we make the following conjecture.

Conjecture 3. Let n as in (1.1), with r ≥ 2. Then, for each minimal basic set δ of Sn consisting of

maximal subgroups, the subset of intransitive subgroups in δ is precisely

(2.3) Pmin(Sn) := {Px ∈ P : gcd(x, p1p2) = 1}.



64 Int. J. Group Theory 3 no. 2 (2014) 57-75 D. Bubboloni, C. E. Praeger and P. Spiga

If n is even then, for each minimal basic set δ of An consisting of maximal subgroups, the subset of

intransitive subgroups in δ is precisely

(2.4) Pmin(An) := {Px ∩An : Px ∈ Pmin(Sn)}.

Note that in Conjecture 3 we do not exclude n = p1p2. We will see in Proposition 3.1 that, when

r ≥ 2, also two imprimitive subgroups play a role in the normal coverings of Sn and An.

2.3. Partitions. Let n, k ∈ N, with k ≤ n. A k-partition of n is an unordered k-tuple T = [x1, . . . , xk],

with xi ∈ N for each i ∈ {1, . . . , k}, such that n =
∑k

i=1 xi. We sometimes simply refer to a k-partition

as a partition. The xi are called the terms of the k-partition. Let σ ∈ Sn and let X1, . . . , Xk, with

k ∈ N, be the orbits of 〈σ〉. Let xi = |Xi| ∈ N. Note that the fixed points of σ correspond to the xi = 1,

while the lengths of the cycles in which σ splits are given by the xi ≥ 2. Then
∑k

i=1 xi = n and we say

that T = [x1, . . . , xk] is the partition associated to σ or the type of σ. For instance if σ = (123) ∈ S4,

then X1 = {1, 2, 3}, X2 = {4} and the type of σ is [1, 3]. Since permutations in Sn are conjugate if

and only if they have the same type, we can identify the conjugacy classes of permutations of Sn with

the partitions of n (for more details see Section 1.1 in [7]). When a subgroup H of Sn contains a

permutation of type T we say that ‘T belongs to H’ and we write T ∈ H.
These concepts are crucial for our research: for a set δ of subgroups of Sn is a basic set if and only

if, for each partition T of n, there exists H ∈ δ such that T belongs to H.

In particular the following set of 2-partitions will be important for our work:

(2.5) T := {Tx = [x, n− x] : 1 ≤ x < n/2}.

Note that, when n is even, we exclude the partition [n/2, n/2]. The partitions in T correspond to

the simplest types of permutations in Sn apart from n-cycles, and allow us to identify most of the

intransitive components in a basic set. The counting problems arising are very easily managed by the

following remark.

Remark 2.5. The maps f : N ∩ [1, n/2) → T , f(x) = Tx and F : T → P, F (Tx) = Px, with P and

T as in (2.1) and (2.5), are bijections and, for each x, Px is the only subgroup in P which contains a

permutation of type Tx ∈ T . In particular |T | = |P| = bn−1
2 c, and for each X ⊆ N ∩ [1, n/2) we have

|PX| = |X|, with PX as in (2.2).

The subset of T given by

(2.6) A := {Tx ∈ T : x ∈ A},

where

(2.7) A := {x ∈ N : 1 ≤ x < n/2, gcd(x, n) = 1}

and the corresponding set of intransitive components PA play an important role in this paper. Note

that, by Proposition 2.4 iv) and Remark 2.5, we have

(2.8) |A| = |A| = |PA| =
ϕ(n)

2
.
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3. An upper bound

We produce a normal covering of Sn with a basic set of size g(n) involving only intransitive and

imprimitive subgroups, for any non-prime-power n (even or odd).

Proposition 3.1. Let n be as in (1.1) with r ≥ 2. Then γ(Sn) ≤ g(n) and γ(An) ≤ g(n).

Proof. We claim that the set

δ = {Px ∈ P : gcd(x, p1p2) = 1} ∪ {Sp1 o Sn/p1 , Sp2 o Sn/p2}

does not involve An and is a basic set for Sn of size g(n). The argument is somewhat inspired by the

proof of [6, Proposition 7.8]. Note that p1 ≥ 2 and p2 ≥ 3. Consider an arbitrary type T = [x1, . . . , xk]

of permutations in Sn, with each xi ∈ N, k ≥ 1, and
∑k

i=1 xi = n. If each xi is divisible by p1 then

T ∈ Sp1 o Sn/p1 in δ, and if each xi is divisible by p2 then T ∈ Sp2 o Sn/p2 in δ. In particular δ covers

the n-cycles. So we may assume that k ≥ 2 and that both K1 = {i ∈ {1, . . . , k} : p1 - xi} and

K2 = {i ∈ {1, . . . , k} : p2 - xi} are nonempty subsets of K = {1, . . . , k}.
If K1 ∩K2 6= ∅, then there exists i ∈ K such that p1, p2 - xi. In particular we have xi 6= n/2, as

otherwise p2, which divides n, would divide xi. Let x be the unique natural number in {xi, n − xi}
which is less than n/2. Note that, since p1, p2 | n, we have p1, p2 - x. Thus T ∈ Px with Px ∈ δ.

Assume next that K1 ∩K2 = ∅ : then for all i ∈ K we have that if p1 - xi then p2 | xi and that

if p2 - xi then p1 | xi. Let i ∈ K1 and j ∈ K2. Then we have i 6= j, and p1 - xi, p2 | xi, and also

p2 - xj , p1 | xj . This implies that p1 - xi + xj and p2 - xi + xj , and it follows that xi + xj 6= n, n/2.

Let x be the unique natural number in {xi + xj , n− (xi + xj)} which is less than n/2 : then p1, p2 - x
and so T ∈ Px with Px ∈ δ. Now, to get the result for An, use Remark 1.3b). �

We recall that for n = p1p2, the inequalities in Proposition 3.1 are strict since, by [6, Proposition

7.6], for n odd we have γ(Sp1p2) = g(p1p2) − 1 and for n even we have γ(Ap1p2) = g(p1p2) − 1. Note

that the basic set in the proof of Proposition 3.1 admits as intransitive components precisely those

belonging to the set {Px ∈ P : gcd(x, p1p2) = 1}, in line with Conjecture 3. We can also observe that

Conjecture 3 is stronger of both Conjecture 1 and Conjecture 2 and that it implies a characterization

of the minimal basic sets for Sn when n is odd, and for An when n is even. Recall the definitions of

Pmin(Sn) and Pmin(An) given in (2.3) and (2.4).

Proposition 3.2. Assume that Conjecture 3 holds. Let

Wi := {Spi o Sn/pi , Sn/pi o Spi}

for i = 1, 2. Then:

i) Conjecture 1 and Conjecture 2 hold.

ii) If n is odd, with r ≥ 2 and n 6= p1p2, then the only minimal basic sets of Sn consisting of

maximal subgroups are δ = Pmin(Sn) ∪ {Ip1 , Ip2}, where Ipi ∈ Wi, for i = 1, 2.

iii) If n is even, with r ≥ 2 and n 6= 2p2, then the only minimal basic sets of An consisting of

maximal subgroups are δ = Pmin(An) ∪ {Ip1 ∩An, Ip2 ∩An}, where Ipi ∈ Wi, for i = 1, 2.
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Proof. Let n ∈ N with r ≥ 2 and n 6= p1p2. Let δ be a minimal basic set for G consisting of maximal

subgroups. Since Conjecture 3 holds by assumption, the intransitive components in δ are precisely the

g(n)− 2 subgroups in Pmin(G). Moreover, by Proposition 3.1, we know that |δ| ≤ g(n). Consider the

types Ti = [pi, n− pi] for i = 1, 2. Observe that, by assumption, we have n > p1p2 and therefore also

pi < n− pi for i = 1, 2. Note that the types Ti belong to An if and only if n is even, and that they do

not belong to any subgroup in Pmin(G). Let first G = Sn, with n odd or G = An, with n even. Thus

there exists a transitive subgroup H1 maximal in G, with H1 ∈ δ and H1 containing T1. Note that

H1 6= An because G = Sn is considered only for n odd. Assume that H1 is primitive and examine the

list of the primitive subgroups of Sn containing a permutation of type [k, n − k] with k = pi < n/2,

in Theorem 3.3 of [11]. Since n is not a proper power, n 6= p1p2 and k is a prime, there is no such

primitive subgroup H1. It follows that H1 is imprimitive and the only possibility is H1 = Ip1 ∩G, for

some Ip1 ∈ W1. Since T2 = [p2, n − p2] does not belong to any subgroup in W1, the same argument

shows that δ contains also a component H2 = Ip2 ∩G, for some Ip2 ∈ W2. In particular γ(G) = g(n).

So we have proved ii) and iii) as well as i) except for Sn with n even. In this last case we consider

separately An /∈ δ and An ∈ δ. If An /∈ δ then, as above, we need two further components to cover T1

and T2, and we find γ(Sn) = g(n). If An ∈ δ we consider the type T = [2, 2, n− 4]: since T does not

belong to An or to any subgroup in Pmin(Sn), we conclude that δ has a further component containing

T and thus, again, γ(Sn) = g(n). �

In other words if Conjecture 3 is true, we have a complete description of those minimal normal

coverings consisting of maximal subgroups, both for Sn (n odd) and An (n even), with n not a prime

power or the product of two primes. In particular, in these cases, this rules out any role for primitive

subgroups in normal coverings.

4. Imprimitive subgroups containing permutations with at most four cycles of globally

coprime lengths

Let n ∈ N be composite, say n = bm where b ∈ N with 2 ≤ b ≤ n/2 and m = n/b. Let W =

Sb o Sm ∈ W, be a maximal imprimitive subgroup of Sn stabilising a block system B consisting of

m blocks of size b. Let σ ∈ Sn such that the partition T = [x1, . . . , xk] associated with σ satisfies

k ≤ 4 and gcd(x1, . . . , xk) = 1, that is to say, the xi are ‘globally coprime’. Note that, if k = 2, then

these partitions are the 2-partitions in the set A defined in (2.6). Let X1, . . . , Xk be the corresponding

〈σ〉-orbits, and let σi = σ|Xi for each i. In this section we describe how to check if W contains a

conjugate of σ, that is, a permutation of type T , echoing some ideas in the proof of [7, Lemma 4.2].

For i ∈ {1, . . . , k}, let Bi = {B ∈ B | B ∩Xi 6= ∅}. Observe that 〈σi〉 acts transitively on Bi and

that the action of σi on Bi is equivalent to the action of σ on Bi. It follows that di = |B ∩ Xi| is

independent of the choice of B ∈ Bi : in particular di | xi = |Xi| and, of course, 1 ≤ di ≤ b. Moreover,

since the orbits Xi form a partition of Ω = {1, . . . , n}, we also have Bi∩Bj = ∅ or Bi = Bj , for distinct

i, j ∈ {1, . . . , k}, and ∪ki=1Bi = B.
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In addition, the assumption gcd(x1, . . . , xk) = 1 leads to more restrictions on B. For example, we

cannot have Bi = B for some i ∈ {1, . . . , k}, since this would imply that B = Bi for all i and hence that

|B| = m divides gcd(x1, . . . , xk). Similarly we cannot have Bi∩Bj = ∅ for all distinct i, j ∈ {1, . . . , k},
since this would imply that |B| = b divides gcd(x1, . . . , xk).

4.1. The case k = 2. As a first consequence of the comments above, we obtain that there exists no

maximal imprimitive subgroup of Sn containing a permutation of type T = [x, n − x] ∈ A: for we

showed above that we must have either B1 ∩ B2 = ∅ or B1 = B2 = B, and the previous paragraph

argues that neither of these is possible.

4.2. The case k = 3. Let now k = 3, that is, T = [x1, x2, x3] with gcd(x1, x2, x3) = 1. From the

previous paragraphs, up to relabeling, we may assume that B1 = B2 and that B3 ∩ B1 = ∅. Thus

there is just one pattern to examine:

(4.1)
x1

x3

x2

Here X3 is a union of blocks while X1, X2 share the same set of blocks. In particular b = d3 = d1+d2

divides gcd(x3, n). The number of blocks in X3 is x3/b and the remaining m− x3/b blocks meet both

X1 and X2 so that n−x3
b | gcd(x1, x2).

The two conditions b | gcd(x3, n) and n−x3
b | gcd(x1, x2) are quite strong and can often be used to

prove that T does not belong to W . The following examples play a role in the proof of Theorem 1.1.

Example 4.1. No permutation of type Z = [3, q, 14q − 3] or X = [10, 4q, 11q − 10] belongs to an

imprimitive subgroup of S15q, for q ≥ 7 prime.

Proof. Clearly the terms in Z are pairwise coprime. In particular they are globally coprime. Due to

the relabeling we made in our argument above, we must examine the unique possible pattern (4.1) for

each of the three choices of x3 in {3, q, 14q − 3}. For each choice, we get 15q−x3

b | gcd(x1, x2) = 1 so

that b = 15q − x3 must divide n, which is not possible for any of the choices for x3.

Now consider the partition X. If x3 = 10, 4q, then b | gcd(x3, 15q) implies that b = 5, q, against

the fact that n−x3
b = 3q − 2, 11 does not divide gcd(x1, x2) = 1, 10, respectively. Hence x3 = 11q − 10

which implies that n−x3
b = 4q+10

b divides gcd(x1, x2) = 2; so b = 2q + 5 or 4q + 10, neither of which

divides n = 15q. �

4.3. The case k = 4. Let us explore finally k = 4, that is T = [x1, x2, x3, x4] with gcd(x1, . . . , x4) = 1.

From the previous paragraphs, up to relabeling, we may assume that B1 = B2 and that B3 ∩ B1 =

B3∩B2 = ∅. Thus there are three cases (a), (b), (c) to examine, each characterized by some additional

conditions and giving rise to a different pattern.
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(a) B3 ∩ B4 = ∅,B1 = B4.

(4.2)

x1

x3

x2

x4

Here X3 is a union of blocks while X1, X2, X4 share the same blocks. In particular b = d3 =

d1 + d2 + d4 | gcd(x3, n). The number of blocks in X3 is x3/b and the remaining m − x3/b

blocks meet each of X1, X2, X4 so that |B1| = n−x3
b | gcd(x1, x2, x4).

(b) B3 ∩ B4 = ∅,B4 ∩ B1 = ∅,B4 ∩ B2 = ∅.

(4.3)
x1

x3 x4

x2

Here X3, X4 are disjoint unions of blocks while X1, X2 share the same blocks. In particular

b = d3 = d4 = d1 + d2 | gcd(x3, x4, n). The number of blocks contained in X3 ∪ X4 is

given by (x3 + x4)/b and the remaining m− (x3 + x4)/b blocks meet both X1, X2. Therefore
n−x3−x4

b | gcd(x1, x2).

(c) B3 = B4,B4 ∩ B1 = ∅,B4 ∩ B2 = ∅.

(4.4)

x3 x1

x4

x2

Here X3, X4 share the same blocks and X1, X2 share the same remaining blocks. In particular

b = d3 + d4 = d1 + d2 | gcd(x3 + x4, n). The number of blocks contained in X3 ∪ X4 is

|B3| = x3+x4
b and divides gcd(x3, x4). Moreover n−x3−x4

b divides gcd(x1, x2), the quotient

giving the number of blocks contained in X1 ∪X2.

The arithmetic conditions deduced in these cases are also often sufficiently strong to prove that T

does not belong to W . Anyway, if necessary, we can strengthen these conditions excluding some

congruences. The two following examples play a role in the proof of Theorem 1.1.

Example 4.2. Let q ≥ 7 be a prime. Then:

i) no permutation of type U = [5, q − 5, 10q + 5, 4q − 5] belongs to an imprimitive subgroup of

S15q;

ii) if q ≥ 11 and q 6≡ 12 (mod 13), then no permutation of type

V = [q − 7, q + 7, 6q − 7, 7q + 7]

belongs to an imprimitive subgroup of S15q.
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Proof. To begin with note that for both U and V the greatest common divisor of their terms is 1 so

that these partitions are within the category we are exploring in this section. Let W = Sb o Sm, with

2 ≤ b ≤ n/2 a proper divisor of n and m = n/b. Thus b,m ∈ A = {3, 5, 15, q, 3q, 5q}.
i) Assume first that U belongs to W . We show that each of the three possible cases (a),(b),(c),

corresponding respectively to the patterns (4.2),(4.3),(4.4), leads to a contradiction.

Case (a). We must examine each of the possibilities for

x3 ∈ {5, q − 5, 10q + 5, 4q − 5}.

Recall that in this context we have b | gcd(x3, n) and 15q−x3

b | gcd(x1, x2, x4). For each choice of x3 we

have gcd(x1, x2, x4) = 1, and so the second condition implies that b = 15q − x3. However, by the first

condition b ≤ x3, and it follows that 2x3 ≥ 15q, whence x3 = 10q + 5. Thus b = 5q − 5, which does

not divide 15q.

Case (b). We must examine each possibility for (x3, x4) in

{(5, q − 5), (5, 4q − 5), (5, 10q + 5), (q − 5, 4q − 5), (q − 5, 10q + 5), (4q − 5, 10q + 5)}.

Recall that now we have b | gcd(x3, x4, 15q) and 15q−x3−x4

b | gcd(x1, x2).

The first condition implies that gcd(x3, x4) > 1 and is divisible by a prime p ∈ {3, 5, q}. This

implies that (x3, x4, p) = (5, 10q + 5, 5) or (q − 5, 4q − 5, 3), and in these cases we find that b = 5 or 3

respectively. The second condition then requires that q − 2 divides gcd(q − 5, 4q − 5) = gcd(q − 5, 3)

or 10(q+1)
3 divides gcd(5, 10q + 5) = 5, respectively, neither of which is possible.

Case (c). Due to the symmetric role played by B3,B4 with respect to B1,B2, we need to examine

only the possibilities for

(x3, x4) ∈ {(5, q − 5), (5, 4q − 5), (5, 10q + 5)}.

Recall that here we have b | gcd(x3 + x4, n) and the number of blocks contained in X3 ∪X4 divides

gcd(x3, x4); moreover n−x3−x4
b | gcd(x1, x2).

For the first two possibilities for (x3, x4), the condition b | gcd(x3 + x4, n) implies that b = q.

In the first case the second condition gives 14 | 4q − 5, which is impossible since 4q − 5 is odd. If

(x3, x4) = (5, 4q − 5), then gcd(5, 4q − 5) = 1, which implies that |B3| = 1 and so b = x3 + x4 = 4q,

a contradiction. Thus (x3, x4) = (5, 10q + 5), and we find that |B3| divides gcd(5, 10q + 5) = 5 and

cannot be 1, as otherwise b = x3 + x4 = 10(q + 1) /∈ A. Hence |B3| = 5 and b = 2(q + 1) /∈ A.

ii) The proof follows with a case-by-case argument similar to the proof of part i). The peculiarity

with respect to i) is in case (c) where, to conclude, we need the assumption q 6≡ 12 (mod 13). We

treat in detail this case, having in mind the corresponding pattern (4.4).

Case (c). Due to the symmetric role played by B3,B4 with respect to B1,B2, we need to examine

only the possibilities for

(x3, x4) ∈ {(q − 7, q + 7), (q − 7, 6q − 7), (q − 7, 7q + 7)}.
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Here we have b | gcd(x3 + x4, n) and n−x3−x4
b | gcd(x1, x2). In the first and third cases, the condition

b | gcd(x3 + x4, n) implies that b = q. The second condition then implies that 13 divides gcd(6q −
7, 7q + 7) = gcd(q + 1, 13), or that 7 divides gcd(q + 7, 6q − 7) = 1, respectively, neither of which

is possible, because of our assumption q 6≡ 12 (mod 13). Thus (x3, x4) = (q − 7, 6q − 7), and the

first condition implies that b | gcd(7q − 14, 15q) = gcd(q − 2, 15) and so b ∈ {3, 5, 15}. On the other

hand we have gcd(q − 7, 6q − 7) | 5 and thus |B3| ∈ {1, 5}; if |B3| = 1 then b = 7q /∈ A and thus

|B3| = 5, b = 7q−14
5 , which is incompatible with b ∈ {3, 5, 15}. �

5. Degrees which are products of three odd primes

In this section we deal with degrees of the form n = 15q, where q ≥ 7 is a prime, and prove Theorem

1.1 (a). We will also see that Conjecture 1 holds for an infinite family of these degrees. We begin this

section adapting to our purposes some deep classical and recent results about primitive permutation

groups. In particular, Theorem 3.3 in [11] plays an important role. It lists, for each degree n, which

types [x, n− x] ∈ T of permutations may belong to some primitive subgroup of Sn other than Sn and

An. We invoke that theorem several times to exclude the presence of primitive components in the

normal coverings.

Lemma 5.1. Let q ≥ 7 be a prime. Then no primitive proper subgroup of S15q contains a permutation

with type belonging to T .

Proof. We simply examine the lists in [11, Theorem 3.3] having in mind that n is odd and not a proper

power, and that no type in T can belong to A15q. It is easily checked that no case arises. �

Lemma 5.2. Let q ≥ 7 be a prime and let K be a primitive subgroup of S15q, with K � A15q. Then

the number of fixed points of each nontrivial permutation in K is less than 9q.

Proof. By [9, Corollary 1], since n = 15q is not a proper power, we find that the number of fixed

points of each permutation in K is less than or equal to 4
7(15q), and thus, in particular, is less than

9q. �

Lemma 5.3. ( [12, Theorem 13.8], [8, Theorem 4.11] ) A primitive group of degree n, which contains

a permutation of type [m, 1, . . . , 1] where 2 ≤ m ≤ n− 5, contains An.

Proof of Theorem 1.1 (a) Let n = 15q, with q an odd prime satisfying q ≡ 2 (mod 15) and q 6≡ 12

(mod 13), so that q ≥ 17. Let δ be a minimal basic set for Sn. We may assume that each component

in δ is a maximal subgroup of Sn. By Proposition 3.1, |δ| ≤ 4q + 2. We show that also |δ| ≥ 4q + 2.

We are interested in the set A defined in (2.6) and also in the following subsets of T , corresponding

to subsets of T := N ∩ [1, n/2) characterized by a suitable coprimality condition.

B = {Tx ∈ T : x ∈ B}, B = {x ∈ T : gcd(x, n) = 3},
C = {Tx ∈ T : x ∈ C}, C = {x ∈ T : gcd(x, n) = 5},
D = {Tx ∈ T : x ∈ D}, D = {x ∈ T : gcd(x, n) = q}.
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Their orders are immediate and coincide with that of the corresponding set of intransitive maximal

subgroups containing them. By equality (2.8), Proposition 2.4 i) and Remark 2.5 we have:

|A| = |A| = |PA| = 4(q − 1), |B| = |B| = |PB| = 2(q − 1),

|C| = |C| = |PC| = q − 1, |D| = |D| = |PD| = 4.

Note that since n is odd, no permutation of type belonging to T lies in An. Thus by Lemma 5.1,

no permutation having type in T belongs to a primitive subgroup in δ. In particular this holds for

all the types in A,B, C,D. By Section 4.1, it follows that the permutations having type in A belong

only to intransitive components and so δ ⊇ PA, which gives |δ| ≥ 4(q − 1). This means that we need

to force only 6 further components to finish the proof.

Consider now the permutations having type belonging to B. Since these do not belong to any of

the subgroups in PA, we need other components in δ to contain them and those components must

be intransitive or imprimitive. If both S3 o S5q /∈ δ and S5q o S3 /∈ δ, then we would need a further

2(q − 1) > 6 intransitive components and thus |δ| > 4q + 2, a contradiction. So one of S3 o S5q and

S5q o S3, belongs to δ. Let I3 denote this component of δ, and note that, since now |δ| ≥ 4q − 3, we

need to force only 5 further components.

As |C| = q − 1 > 6, looking to the permutations having type belonging to C, and observing that

they do not belong to any of the subgroups in PA or to I3, we see that δ must contain S5 o S3q or

S3q o S5. Let denote with I5 this additional subgroup in δ.

At this point we know that δ ⊇ PA ∪ {I3, I5} and we need to force just 4 components. If neither

Sq o S15 nor S15 o Sq, belongs to δ, to cover the permutations of type belonging to D we need exactly 4

additional intransitive components and the proof is complete. So we may assume that Iq ∈ δ, where

Iq is one of Sq o S15 or S15 o Sq.
Next suppose that A15q ∈ δ. We consider the type U = [5, q − 5, 10q + 5, 4q − 5]. By Example

4.2 no imprimitive subgroup contains a permutation of type U. Moreover U /∈ Px for all x ∈ A

because no term and no sum of two terms in the partition U is coprime to n = 15q: this follows

from the assumption q ≡ 2 (mod 15), which implies both q ≡ 2 (mod 3) and q ≡ 2 (mod 5) so that

3 | q − 5, 4q − 5, q + 7, 7q + 7 and 5 | q − 7, 6q − 7. Also U /∈ A15q. This means that we need a further

component, say K, to cover U , and K is either intransitive or primitive. We now have that δ contains

the subset

δ′ := {Px, I3, I5, Iq, A15q,K : x ∈ A}

of size 4q + 1. Suppose, for a contradiction, that δ = δ′, and let σ ∈ K have type U . Suppose first

that K is primitive: then µ = σ10q+5 6= id, because 3 | q − 5, due to q ≡ 2 (mod 3), but 3 - 10q + 5.

Moreover the number of fixed points of µ is at least 10q+ 10 > 9q, contradicting Lemma 5.2. Thus K

is intransitive. To be more precise

K ∈ PU := {P5, Pq, Pq−5, P4q−5, P5q−10, P4q, P5q−5}.
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Consider now the type V = [q − 7, q + 7, 6q − 7, 7q + 7]. By Example 4.2 no imprimitive subgroup

contains a permutation of type V and, arguing as for U , it is immediately checked that V /∈ Px for

all x ∈ A. On the other hand for each choice of K in PU , we see that V /∈ K. In other words it is not

possible to cover V by the components in δ. Thus if δ contains A15q, then |δ| = 4q + 2.

Finally suppose that A15q /∈ δ. We consider the types Z = [3, q, 14q − 3] and X = [10, 4q, 11q − 10].

Since each term and the sum of each pair of terms in Z,X is divisible by 3 or by 5 or by q, we have that

both Z and X do not belong to any intransitive component of PA. On the other hand, by Example

4.1 they do not belong to any imprimitive subgroup. Suppose that δ contains a primitive component

H < S15q containing either Z or X. If H contains an element η of type Z, then ηq(14q−3) ∈ H is a

3-cycle, which is impossible by Lemma 5.3, because H 6= A15q. Thus H contains an element θ of type

X; but then θ40q is a (11q − 10)-cycle and, since H 6= A15q, this is impossible again by Lemma 5.3.

Hence δ contains intransitive maximal subgroups containing X,Z. Now Z,X belong, respectively,

only to the intransitive subgroups in PZ and in PX , where

PZ := {P ∈ P : Z ∈ P} = {P3, Pq, Pq+3}

and

PX := {P ∈ P : X ∈ P} = {P10, P4q, P4q+10}.

Since PZ ∩ PX = ∅, we need two additional intransitive components K1,K2 in δ to cover both Z

and X, where K1 ∈ PZ ,K2 ∈ PX . We now have that δ contains the subset

δ′ := {Px, I3, I5, Iq,K1,K2 : x ∈ A}

of size 4q + 1. Assume, for a contradiction, that δ = δ′. To reach a final contradiction, consider again

the type U and recall that U /∈ P for all P ∈ PA ∪ {I3, I5, Iq}, and it is also immediately checked that

U /∈ P for all P ∈ PZ ∪ PX . �

We show now that there are infinitely many primes q satisfying the conditions of Theorem 1.1, thus

confirming Conjecture 1 for a new infinite family of odd integers.

Corollary 5.4. There exist infinitely many primes q such that γ(S15q) = 4q + 2 = g(15q).

Proof. It is enough to observe that, by the previous result, we have γ(S15q) = 4q + 2 for all q primes

with q ≡ 2 (mod 195), where 195 = 15 · 13. Since 2 and 195 are coprime, the famous Theorem of

Dirichlet on primes in arithmetic progressions assures that there are infinitely many primes of the

form q = 2 + 195 k, with k ∈ N. �

6. Even degrees

In this section we discuss Conjecture 2. First we justify the exclusion of n = 12.

Proposition 6.1. γ(A12) = 3, and γ(S12) = g(12) = 4.
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Proof. We see that δ = {M12, [S3 o S4] ∩ A12, [S5 × S7] ∩ A12} is a basic set for A12 by checking that

all the types of permutations in A12 are contained in one of the components. Since γ(A12) 6= 2, by [4,

Theorem 3.9] (see also [2, Theorem, Sec. 4]), we deduce that γ(A12) = 3.

For S12, it follows from [4, Theorem 4.2] (see also [2, Proposition 3.4]) that γ(S12) ≥ 3, and from

Proposition 3.1 that γ(S12) ≤ g(12) = 4. Suppose for a contradiction that δ is a basic set for S12

consisting of maximal subgroups and that |δ| = 3. The proof of [6, Corollary 7.10] correctly shows

that A12 6∈ δ, and then by [6, Lemma 5.2] we deduce that S5 × S7 ∈ δ. Moreover, inspection of the

lists in [11, Theorem 3.3], shows that no permutation of type [2, 10], [4, 8], or [3, 9] belongs to a proper

primitive subgroup of S12. Thus we conclude that neither of the other two subgroups H,K of δ is

primitive, and neither H nor K fixes a point. This implies that no subgroup in δ contains the type

[1, 11]. �

Now we prove Theorem 1.1 (b), giving extra confirmation for Conjecture 2.

Proof of Theorem 1.1 (b). Let n = 6q, with q ≥ 11 a prime. If U ≤ Sn, we write for simplicity,

U = U ∩ An. For each X ⊆ N ∩ [1, n/2), use the notation PX = {P : P ∈ PX}. Let δ be a minimal

basic set for An with maximal components. By Proposition 3.1 we know that |δ| ≤ q + 2. Our aim is

to show that |δ| ≥ q + 2.

To do that we first consider the set A′ = A \ {1} (see (2.7)) and the corresponding set of partitions

A′ = A\{[1, n−1]} and intransitive components PA′ = PA\{P 1}. Moreover, we consider the following

subsets of T , corresponding to subsets of T := N ∩ [1, n/2) characterized by a suitable coprimality

condition:
E = {Tx ∈ T : x ∈ E}, E = {x ∈ T : gcd(x, n) = 2},
F = {Tx ∈ T : x ∈ F}, F = {x ∈ T : gcd(x, n) = 3},
G = {Tx ∈ T : x ∈ G}, G = {x ∈ T : gcd(x, n) = q}.

It follows from Proposition 2.4 ii)a) and Remark 2.5 that:

|A′| = |PA′ | = q − 2, |E| = |E| = |PE| = q − 1,

|F| = |F| = |PF| = q−1
2 , |G| = |G| = |PG| = 2.

By [11, Theorem 3.3], when n = 6q with q prime, no permutation having type in T \{[1, n−1]} belongs

to a proper primitive subgroup. In particular this holds for all the types in A′, E ,F ,G. Moreover, by

Section 4.1, it follows immediately that the permutations in A′ cannot belong to an imprimitive

component and so δ ⊇ PA′ , which gives |δ| ≥ q − 2. This means that we need to force only 4 further

components to conclude. Consider permutations having type in E . Since these do not belong to

any subgroup in PA′ , we need additional components to contain them and those components must be

intransitive or imprimitive. If δ contains neither S2 o S3q nor S3q o S2, then we need q−1 > 4 additional

intransitive components and thus |δ| > q + 2, a contradiction. So one of S2 o S3q and S3q o S2, belongs

to δ. Denote this component by I2 and note that we then need to force 3 further components.

Similarly permutations having type in F do not belong to any of the subgroups in PA′ or to I2.

If δ contains neither S3 o S2q nor S2q o S3, then we need at least q−1
2 > 3 (since q ≥ 11) additional
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intransitive components to cover these permutations, which is a contradiction. Thus one of S3 o S2q or

S2q o S3, denoted I3, lies in δ, and we need to force just 2 more components.

Permutations of type in G do not belong to I2, I3, or any subgroup in PA′ . If δ contains neither

Sq o S6 nor S6 o Sq, then we need two additional intransitive components to cover these permutations

and the proof is complete. Thus we may assume that δ contains one of Sq o S15 or S15 o Sq, denoted Iq.

Finally, since no component in the subset PA′ ∪ {I2, I3, Iq} of δ contains the type [1, n− 1], it follows

that we need an additional component for it, and hence |δ| ≥ q + 2. �

6.1. The symmetric group. Our tools for the symmetric group Sn with n even seem too weak.

We have no general argument even to show that at least the intransitive subgroups of PA belong to

any minimal basic set of maximal subgroups for Sn, even though computational evidence with Magma

suggests that this is the case. In particular our computations gave no counterexamples to Conjecture

1. For n even, Conjectures 1 and 2 are linked: if Conjecture 2 is true, then either also Conjecture 1

is true, or An belongs to each minimal basic set of Sn. However, in our experience An does not play

a significant role in the minimal basic sets of Sn. As an example, a detailed argument of more than

a page is needed to confirm that γ(A30) = γ(S30) = g(30) = 7, and for space reasons we have not

included it here.
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