
www.theoryofgroups.ir

International Journal of Group Theory

ISSN (print): 2251-7650, ISSN (on-line): 2251-7669

Vol. 3 No. 3 (2014), pp. 13-23.

c© 2014 University of Isfahan

www.ui.ac.ir

THE COPRIME GRAPH OF A GROUP

X. MA∗, H. WEI AND L. YANG

Communicated by Mehri Akhavan-Malayeri

Abstract. The coprime graph ΓG with a finite group G as follows: Take G as the vertex set of

ΓG and join two distinct vertices u and v if (|u|, |v|) = 1. In the paper, we explore how the graph

theoretical properties of ΓG can effect on the group theoretical properties of G.

1. Introduction and results

Study of algebraic structures by graphs associated with them gives rise to many recent and in-

teresting results in the literature. This field is relatively new, and over the years different types of

graphs of a group were defined. For example, prime graph [6] and the non-commuting graph [1], and

of course Cayley graphs, which have a long history. For more graphs, see [2, 3, 4, 7]

Let G be a finite group. One can associate a graph to G in many different ways. Since the order

of an element is one of the most basic concepts of group theory, we associate a graph ΓG with G

(called the coprime graph of G) as follows: Take G as the vertices of ΓG and two distinct vertices x

and y are adjacent if and only if (|x|, |y|) = 1. For example, Fig. 1 is the coprime graph of Z6, and

Fig.2 is ΓS3 . It is easy to see that the coprime graph on G is simple.
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Fig. 1: ΓZ6 Fig. 2: ΓS3
∼= K1,2,3

In this paper, we consider simple graphs which are undirected, with no loops or multiple edges.

Let Γ be a graph, V (Γ) and E(Γ) denote the sets of vertices and edges of Γ, respectively. Γ is

respectively called empty and complete if V (Γ) is empty and every two distinct vertices in V (Γ) are

adjacent. A complete graph of order n is denoted by Kn. The degree of a vertex v in Γ, denoted by

degΓ(v), is the number of edges which are incident to v. A subset Ω of V (Γ) is called a clique if the

induced subgraph of Ω is complete. The order of the largest clique in Γ is its clique number, which

is denoted by ω(Γ). If u, v ∈ V (Γ), the d(u, v) denotes the length of the shortest path between u

and v. The largest distance between all pairs of V (Γ) is called the diameter of Γ and denoted by

diam(Γ). A set S of vertices of Γ is a dominating set of Γ if every vertex in V (Γ) \ S is adjacent to

some vertex in S, the cardinality of a minimum dominating set is called the domination number of Γ

and is denoted by γ(Γ). Γ is a bipartite graph means that V (Γ) can be partitioned into two subsets U

and W , called partite sets, such that every edge of Γ joins a vertex of U and a vertex of W . If every

vertex of U is adjacent to every vertex of W , Γ is called a complete bipartite graph, where U and W

are independent. A complete bipartite graph with |U | = s and |W | = t is denoted by Ks,t. Similarly,

we can define a complete k-partite graph. For more information about this concept of graph theory

the reader can refer to [5].

All groups considered are finite. The number of elements of G is called its order and is denoted

by |G|. The order of an element x of G is the smallest positive integer n such that xn = e. The

order of an element x is denoted by |x|. Now we introduce three commonly used theorems in group

theory. Lagrange’s theorem: If H is a subgroup of G, then the order of H divides the order of G. In

particular, the order of x divides the order of G for every element x of G. Sylow’s theorem: For any

prime factor p with multiplicity n of the order of G, there exists a Sylow p-subgroup of G, of order

pn. Cauchy’s theorem: If p is a prime number dividing the order of G, then G contains an element

of order p. These theorems are frequently used in the following sections. For more notations and

terminologies in group theory, please refer to [8].

The outline of this paper is as follows. In Section 2, we give some properties of coprime graph on

diameter, planarity, partition, clique number, etc. We also characterize some groups whose coprime

graphs are complete, planar, a star, or regular and so on. In Section 3 we classify the groups whose

coprime graphs have end-vertices. In Section 4, we give some results on automorphism groups of

coprime graphs. Particularly, we obtain that Aut(G) = Aut(ΓG) if and only if G is isomorphic to Z3
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or the Klein group Z2 × Z2. In Section 5, we prove some general graph theoretical properties which

hold for the coprime graphs of the dihedral groups, such as degree, traversability, planarity etc.

2. Some properties of coprime graph

Proposition 2.1. Let G be any group. Then diam(ΓG) ≤ 2. In particularly, ΓG is connected and

the girth of ΓG equals 3 or ∞.

Proof. Let u and v be two distinct vertices of ΓG. If (|u|, |v|) = 1, then u is adjacent to v, and

hence d(u, v) = 1. Consequently, we may assume that u and v are non-identity elements of G and

(|u|, |v|) 6= 1. Note that (|u|, |e|) = 1 and (|v|, |e|) = 1, then the vertex e is adjacent to both u and

v and we obtain d(u, v) = 2. This means that ΓG is connected and diam(ΓG) ≤ 2. If there exist

x 6= e, y 6= e ∈ G such that x and y are joined by some edge, then {x, y, e} is a cycle of order 3 of ΓG
and so the girth of ΓG is 3. Otherwise every two vertices(non-identity) of ΓG are not adjacent, that

is, ΓG is a tree, which implies that the girth of ΓG is equal to ∞ �

Proposition 2.2. Let G be a group with order greater than 2. Then {e} is a unique dominating set

of size 1 of ΓG. In particular, γ(ΓG) = 1 and degΓG
(e) = |G| − 1.

Proof. By the definition of the coprime graph, it is easy to see that {e} is a dominating set of ΓG.

Now we prove uniqueness. If {x} is also a dominating set of ΓG, where x 6= e. Then x is adjacent to

every element of G. Let |x| = m, then we claim that x belongs to the center Z(G) of G. If not, then

there exists an element g ∈ G such that g−1xg and x are conjugate and g−1xg 6= x. It follows that

|g−1xg| = |x|. Hence, in this case, g−1xg and x are non-adjacent, a contradiction and the proof of

the claim is finished. Let y be an element such that y 6= 1 and y 6= x. Note that yx = xy, then xy

is an element of G and |xy| = |x||y|. It mans that (|xy|, |x|) = |x|. Consequently, x and xy are not

adjacent, this is a contradiction as {x} is also a dominating set. The proof of the proposition is now

complete. �

Proposition 2.3. Let G be a group. Then diam(ΓG) = 1 if and only if G is isomorphic to cyclic

group Z2 with order 2.

Proof. Suppose that diam(ΓG) = 1. If |G| ≥ 3, then there exist at least two non-identity elements x

and y of G such that x and y are adjacent. Thus (|x|, |y|) = 1. Note that |x| 6= 1 and |y| 6= 1, this

follows that either |x| > 2 or |y| > 2. If |x| = n > 2, then we have 〈x〉 is a cyclic subgroup of order

n of G. It is obvious that ϕ(n) ≥ 2 for n > 2, where ϕ(n) is Euler’s totient function on n. It means

that ϕ(n) ≥ 2 contains at least two elements u and v with order n. Thereby u is not adjacent to v

since their orders are equal. That is say ΓG is not complete, this is a contradiction. Similarly the

case |y| > 2 also gives a contradiction. Consequently |G| ≤ 2, that is, ΓG is isomorphic to the cyclic

group of order 2.

The converse is clear. �
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Corollary 2.4. Let G be a group. Then ΓG is regular if and only if G is isomorphic to Z2.

Corollary 2.5. Let G be a group with order greater than 2. Then ΓG is not complete.

Proposition 2.6. Let G be a group. Then ΓG ∼= K1,|G|−1 if and only if G is a p-group for some

prime integer p.

Proof. Assume that ΓG ∼= K1,|G|−1. By the definite of coprime graph, it is easy to see that V (ΓG)

can be partitioned into two independent subsets {e} and V (ΓG) \ {e}. If G is not a p-group for some

prime integer p, then |G| contains at least two prime divisors p1 and p2. By Cauchy’s Theorem, G

exists two elements x and y such that their orders are p1 and p2 respectively. This follows that x

and y are adjacent, note that |x| 6= 1 and y 6= 1, a contradiction.

For the converse, let G is a p−group for some prime integer p. Since the order of every non-identity

element of G equals a power of p, every two non-identity elements are not adjacent. Notice that every

non-identity element and e of G are joined by an edge. Thus ΓG ∼= K1,|G|−1. �

Proposition 2.7. Let G be a group. Then, G is not a p-group if and only if ΓG is not bipartite.

Proof. If G is not a p-group, then we can know there exist at least two non-identity elements x, y

such that (|x|, |y|) = 1. Then x is adjacent to y. Assume that ΓG is bipartite and U and V are

classes of this partition. Since degΓG
(e) = |V (ΓG)| − 1, we have {e} = U or {e} = V . If {e} = U ,

then x, y ∈ V . However, x and y are joined by an edge, this is a contradiction. A similar argument

with {e} = V also shows a contradiction. Thus ΓG is not bipartite.

Note that ΓG is a star for a p-group G and star is bipartite, then the converse is true. Now the

proof is complete. �

Proposition 2.8. Let p and q be two distinct prime numbers and G be a non-cyclic group with order

pq. Then ΓG is a complete 3-partite graph.

Proof. Assume that G is non-cyclic and |G| = pq. Then, by Lagrange’s theorem and Sylow’s theorem,

it is easy to see that the order of every element of G is a divisor of pq and there exists at least an

element such that its order equals 1, p or q. Let U = {x ∈ G
∣∣|x| = p} and V = {x ∈ G

∣∣|x| = q}.
Clearly, every element in U is adjacent to every element in V . Note that U and V are independent

sets. Thus U , V and {e} are partite sets of ΓG, and hence ΓG is a complete 3-partite graph. �

Proposition 2.9. Let G be a group and π(G) the set of prime divisors of |G|. Then ω(ΓG) =

|π(G)|+ 1.

Proof. Assume that |π(G)| = n and |G| = pr11 p
r2
2 · · · prnn , where p1, p2, . . . , pn are distinct prime

integers and ri ≥ 1 for all i ∈ {1, 2, . . . , n}. By Cauchy’s theorem, G contains an element of order

pi for every i. Let gi be the element of order pi. Clearly, the subgraph of ΓG induced by the set

{e, g1, g2, . . . , gn} is complete. That is, ω(ΓG) ≥ |π(G)| + 1. For any element g(6= e) in G, by

Lagrange’s theorem, we have that |g| | |G|. Thus there exists at least a prime integer pi such that
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(|g|, |pi|) = pi. It follows that the subgraph of ΓG induced by the set {e, g1, g2, . . . , gn, g} is not

complete. Namely, the subgraph induced by {e, g1, g2, . . . , gn, g} is not a clique of ΓG. Consequently,

it is easy to see that ω(ΓG) = |π(G)|+ 1. �

Proposition 2.10. Let G be a group. If G is planar, then G is a p-group, or |G| = 2tpk and G

contains the only element of order 2, where p is an odd prime, t and k are two non-negative integers.

Proof. Suppose that ΓG is planar. Since the complete graph of order 5 is non-planar, we have

ω(ΓG) ≤ 4. That is, |π(G)| ≤ 3(see Proposition 2.9). If |π(G)| = 3, then by Cauchy’s theorem, we

can see that there exist at least three distinct elements x, y and z such that |x| = q1 ≥ 2, |y| = q2 ≥ 3

and |z| = q3 ≥ 5, where q1, q2 and q3 are distinct prime integers. Thereby, G has at least 1, 2 and

4 elements of order q1, q2 and q3, respectively. Note that the identity e, then ΓG has a subgraph Γ

which is isomorphic to K1,1,2,4. Clearly, |V (Γ)| = 8 and |E(Γ)| = 21. Since |E(Γ)| > 3|V (Γ)| − 6, it

means that K1,1,2,4 is non-planar by Theorem 9.2 of [5], a contradiction. If |π(G)| = 2 and 2 /∈ π(G),

then, similarly, we can know that ΓG has a subgraph which is isomorphic to K1,2,4. It is easy to

prove that K1,2,4 is not planar, this is also a contradiction. Now we assume that |π(G)| = 2 and

2 ∈ π(G). If the number of elements of order 2 of G is greater than 1, then G contains at least 3

elements of order 2 since |G| is even. A similar argument shows that ΓG has a non-planar subgraph

which is isomorphic to K1,2,3. Thus, the element of G of order 2 is unique. Finally, if |π(G)| = 1,

then G is a p−group. Namely ΓG is planar. �

Proposition 2.11. Let G be a group. If G is cyclic with order 2p for some odd prime p, then ΓG is

planar.

Proof. For some odd prime number p, if G is cyclic and |G| = 2p, then the number of elements of

order 2p of G is p − 1. By Lagrange’s theorem, these elements of order 2p are only adjacent to e.

Clearly, G contains p− 1 elements of order p− 1 and an elements of order 2. Thus, it is easy to see

that the coprime graph of G is planar. �

Remark 2.12. Let G = S3. Since the number of elements of G of order 2 is 3, ΓG is not planar.

Let G = Z4 × Z3 × Z3. Clearly, G has a unique element of order 2, and it is easy to see that ΓG is

planar.

Proposition 2.13. Let G1 and G2 be two groups. If G1
∼= G2, then ΓG1

∼= ΓG2.

Proof. Let φ be an isomorphism from G1 to G2. Obviously, φ is a one-to-one correspondence between

ΓG1 and ΓG2 . Let x and y be two vertices of ΓG1 . Since |g| = |gφ| for all g ∈ G1, we can see that

xy ∈ E(ΓG1) if and only if xφyφ ∈ E(ΓG2). Thus, φ is a graph automorphism from ΓG1 to ΓG2 .

Namely ΓG1
∼= ΓG2 . �

Remark 2.14. The converse of Proposition 2.13 is not true in general. Let G1 = D8 and let

G2 = Z8. We see that G1 and G2 are 2-groups. Clearly ΓG1
∼= ΓG2, but G1 � G2.



18 Int. J. Group Theory 3 no. 3 (2014) 13-23 X. Ma, H. Wei and L. Yang

3. Groups whose coprime graphs have end-vertices

Theorem 3.1. Let G be a group of order pr11 p
r2
2 · · · prnn , where pi is a prime for every i ∈ {1, 2, . . . , n}

and ri is a non-negative integer for every i ∈ {1, 2, . . . , n}. Then ΓG has no end-vertex if and only if

G has no elements of order pk11 p
k2
2 · · · pkn

n , where 1 ≤ ki ≤ ri.

Proof. It is straightforward. �

Theorem 3.2. Let G be a group. Then G contains precisely a non-identity element x which is an

end-vertex in ΓG if and only if G is isomorphic to Z2.

Proof. Suppose that x is a unique end-vertex in ΓG, where x ∈ G and x 6= e. If the order of G equals

2, then G ∼= Z2. Thus we may assume that |G| > 2. Now we consider two cases:

Case 1. The order of x is 2. Since x is a unique end-point, there exist y, z ∈ V (ΓG) such that

yz is an edge of ΓG and y, z ∈ G \ {e}. Clearly, y and z are not adjacent to x. It is easy to see

that (|x|, |y|) 6= 1 and (|x|, |z|) 6= 1. Thus we have 2 | |y| and 2 | |z|. That is, (|x|, |y|) 6= 1, this is a

contradiction since x and y are adjacent.

Case 2. Assume that the order of x is greater than 2. Notice that 〈x〉 is a cyclic subgroup of order

greater that 2 of G. Thereby there exists at least an element w in G such that |x| = |w|. Since the

end-point is unique in ΓG, there is an element u(6= e) such that u is adjacent to w. Furthermore,

(|u|, |w|) 6= 1, namely (|u|, |w|) 6= 1. It follows that u is also adjacent to w, a contradiction.

Thus G is only isomorphic to Z2. On the other hand, the converse is obvious and the proof is

complete. �

Proposition 3.3. Let G be a group of order n, where n ≥ 3. If G is cyclic, then ΓG contains some

end-vertex. Particularly, the number of end-vertices of ΓG is greater than or equal to ϕ(n).

Proof. Since G is cyclic, there exists at least an element x of G such that |x| = n. By Lagrange’s

theorem, it is easy to see that |x| is divided exactly by |g| for all g ∈ G, that is, (|x|, |g|) = |g|. It

follows that x and g are adjacent if and only if g is identity element of G. Namely, x is a end-vertex

of ΓG. It is well known that the number of the generators of cyclic group G is ϕ(n). Thus, the

number of end-vertices of ΓG is greater than or equal to ϕ(n). �

Remark 3.4. Let G ∼= Z12. Then the number of end-vertices of ΓZ12 is greater than ϕ(12) as these

elements of order 6 of Z12 are also the end-vertices of ΓZ12. But, if G ∼= Z6, then the number of

end-vertices of ΓZ6 is equal to ϕ(6). In general, the converse of Proposition 3.3 is false. Such as the

Klein 4-group K2×K2 or the dihedral group D8, they are non-cyclic. However, ΓZ2×Z2 and ΓD8 have

3 end-vertices and 7 end-vertices, respectively. More specifically that every p−group of non-cyclic is

a counter-example.

Theorem 3.5. Let G be a group with order greater than 2. Then ΓG contains precisely two end-

vertices if and only if G is isomorphic to Z3 or Z6, or a non-cyclic group G satisfying the following

conditions:



Int. J. Group Theory 3 no. 3 (2014) 13–23 X. Ma, H. Wei and L. Yang 19

(1) π(G) = {2, 3};
(2) G contains two elements x and y, such that |x| = |y| = 6 and y = x−1;

(3) |g| < 6 for every g ∈ G, where g 6= x, y.

Proof. Assume that ΓG contains only two end-vertices x and y. It is obvious that x and y are

all non-identity element. Now we claim the following conclusions and prove the necessity of the

proposition.

Step 1. |x| = |y|.
Assume, to the contrary, that this is not the case. Then we have (|x|, |y|) ≥ 2 and hence there is

at least an element of {x, y} such that its order is greater than 3. Without loss of generality, we may

suppose that |x| ≥ 4. Therefore, there exists an element a(6= x) of 〈x〉 such that |a| = |x|. If a 6= y,

then, for some g ∈ G, g is adjacent to a in ΓG. It follows that (|g|, |a|) = 1. Hence (|g|, |x|) = 1,

and so g and x are adjacent in ΓG, a contradiction. Thus we have a = y. This means that |x| = |y|,
again, a contradiction.

Step 2. y = x−1 and |x| ≥ 3.

If y 6= x−1, then we have |x| = |y| = 2. Otherwise, x−1 is an end-point of ΓG since |x−1| = |x|, it

contradicts with the hypothesis. Since x and y are end-vertices of ΓG, the order of G is a power of 2.

Thus we may suppose that |G| = 2k for some positive integer k. That is, ΓG is a star by Proposition

2.6. Consequently, 2k − 1 = 2, namely 2k = 3, this is impossible.

Step 3. |x| = |y| = 3, 4 or 6.

Let |x| = n. If ϕ(n) 6= 2, then ϕ(n) ≥ 3. Thus, there exist at least 3 distinct elements of order

n. A similar argument above means that that is impossible. It follows that ϕ(n) = 2. Thereby,

|x| = |y| = n = 3, 4 or 6.

Step 4. Finishing the proof.

If |x| = |y| = 3, then we have G is a 3−group. Let |G| = 3k for some positive integer k. Then we

have 3k − 1 = 2. That is, |G| = 3. Thus G is isomorphic to Z3. If |x| = |y| = 4, then G is a 2−group

and |G| ≥ 4. By Proposition 2.6, the number of end-vertices of ΓG is greater than 3, a contradiction.

Finally, we assume that |x| = |y| = 6. Obviously, π(G) = {2, 3}. If G is cyclic, then G is isomorphic

to Z6 by Proposition 3.3. If not, then |g| < 6 for every g ∈ G, where g 6= x, y.

On the other hand, the sufficiency of the proposition is clear. �

Remark 3.6. Let G = D12, the dihedral group with order 12. Clearly, G is not cyclic. It is easy

to see that G satisfies three conditions of Theorem 3.5. Thus ΓG contains precisely two end-vertices,

moreover, their orders equal 6 in G.

We end this section with the following question.

Question 3.7. Is it possible to characterize all finite groups G whose coprime graph contains precisely

three end-vertices?
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4. The automorphism groups of coprime graphs

Proposition 4.1. Let G be a group. If G is a p-group for some prime integer p, then Aut(ΓG) is

isomorphic to the symmetric group S|G|−1.

Proof. It follows from Proposition 2.6. �

Theorem 4.2. Let G be a group. Then Aut(ΓG) = Aut(G) if and only if G is isomorphic to Z3 or

the Klein group Z2 × Z2.

Proof. Suppose that Aut(ΓG) = Aut(G) for group G. If |G| ≤ 3, then G ∼= Z2 or G ∼= Z3. It is well

known that Aut(Z2) ∼= {e} and Aut(Z3) ∼= Z2. However, Aut(ΓZ2) ∼= Aut(ΓZ3) ∼= S2. Thereby, by

checking, we have G is isomorphic to Z3. Now we shall claim the following conclusions and prove

that G is isomorphic to the Klein group Z2 × Z2 if |G| ≥ 4.

Step 1. G is abelian.

Let ψ be a mapping from ΓG to itself. We define uψ = u−1 for all u in V (ΓG). Clearly, ψ is a

bijection and (|x|, |y|) = 1 if and only if (|x−1|, |y−1|) = 1 for all x, y ∈ G. That is, xy is an edge of

ΓG if and only if xψyψ is an edge of ΓG. Thus ψ ∈ Aut(ΓG). By the hypothesis, ψ ∈ Aut(G). So

(xy)ψ = xψyψ = (xy)−1 = y−1x−1 = x−1y−1, namely, xy = yx and hence G is a abelian group.

Step 2. G is an abelian p-group for some prime integer p.

Let x(6= e) be an element of G. If there exists another an element y(6= e) of G such that (|x|, |y|) =

1, then xy 6= x and xy 6= y. By Step 1, we know that |xy| = |x||y| > 2. Let φ be an one-to-one

mapping from ΓG to itself, where (xy)φ = (xy)−1, ((xy)−1)φ = xy, and uφ = u for all u of V (ΓG)

such that u 6= xy and u 6= (xy)−1. It is easy to see that φ ∈ Aut(ΓG). Hence φ ∈ Aut(G), that

is, (xy)φ = xφyφ = xy = (xy)−1. It means |xy| = 2, a contradiction. It follows that every two

non-identity elements of ΓG are non-adjacent. Consequently, ΓG is a star. In the light of Proposition

2.6, we can see that G is an abelian p−group for some prime integer p.

Step 3. G is non-cyclic.

If G is a cyclic group, then we can know that Aut(G) is abelian. By Step 2, G is a p−group.

It indicates that Aut(ΓG) is isomorphic to S|G|−1 by Proposition 4.1. But S|G|−1 is non-abelian for

|G| ≥ 4, a contradiction.

Step 4. G is an abelian p-group, where p is even.

By Step 2, G is an abelian p-group for some prime integer p. If p is odd, then there exists an

element x in G such that |x| > 2. Note that G has at least two subgroups of order p as G is non-

cyclic(see Step 3). Then we can take e 6= y ∈ G such that y /∈ 〈x〉 and |y|||x|. Then there is a

graph automorphism ξ of ΓG fixing x and y, and ξ puts xy mapping into its inverse. Since ξ is also

an automorphism of group G, the inverse of xy is equal to itself. Since (xy)|x| = y|x| = e, we have

|xy| | |x|. Now that |x| is odd, |xy| > 2, a contradiction.

Step 5. G is an elementary abelian 2-group.
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If not, then there exists x ∈ G such that |x| > 2. By the proof above, we can see that G is an

abelian p-group, and p is even. Therefore, we can take e 6= y ∈ G such that |y| = 2. Note that

(xy)|y| = x|y|, it implies |xy| = |x| > 2. This is a contradiction since there is a graph automorphism

fixing x and y and putting xy mapping into its inverse. It means exp(G) = 2, that is, G is an

elementary abelian 2-group.

Step 6. Finishing the proof.

Let |G| = 2n. By Step 5, ΓG is a star K1,2n−1. Then Aut(ΓG) is the symmetric group S2n−1.

While Aut(G) is the general linear group GL(n, 2). It is obvious that they are equal if and only if

n = 2. That is, G is isomorphic to the Klein group Z2 × Z2.

By checking, the converse of the proposition is obvious. �

Theorem 4.3. Let G be a cyclic group. Then Aut(ΓG) is an elementary abelian 2-group if and only

if G is isomorphic to one of the groups Z2, Z3 or Z6.

Proof. Clearly, Aut(ΓZ2) ∼= S2, Aut(ΓZ3) ∼= S2 and Aut(ΓZ6) ∼= Z2 × Z2. Thus Aut(ΓG) is an

elementary abelian 2−group for G ∼= Z2, Z3 or Z6. For the converse, we assume that Aut(ΓG) is an

elementary abelian 2−group, where G is a cyclic group. Obviously, we can see that every element of

Aut(ΓG) is self-inverse and ΓG contains at least an end-vertex. Let the number of end-vertices of ΓG
be n. If n ≥ 3, then it is easy to see that a subgroup of Aut(ΓG) is isomorphic to S3, a contradiction.

Hence n ≤ 2. By Theorem 3.2 and Theorem 3.5, we have G is isomorphic to one of the groups Z2,

Z3 or Z6, as desired. �

Remark 4.4. If Aut(ΓG) is an elementary abelian 2-group for a group G, then we claim that ΓG
is highly symmetric as the order of every element of Aut(ΓG) equals 2. Theorem 4.3 determines all

cyclic groups whose coprime graphs is highly symmetric.

For a group G, an interesting question is what Aut(ΓG) is isomorphic to G. For instance, if G = S3,

then we have Aut(ΓG) ∼= G. We close this section by the following question.

Question 4.5. Is it possible to characterize all finite groups G having the property that Aut(ΓG) ∼= G?

5. The coprime graphs of the dihedral groups

For n ≥ 3, the dihedral group D2n = 〈r, s : s2 = rn = 1, s−1rs = r−1〉. As a list,

D2n = {r1, r2, . . . , rn = e, sr1, sr2, . . . , srn}.

Theorem 5.1. Let ΓD2n be the coprime graph of D2n and let n be odd. Then

(1) degΓD2n
(sri) = n for any 1 ≤ i ≤ n;

(2) degΓD2n
(ri) ≥ n for any 1 ≤ i ≤ n;

(3) ΓD2n is not Eulerian;

(4) ΓD2n is Hamiltonian;

(5) ΓD2n is not planar.
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Proof. (1) Clearly, the order of sri equals 2 for any 1 ≤ i ≤ n by the definition of D2n. Since n is

odd, we can see that the order of rj is odd for any 1 ≤ j ≤ n. Hence we have that (|sri|, |rj |) = 1,

that is, sri and rj are connected by an edge. Note that {sr1, sr2, . . . , srn} is an independence set of

ΓD2n . Thus degΓD2n
(sri) = n, as required.

(2) It follows from (1).

(3) Since degΓD2n
(s) is an odd integer by (1), we can see that ΓD2n is not Eulerian(see [5], Theorem

6.1, p.137).

(4) In view of (1) and (2), we have that degΓD2n
(x) ≥ 2n

2 for every x ∈ V (ΓD2n). In the light of

Corollary 6.7 of [5] on page 148, ΓD2n is Hamiltonian.

(5) If n = 3, then ΓD6
∼= K1,2,3. It is easy to prove that ΓD6 is not planar. Now we assume that

n > 3. Since {s, sr, sr2} and {r, r2, r3} are independent and every vertex in {s, sr, sr2} is adjacent

to every vertex in {r, r2, r3}, ΓD2n contains a subgraph which is isomorphic to K3,3. It is well known

that K3,3 is non-planar. Thereby ΓD2n is not planar. �

Corollary 5.2. Let n be an odd prime. Then ΓD2n
∼= K1,n−1,n.

Theorem 5.3. Let n = 2kpr11 p
r2
2 · · · prmm , where pi is prime integer for any 1 ≤ i ≤ m, ri is non-

negative integer for any 1 ≤ i ≤ m and k is a positine integer. Then

(1) The number of end-vertices of ΓD2n is
∑

d|n ϕ(d), where 2p1p2 · · · pm is a divisor of d. In

particular, ΓD2n contains an end-vertices;

(2) ΓD2n is not Eulerian;

(3) ΓD2n is not Hamiltonian;

(4) ΓD2n is not planar.

Proof. (1) Note that n is even and 〈r〉 is cyclic group of order n. Then e is only one vertex which is

adjacent to every element of order d, where 2p1p2 · · · pm | d. Clearly, the number of the elements of

d is
∑

d|n ϕ(d), as required.

(2) It follows from (3) of Theorem 5.1.

(3) By (1), we can see that ΓD2n contains an end-vertices. Hence ΓD2n has a cut-vertex(In fact e

is a cut-vertex of ΓD2n). That is, ΓD2n cannot be Hamiltonian.

(4) It follows from Proposition 2.10. �

Corollary 5.4. Let n = 2k for some positive integer k. Then ΓD2n is isomorphic to K1,2k+1−1.

Corollary 5.5. ΓD2n is planar if and only if n = 2k for some positive integer k.
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