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ON THE TOTAL CHARACTER OF FINITE GROUPS
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Communicated by Vahid Dabbaghian

ABSTRACT. For a finite group G, we study the total character 7¢ afforded by the direct sum of all the
non-isomorphic irreducible complex representations of G. We resolve for several classes of groups (the
Camina p-groups, the generalized Camina p-groups, the groups which admit (G, Z(G)) as a generalized
Camina pair), the problem of existence of a polynomial f(z) € Q[z] such that f(x) = 7¢ for some
irreducible character x of G. As a consequence, we completely determine the p-groups of order at most
p° (with p odd) which admit such a polynomial. We deduce the characterization that these are the
groups G for which Z(G) is cyclic and (G, Z(G)) is a generalized Camina pair and, we conjecture that
this holds good for p-groups of any order.

1. Introduction

In this paper, G denotes a finite group. Let Irr(G) and nl(G) be the set of all irreducible characters
of G and the set of all nonlinear irreducible characters of G respectively. Then lin(G) = Irr(G) \ nl(G)
is the set of linear characters of G. Suppose p is the direct sum of all the non-isomorphic irreducible
complex representations of G. The character 7¢ afforded by p is called the total character of G, that
is, 1¢ = erhr(g) X. Since 7 is stable under the action of the Galois group of the splitting field of
G, 1¢(g) € Z for all g € G.

The dimension 7¢(1) of p seems to have remarkable connections with the geometry of the group.
For instance, in the case of the symmetric group G = S,,, 7¢(1) is the number of involutions of S,
([10)) and, in the case of G = GL(n,q), 7¢(1) is the number of symmetric matrices in GL(n, q) ([5]).
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It is a consequence of a well known theorem due to Burnside and Brauer ([, Theorem 4.3]) that,
the total character of the group G is a constituent of 1 + x + --- 4+ x™ ! if x is a faithful character
which takes exactly m distinct values on G. S. M. Gagola, Jr. & M. L. Lewis classified (in [4]) all the
solvable groups for which 7 equals x?, for some x € Irr(G). A. Mann also studied the decomposition
of x? and proved:

“A nonabelian group G has a faithful irreducible character x such that Irr(x?) C lin(G) if and only if
|G'| =2 and Z(G) is cyclic’.
Here, Irr(x?) is the set of all irreducible constituents of x? ([I, Theorem 22.7]).

Motivated by this, K. W. Johnson raised the following question:

Does there exist an irreducible character x of G and a monic polynomial f(x) € Z[z] such that
f(x) =167 (see [18]).

The aim of the article is to answer a weaker version of this question for several classes of p-groups
including all p-groups of order at the most p°; we examine the existence of a polynomial f(z) € Q[z]
and x € Irr(G) such that f(x) = 7. We call such a polynomial f(z) € Q[z], if it exists, a Johnson
polynomial of G. This problem has been studied for dihedral groups Dg, in [I8] where it is proved
that Da, has a Johnson polynomial if and only if 8 f n. To describe the classes of groups to which our
results apply, we recall some definitions.

A pair (G, N) is said to be a generalized Camina pair (abbreviated GCP) if N is normal in G and,
all nonlinear irreducible characters of G vanish outside N ([12]). There are a number of equivalent
conditions for (G, Z(G)) to be a GCP. An equivalent condition we will refer to is:

A pair (G, Z(G)) is a GCP if and only if for all g € G\ Z(Q), the conjugacy class of g in G is gG'.
In this case, one can easily observe that G’ C Z(G) and x(1) = |G/Z(G)|"/? for all x € nl(G). For
such types of groups, the first author and R. Sarma investigated (in [19]) the existence of a Johnson

polynomial. The following theorem was proved in [19].

Theorem 1.1. [19] Theorem 3.2] Let (G, Z(G)) be a GCP. Then G has a Johnson polynomial if and
only if Z(Q) is cyclic. In fact, if Z(G) is cyclic then a Johnson polynomial of G is given by

fl@)=d*) (z/d)7 +d) (z/d),
j=1 j=1
Ui

where d = |G/Z(G)|Y?, r =|Z(G) /G|, m = |Z(G)| and | = |G'|. In particular, f(z) = d?(z/d)™ +
dY "5 (2 /d)! when Z(G) is cyclic and Z(G) = G

Further, the above theorem was used by the authors in [I9] to classify all the nonabelian p-groups
of order p* (p an odd prime) which have a Johnson polynomial. The purpose of this article is to
examine the existence of a Johnson polynomial for p-groups of order greater than p*. In this direction,
we examine the family of Camina p-groups and generalized Camina groups. As a consequence, we are
able to obtain a complete classification of groups of order p® which admit a Johnson polynomial.

A pair (G, N) is said to be a Camina pairif 1 < N < G is a normal subgroup of G' and for every
element g € G\ N, gN C Clg(g), the conjugacy class of g. In the special case N = G, the group G
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is said to be a Camina group. More generally, a group G is said to be a generalized Camina group if
Clg(g) = gG' for every element g € G\ G'Z(G). Tt is known (see [13]) that a nilpotent, generalized
Camina group G is isoclinic to Camina group which is a p-group; the prime p is said to be associated

to G.

Then, our main results can be stated as follows:

Theorem A. Let G be a Camina p-group. Then G has a Johnson polynomial if and only if the
nilpotency class of G is 2 and Z(G) is cyclic.

Theorem B. Let (G, Z(G)) be a Camina pair and let (G/Z(G), Z(G/Z(Q))) be a generalized Camina

pair. Then G does not possess a Johnson polynomial.

Theorem C. Let G be a nilpotent, generalized Camina group with associated prime p. Then G has a

Johnson polynomial if and only if the nilpotency class of G is 2 and Z(G) is cyclic.

In the last section, we apply the above theorems to obtain the complete list of all groups of order
p° (with p odd) which admit a Johnson polynomial. This is proved using case-by-case considerations
(using a description of all groups of order p® by R. James ([8, Section 4.5])) but, in particular, we

deduce the following:

Theorem D. Let G be a nonabelian p-group of order p® with p odd. Then G has a Johnson polynomial
if Z(G) is cyclic and (G, Z(QG)) is a GCP.

In view of Theorem[I.T]and the above theorems, it seems reasonable to pose the following conjecture
for p-groups:
Conjecture: A nonabelian p-group (with p odd) admits a Johnson polynomial if and only if Z(G) is
cyclic and G' < Z(G).

2. Notations and Preliminaries

Throughout, C), denotes the cyclic group of order n. Suppose G is a finite group. Then Z(G),
G’ = Gy and ¢d(G) denote respectively the center, the commutator subgroup and the set of irreducible
character degrees of G. If a,b € G, then ®a = b~'ab and [a,b] = a~'b~ab. For g € G, Clg(g) denotes
its conjugacy class {7 'gz : € G}. The nilpotency class of a nilpotent group G is the number n
such that G,, # 1 and G,,41 = 1, where G2 = [G,G] = G’ and G;41 = [G;, G| for i > 2. Further, if
H is a subgroup of G and x a character of GG, x| g denotes the restriction of x to H. Suppose N is a
normal subgroup of G. Then we denote by Irr(G|N) = Irr(G) \ Irr(G/N).

We start by recalling some basic results that we will need later.

Lemma 2.1. [7, Theorem 2.32]

(1) If G has a faithful irreducible character, then Z(G) is cyclic.
(2) If G is a p-group and Z(G) is cyclic, then G has a faithful irreducible character.
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Proposition 2.2. An abelian group has a Johnson polynomial if and only if it is cyclic. In fact, if G
is a cyclic group of order n then f(z) = 1+x+---+2" 1 is a Johnson polynomial of G and f(x) = 7
for every faithful irreducible character of G.

Proof. Let f(z) be a Johnson polynomial of G. Suppose, to the contrary, G is non-cyclic. Then by
Lemma ker(y) # {1} for all x € Irr(G). Since G is an abelian group, 7¢ is the regular character

of G. Hence
_ ) gl ifg=1,
ralg) = { 0 otherwise.

Thus for g # 1 € ker(x), we have 7¢(9) = f(x(9)) = f(x(1)) = 7¢(1), which is a contradiction.

Conversely, let G = (a) be the cyclic group of order n. Set ¢, = e and f(z) = Z?:_()l z'. Consider
the linear character A\ : G — C* defined by a — (,. Then X is a faithful irreducible character and
FO) =Y N =16 O
Lemma 2.3. Let G be a non-abelian group. Then erlm(c) x(g) =0 for each g € G\ Gs.

In this article, whenever we prove a certain group G does not possess a Johnson polynomial, we use

the following simple observation.

Proposition 2.4. Let x be an irreducible character of G. If g1,92 € G are such that x(g1) = x(g2)
but 7¢(g1) # 1c(g2), then there does not exist f(x) € Clz] such that f(x) = 1¢.

Proposition 2.5. Let G be a non-abelian group. Suppose f(x) € Q[z] is a Johnson polynomial of G
and x € Irr(G) is such that f(x) = 7. Then x is a nonlinear faithful character.

Proof. Suppose f(z) € Q[z] and x € lin(G). Since G is non-abelian, nl(G) is non-empty. Pick
¥ € nl(G). Then the inner product of ¥ with f(x) is zero but with 7 is 1. Hence f(x) # 7¢-
Suppose f(x) € Q[z] is a Johnson polynomial of G and x € nl(G) is such that f(x) = 7¢ with

ker(x) # {1}. Since Nyel(G) ker(x) = {1}, 7¢(1) # 7a(g) for all g # 1 € G. Take g # 1 € ker(x).
Then 7¢(1) = f(x(1)) = f(x(9)) = 7¢(g), which is a contradiction. O

3. Camina p-Groups

In this section, we investigate the existence question of a Johnson polynomial for Camina p-groups.

A. R. Camina in [2] initiated the study of these groups. We start by recalling the definition.

Definition 3.1. ([2]) Suppose N is a normal subgroup of G. A pair (G,N) is a Camina pair if
1 < N < G is a normal subgroup of G and for every element g € G\ N, gN C Clg(g).

It is clear that if (G, N) is a Camina pair and if H is normal in G and H < N then (G/H,N/H)
is also a Camina pair. The following lemma gives a number of equivalent condition for a pair (G, N)

to be a Camina pair.

Lemma 3.2. [I7, Lemma 3] Let N be a normal subgroup of G and let g € G\ N. Then following are

equivalent:
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(1) x(g) =0 for all x € Irr(G|N),

(2) |Ca(g)| = |Cqn(gN),
(3) gN C Clg(g)-

It is easy to see that if (G, N) is a Camina pair, then Z(G) < N < G'.

Camina groups have been studied by many authors [3, [15, [16]. By Lemma it is clear that if G
is Camina group, then x(g) = 0 for all x € nl(G) and g € G\ G'. In [3], Dark and Scoppola proved:

Theorem 3.3. ([3]) If G is a finite Camina p-group, then the nilpotency class of G is at most 3, i.e.,
G4 ={1}.

Lemma 3.4. [I5] Corollary 2.3] Let G be a p-group of nilpotency class r. If (G,Gy) is a Camina
pair, then G;/Giy1 has exponent p for k —1 <i <r.

Theorem 3.5. [15, Theorem 5.2] Let G be a Camina p-group of nilpotency class 3 and let |G/Ga| =
p™", |G2/Gs| = p™. Then
(1) (G,Gs3) is a Camina pair,

(2) m = 2n and n is even.

Corollary 3.6. [15, Corollary 5.3] If G is a Camina p-group of nilpotency class 3, then Zy(G) = Go
and Z(G) = Gs.

Remarks on Camina p-groups of class 3.

Suppose G is a Camina p-group of nilpotency class 3. Then by Lemma G/Ga, G2/G3, and G
are elementary abelian p-groups and by Corollary we have G3 = Z(G). Now by Theorem (3.5 we
have (G, G3) is a Camina pair, |G/Gs| = p?", |G2/G3| = p" and |G/G3| = p** where n is even. We
will show that nl(G) = Irr(G|G3) U nl(G/G3) and cd(G) = {1,p", p**/?}.

Take x € Irr(G|G3). Now xlg, = x(1)A for some X\ € Irr(Gs). Thus

|G| = Z Ix(9))? = Z Ix(9)]* ('since (G,G3) is a Camina pair)

geqG 9€Gs

= ) Ix(WAP

9€G3
= x(1)*|Gsl.

Hence x(1)% = |G/G3| = p*" for all x € Irr(G|G3). Thus we have a bijection
® : Irr(G3) \ {1gy } — Irr(G|G3) defined by

p*"/2\(g) if g € Gs,

0 otherwise,

(3.1) o(N)(9) := {
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where 1, is the trivial character of G. Therefore |Irr(G|G3)| = |G3| — 1.

Since (G, G2) is a Camina pair, (G/G3,G2/G3) is also a Camina pair. By Corollary we have
Z(G/Gs) = Z2(G)/Gs = G2/G3 = [G/G3,G/G3). Thus G/G3 is a Camina p-group of nilpotency
class 2. Now take x € nl(G/G3). Then xlg,/q, = X(1)A for some A € Irr(G2/G3). Now

G/Gs| = > Ix(eGs)l> = D> Ix(9Gs)|? (since G/G3 is a Camina group)
9G3€G/G3 9G3€G2/G3
= > XDAgGs)P
gEGg/Gg

= x(1)%|G2/Gs|.
Hence x(1)% = |G/G2| = p*" for all x € nl(G/G3). Thus we have a bijection
U Irr(G2/Gs) \ {1g,/q,} — nl(G/G3) such that

P2 (Xon)(g) if g € Go,
0 otherwise,

(3.2) T(M(g) = {

where 1 : G — G//G3 is the natural homomorphism and 1¢, /¢, is the trivial character of G2/G3.
Therefore we have |nl(G/G3)| = |G2/G3| — 1 = p" — 1. Now

Gl= ) x(1)*=|G/Gs| + (|Gs| — 1)|G/Gs| + (|G2/Gs| — 1)|G/Gal.
XEIrr(G)

This shows that nl(G) = Irr(G|G3) L nl(G/G3) as a disjoint union and ¢d(G) = {1,p", p>*/?}.

Now, we can compute the total character of a Camina p-group of nilpotency class 3.

Proposition 3.7. Let G be a Camina p-group of nilpotency class 3. Then the total character t¢ is

given by,
p* + (IGs| = Dp*/2 4 (p" — 1)p" ifg =1,
2n _ ,3n/2 n n :
p"t —po 4+ (p" —1)p if g€ Gz \ {1},
33) rolg) =4 L, Py Foc el
pt—p if g€ G2\ Gs,
0 otherwise.

Proof. By Theorem we have |G/Ga| = p**, |G2/Gs| = p" and |G/G3| = p** where n is even. In
view of ([3.1)) and (3.2), we have all the nonlinear irreducible character of G. Hence, if g = 1, then

(1) = > x(MW+ D x(1)

X€lin(G) x€nl(G)
= "+ (|Gs| — )™ + (p" — 1)p".

If g € G\ Go, then by Lemma and (3.1)), (3.2]), we get
ale)= >, x(g)= Y. xlg)=0.

x€Irr(G) x€lin(G)
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If g #1 € G3, then
ale) = Y, xl9)+ x(9)

xE€lin(G) x€nl(G)
= |G/Gal+ > x@+ D xl(g)
x€lrr(G|G3) x€nl(G/G3)

= p" —p" 2+ (p" —1)p"  (by (B1) and (3.2)).
Finally, if ¢ € G2 \ G, then

g = > x@+ Y. x(g)

x€elin(Q) xenl(@)
= |G/Gal+ > x@+ Y. X9
x€lr(G|Gs) xenl(G/Gs)
= p™M—p" (by and (3.2)).
This completes the proof. O

Now, we are ready to characterize Camina p-groups which admit a Johnson polynomial (Theorem
A).

Proof of Theorem A. By Theorem [3.3] the nilpotency class of G is at most 3, i.e., G4 = 1. Suppose G
is of nilpotency class equal to 3. If Z(G) is not cyclic then by Lemma G has no faithful irreducible
character. Therefore, from Proposition G has no Johnson polynomial. Now suppose Z(G) is
cyclic and x is a faithful irreducible character of G. Let f(x) € C[z] with f(x) = 7¢. From
and (3.2), it is clear that x € Irr(G|G3) and x(g) = 0 for all g € G\ G3. Now take h € G\ Gs.
Then from (3.3)), we have f(x(h)) = f(0) = 7q(h) = p* —p". If g € G\ G2, then from (3.3), we
get f(x(g9)) = f(0) = 17¢(g) = 0. Therefore, we have a contradiction to the existence of a Johnson
polynomial.

Next suppose that nilpotency class of G is 2 i.e., 1 < G2 < Z(G). Since G is a Camina group, each
nonlinear irreducible character of G vanishes outside G2. Therefore, G2 = Z(G). Thus (G, Z(G)) is a
generalized Camina pair and hence from Theorem the proof is complete. O

4. Groups for which (G, Z(G)) is a Camina pair

In [I4], M. L. Lewis began the study of those groups G for which (G, Z(G)) is a Camina pair and,
proved that such a group G must be a p-group for some prime p. The next lemma ([I5, Lemma 2.1])
was proved by Macdonald in a more general setting where G is a p-group with (G, N) as a Camina

pair. In the case N = Z(G), this reduces to the following.

Lemma 4.1. ([15]) Let G be a p-group of nilpotency class r and let (G,Z(G)) be a Camina pair.
Then Z(G) = G,.

Remarks on Irr(G|Z(G)) when (G, Z(G)) is a Camina pair.
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Suppose (G, Z(G)) is a Camina pair. Then by Lemma x(g) = 0 for all x € Irr(G|Z(G)) and for
all g € G\ Z(G). Let 1) be the trivial character of Z(G). Now take any x € Irr(G|Z(G)). Then,

G =" Ix(@P= Y. Xyl
9eC 9€2(G)

where A € Irt(Z(G)) \ {1z(c)}. Therefore, x(1)> = |G/Z(G)|. Hence we have a bijection

®: Irr(Z(G)) \ {1z} — Irr(G|Z(G)) such that

G/Z(G)|V?A(g) ifge Z(g
1) $()(g) ::{| /Z(G)]'?X(g) (9)
0 otherwise.
Proposition 4.2. Let (G,Z(G)) be a Camina pair and let (G/Z(G),Z(G/Z(G))) be a generalized

Camina pair. Then the total character 7g is given by the following expressions:

16(1) = |G/Ga| + (1Z(G)| = V)|G/Z(G)|'? +m|G ) Zo(G)|'/?, where m = | Z(G/Z(G))| — | Z2(G)/Gal;

1a(9) = |G/Gs| — |G/Z(G)|V2 + (1Z(G)Z(G))| — | Z2(G) | G2|)|G ) Z2(G)|Y/? when 1 # g € Z(G);
1a(9) = |G/Ga| — | Z2(G)/G2||G ) Z2(G)|V? if g € G2\ Z(G);
7¢(9) =0 if g € G\ Ga.

Proof. Since (G, Z(G)) is Camina pair, Irr(G|Z(G)) is given by (4.1)). Therefore, there are |Z(G)| — 1
nonlinear irreducible characters of degree |G/Z(G)|Y/2. It is given that (G/Z(G), Z(G/Z(@))) is a
generalized Camina pair. So,

(G/Z(G),G/Z2(G)] = G22(G)/Z(G) € Z(G/Z(G) = Z2(G)/Z(G).
Since (G, Z(G)) is a Camina pair, Z(G) C Go. Hence G2Z(G)/Z(G) = G2/Z(G). There is a bijection

V:Irr(Z(G/Z(G)) | G2/Z(G)) — nl(G/Z(G)) such that

G/ Z2(G) VA (g) if g € Z(G)
0 otherwise

(4.2) T(M)(g) = {

(see [19, Theorem 3.1]). Thus G has |Z(G/Z(G))| — | Z2(G)/G2| nonlinear irreducible characters with
Z(G) in their kernels and, degree of each such character is |G /Z2(G)|"/%. Now

S Y i Y )
x€lin(G) x€elrr(G|Z(G)) xenl(G/Z(G))
=1G/Ga| + (12(G)| = DIG/Z(G)| + (12(G/Z2(G)| = |22(G) [ G2]) |G/ Z2(G)| = |G-
This shows that nl(G) = Irr(G|Z(G)) Unl(G/Z(G)).
Since (G/Z(G),Z(G/Z(@))) is a generalized Camina pair, use [19, Proposition 3.1] to get,
|G/ Go| +m|G/Z(G)|'? if g€ 2(G)
(4.3) T62(6)(9) = 4 1G/Ga| = |22(G) /G2l |G/Z(G)|'? it g € G2\ Z(G)

0 otherwise,
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where m = |Z(G/Z(G))| — | Z2(G) /Ga|. We use 7¢/7(q) to calculate 7¢.
Next, if g = 1, then

@) = > xMW+ D x@+ D xl
X€Elin(G) XEL(GIZ(G)) XEnl(G/Z(G))
(4.4) = |G/Ga| + (12(G)] = 1)|G/Z(G)|'? +m|G/Z2(G)| ',
where m = |Z(G/Z(Q))| — | Z2(G)/Ga|.
If g #1 € Z(G), then by and we have

wle) = > x@+ D>, x@+ D, x

X€Elin(G) Xl (G|Z(@)) XEnl(G/2(G))
(4.5) = |G/Gs| = 1G/Z(G)|V? + (12(G/2(G))| - |22(G) [ G2])|G/ Z2(G)| /2.

If g € G2\ Z(G), then then by (4.1)), and ([4.3)), we have
o) = Y xo+ >, x@+ Y. xl

x€Elin(Q) x€lrr(G|Z(Q)) xenl(G/Z(G))
(4.6) = |G/Go| +0—|Z2(G)/Ga||G/Z(G)| />,

If g € G\ Gg, then then by (4.1), (4.2) and (4.3), one can easily get that

wle) = > x+ D>, x@+ D, x

x€lin(@) €I (C 2(Q)) xenl(G/2(G))
(4.7) _—
This completes the proof. O
Proof of Theorem B. In view of Proposition [2.4] and G has no Johnson polynomial. O

5. Generalized Camina groups

In this section, we study the total character for a generalized Camina group and characterize those
groups which admit a Johnson polynomial. We begin by recalling the important notion of isoclinism
introduced by Philip Hall.

Definition 5.1. Let G, H be finite groups. G and H are said to be isoclinic if there exist isomorphisms
0:G/Z(G) — H/Z(H) and ¢ : Go — Hy such that

[0(912(G)),0(922(G))] = ¢([912(G), 922(G)]) for all g1, g2 € G.

The notion of isoclinism was first introduced by P. Hall [6] who proved that two isoclinic nilpotent
groups have the same nilpotency class. It is also known that isoclinic groups of the same order have

the same character degrees. Recall:

Definition 5.2. ([13]) A group G is said to be a Generalized Camina group if Clg(g) = gGa for every
ge G \ GQZ(G)
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This generalization of a Camina group was introduced by M. L. Lewis in [I3]. It is clear from the
definition that if G is a generalized Camina group, then either G has nilpotence class 2 or G/Z(G) is
a Camina group. The author proved that G is a nilpotent generalized Camina group if and only if G
is isoclinic to a nilpotent Camina group H and H must be p-group ([13]). Lewis also pointed out that
a Camina group which is isoclinic to G will be a p-group for the same prime p; one calls p, the prime

associated to G.

Definition 5.3. Let N be a normal subgroup of G and let x € Irr(G). We say that x is fully ramified
with respect to G/N if x|y = €0 and 019 = ex for some 6 € Irr(N) and some integer e.

In [13], Lewis proved the following theorem:

Theorem 5.4. [13, Theorem 3] Let G be a nilpotent, generalized Camina group of nilpotency class 3.
Then following are true:

(1) G/G2Z(G), G2Z(G)/Z(G), and Gs = Ga N Z(G) are elementary abelian p-groups for some
prime p.
|G/G2Z(G)| = p*™ and |G2Z(G)/Z(G)| = |G2/Gs| = p™ for some even integer n.
ed(G) = {15, p"}.
Z(G/G3) = GoZ(G)/Gs and G2 Z(G)/Gs = G2 /G3 x Z(G)/Gs.
Every character in nl(G/G3) is fully ramified with respect to G/G2Z(G) and every character
in Irr(G|G3) is fully ramified with respect to G/Z(Q).

2
3
4

(
(
(
(5

— ~— ~— ~—

Remarks on Generalized Camina groups of nilpotency class 3.

Suppose G is a nilpotent, generalized Camina group of nilpotency class 3. Then from the above

theorem, we have |G/Z(G)| = p®" and one can observe that there are two bijections namely,

¢, : Irr(Z(G)|G3) — Irr(G|G3) such that

(5.1) 2,(N)(g) = { pMa) it g € 2(C)

0 otherwise,

and

vy Irr(GgZ(G)/Gg ‘ GQ/Gg) — Iﬂ(G/Gg) such that

p(Aon)(g) if g € G2Z(G),
52) () = § PN .
0 otherwise,
where 1 : G — G/G3 is the natural homomorphism. Therefore G has |Z(G)| — |Z(G)/G3| nonlinear

irreducible characters of degree p**/2 and (|G2/G3| — 1)|Z(G)/G3| nonlinear irreducible characters of
degree p”, and nl(G) = Irr(G|G3) Unl(G/G3).
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Lemma 5.5. Let G be a generalized Camina group of nilpotency class 3. Then

—|Z(G)/Gs| if g € Gs,
5.3 by =
o Aelrrg(zc)cg) ) { 0 ifgeZ(G)\Gs
and
(p" = DIZ(G)/Gs| if g € Gs,
(5.4) Z AMg) =4 —1Z(G)/Gs| if g€ G2\ Z(G),

\elrr(G2Z(G)/Gs | G2 /G3) 0 otherwise,

where |G2/G3| = p".
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Proposition 5.6. Let G be a generalized Camina group of nilpotency class 3. Then the total character

TG 1S given by,

G/ Ga| + rp*/? + (p" — 1)|Z(G) /G3lp" ifg=1,

(5.5) ralg) =1 16/G21- |2(G)/Gslp™? + (" = 1)|Z(G)/Gslp™ if g #1 € Gs,
|G/Ga| = |Z(G)/Gs|p" if g € Go \ Z(G),
0 otherwise,

where r = |Z(G)| — | Z(G)/G3|.
Proof. If g =1, then

(1) = Y x()+ x(1)

xE€lin(G) x€nl(G)
= |G/Go| + (12(Q)] = |Z(G)/G3)p™* + (IG2/G3| = 1)| Z(G) /Galp"
= |G/Ga| + (12(G)| - 12(G)/Gs)p*™* + (0" = 1)| Z(G) /G3|p™

If g #1 € G3, then

alg) = x@)+ Y x(9)
x€lin(G) x€enl(G)
= |G/Gal+ > x@+ D, x(g).
x€lrr(G|Gs) x€nl(G/G3)

Now use (5.1)), (5.2) and Lemma [5.5] to get
76(9) = |G/Ga| — |Z(G)/Gs|p™/* + (|G2/Gs| — 1)|Z(G) /Gslp™.

If g € Z(G) \ Gs, then

ale) = Y, x@+ >, x(9)

Xx€lin(G) x€nl(G)

=0+ Y  x@+ > x(9) (byLemma:3)

X€EIrr(G|G3) x€nl(G/G3)

= 0 (use (5.1), and Lemma [5.5)).
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If g € G2\ Z(G), then

alg) = >, x(g)+ x(9)

Xx€E€lin(G) x€nl(G)
= |G/Gol+ > X9+ D xl(g)
x€Irr(G|G3) x€nl(G/G3)

|G/Gs| — | Z(G)/Gs|p™  (use (5.1), and Lemma [5.5)).

If g € G2Z(G) but neither in G nor in Z(G), then

ale) = Y, x@+ >, xl9)

x€Elin(Q) x€nl(G)

= 0+ > x(@+ > xl9 (byLemmal23)

x€Irr(G|G3) x€nl(G/G3)

= 0 (use (5.1), (5.2) and Lemma [5.5).
Finally, if g € G\ G2Z(G), then by Lemma 2.3 (5.1)) and (5.2)), we get
@)= Y. x@= > x(g=0

XE€Irr(G) xElin(G)

This completes the proof. O
We can now characterize nilpotent, generalized Camina groups (Theorem C).

Proof of Theorem C. Let G be a nilpotent, generalized Camina group with associated prime p. If
p = 2, then G has nilpotency class 2 and for p odd, G has nilpotency class at most 3 (see [13, Theorem
2]). Now if nilpotency class is 2, then (G, Z(G)) is a generalized Camina pair and hence the result
follows from Theorem [}

Next suppose G has nilpotency class 3. If Z(G) is not cyclic then by Lemma G has no faithful
irreducible character. Therefore from Proposition G has no Johnson polynomial. Now suppose
Z(@Q) is cyclic. Therefore G has a faithful irreducible character x (say). Let f(z) be a Johnson
polynomial and let f(x) = 7¢. From and (5.2)), it is clear that x € Irr(G|G3). Then, in view of
Proposition [2.4] and G has no Johnson polynomial.

This completes the proof. O

6. p-groups of order p°

In this final section, we completely classify the groups of order p° (for p odd) which admit a Johnson
polynomial. Throughout this section p always denotes an odd prime. We will use not only the results
of the previous sections but, more crucially, also use the classification of groups of order p® by R.
James (|8, Section 4.5]).

We begin by recalling some well known results which we will use.
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Theorem 6.1. [I, Theorem 22.5] If G is a nonabelian p-group with c¢d(G) = {1, p}, then ezxactly one
of the following holds:

(1) G has an abelian subgroup of index p,
(2) G/Z(Q) is of order p* and exponent p.

Lemma 6.2. [7, Lemma 2.9] Let H be a subgroup of G. Suppose x is a character of G. Then

s xly) < |G/H[(x: x)

with equality if and only if x(g) =0 for all g € G\ H.

Lemma 6.3. [I, Theorem 20 | If G is a p-group, then for each x € Irr(G), x(1)? divides |G/Z(G)|.
Here is an easy consequence of the above lemma.

Lemma 6.4. Let G be a non-abelian group of order p*. Then cd(G) = {1, p}.

Proof. Since Z(G) # 1, |Z(G)| = p or p?. Therefore |G/Z(G)| = p® or p>. So by Lemma the

result follows. 0

Theorem 6.5. [7, Theorem 6.15] Let H be an abelian normal subgroup of G. Then x(1) divides
|G/H]| for all x € Irr(G).

As mentioned at the outset of this section, we will use the classification of groups of order p°
by R. James ([8, Section 4.5]). More particularly, we will use the list of polycyclic presentations of
these groups that the author compiled, and divided the non-abelian ones into families denoted by

®q,---, Pqp, according to isoclinism.

Lemma 6.6. If G € X = {®y(41), P2(311)b, ®5(2111), ®5(1°)} (see [8, Section 4.5]), then G has a

Johnson polynomial.

Proof. First we consider the isoclinism family ®5. There are two type of groups in this family with

Z(@G) cyclic namely,

G=dy(41) = (a0 [ar,0] =0 =ay,af =al=1) and

H=o,311)b = (a,aq,a9,7 | [a1,0] = 'yp2 = ag,af = of =ab =1).

Here |Z(G)| = |(a?)| = p*, |Ga| = [(a¥")| = p|Z(H)| = [(37)] = p*, |Ho| = |(7")] = p. By Lemma
we have ¢d(G) = {1,p} and cd(H) = {1,p}. Now by Lemma [6.2] it is clear that (G, Z(G)) and
(H,Z(H)) are generalized Camina pair. Hence by Theorem[L.1} G and H have a Johnson polynomial.

Now we discuss the isoclinism family ®5. There are only two type of groups in this family and both
have cyclic center. Here are the groups:

(1) @5(2111) = <041,042,043,044,,3 ’ [041,042] = [Oé3,0é4] = OéllJ =0, Ozg = ozg = ai =[P = 1>;

(2) ®5(1°) = (o, a2, a3, a4, B | o, 2] = [az, 4] = B,0f = b = of
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Note that both ®5(2111) and ®5(1°) are extra-special p-groups. Therefore for these two groups
(G,Z(Q)) is a GCP (see [9, Theorem 2.18]). Since G is an extra-special p-group, Z(G) = G2 and
|Z(G)| = p. Therefore by Theorem the polynomial

p—1
F@)=p™> (x/p")Y +p™(x/p")
j=1
is a Johnson polynomial of G and f(x) = 7¢ for every x € nl(G), where G € ®3. O

Lemma 6.7. If G in the isoclinism family ®3, then G has no Johnson polynomial.

Proof. Let G € ®3. There are two type of groups in this family with Z(G) cyclic namely, ®3(2111)c
and ®3(311)b, (see [8, Section 4.5]). For p =3 and p > 5, we define these groups separately.
(1) G = ®3(2111)c = (o, a1, a2, a3,7 | [, 0] = ag,[ag, 0] =P = ag,af = dfag = o = o} = 1)
for p = 3;
(2) H = ®3(2111)c = (a, a1, a2, 03,7 | [a1, 0] = ag, [az,a] =P = ag,a? = o =1 (i = 1,2,3))
for p > 5;
(3) K = ®3(311)b, = (o, a1, a2, a3 | [a1, 0] = g, [ag, o = azfg =ag,aP = =af =1)forr=1
or v, where v is a fixed quadratic non-residue mod p, and p > 3.
Observe that |Z(G)| = [(7)| = p?, [Z(H)| = (1) = p* and |Z(K)| = |{a])| = p°.

First we will deal with H. Consider a normal abelian subgroup
N = <041a042a’Y ’ [Oél,Oé] = (g, [a27a] = ’Ypaaf = ’yp =1 (7’ = 172)>

of H of index p. By Theorem cd(H) = {1,p}. Since N is a normal abelian subgroup of index p,
every nonlinear irreducible characters of H must be induced from N and hence x(H \ N) = 0 for all
x € nl(H). Now

H:=H/Z(H) = (a,a1,0az | [a1,0a] = az, o :af =1G=12)

is an extra-special p-group of order p3. Therefore, H has p — 1 nonlinear irreducible characters of each
of degree p which vanish out side Z(H) in H and on Z(H) it is pA, where A € Irr(Z(H)) \ {1 2}
In particular, H has p — 1 nonlinear irreducible characters which contains Z(H) in their kernel.

Take Q = (7P). Then Irr(H|Z(H)) = Irr(H/Q|Z(H)/Q) U Irr(H|Q). Now, suppose x € Irr(H|Q).
Then Y is faithful. Let ¢ be an irreducible constituent of y |}, where M = (s, ). Since x is faithful,
¢ is not H-invariant. Therefore, by Clifford’s theorem Xl]l\{/[ =Y ¥ ¢;, where ¢1 = ¢ and p is the index
of the inertia group N of ¢ in H. Now ¢il%H) =\, where A € Irr(Z(H)) \ {15z} foreach 1 <i <p.
Therefore, by [7, Corollary 6.17], we have

(6.1) Xl = Z o1 = pym/z(H)PI,
oclrr(M/Z(H))

where py gy is the regular character of M/Z(H). Hence for each x € Irr(H|Q), we have x(M \
Z(H))=0.
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Next, we consider x € Irr(H/Q|Z(H)/Q), where H/Q = (o, a1,a2,7 | [o1,0] = ag,af = AP =
o =1 (i =1,2) and Z(H/Q) = M/Q. Since (H/Q,Z(H/Q)) is a generalized Camina pair,
X(a2) = pA(az), where A € Irr(Z(H/Q)) \Irr(Z(H/Q)/(H/Q)2) (see [19, Theorem 3.1]).

But then

m(ee) = Y xle)+ Y. xle)+ DY x(aw)

X€lin(H) X€lrr(H/Z(H)) X€Enl(H|Z(H))
= |H/Hs|+ > pAaz)+ > xloa)+ > x(az)
XeZ(H)\{1 ;) } x€lr(H|Q) xelr(H/QIZ(H)/Q)

= P —p+0-p’+p
(6.2) = p—p
Now suppose H has a Johnson polynomial f(z) such that f(x) = 7z, where x € nl(H). Therefore y is
faithful and y € Irr(H|Q). Now £(0) = f(x(a2)) = 7 (a2) = p®—p? and £(0) = f(x(a)) = 7g(a) = 0.
The resultant contradiction proves that H can have no Johnson polynomial.

One can use a very similar argument to show that neither G nor K can have a Johnson polynomial. [
Lemma 6.8. If G in the isoclinism family &7 or ®g, then G has no Johnson polynomial.

Proof. Suppose G is in the isoclinism family ®-. For p = 3 and p > 5, we will define these groups

separately.
For p=3:
(1) G = @7(2111)65 = <047051705270537B | [Oéi,Oé] = O441, [ahﬁ] = a3 = 053705?053 = a?Jrl = ﬁg =
1(i=1,2));
(2) G = ®7(2111)b1 = (a, 00,02, 03, 8 | [, 0] = aiq1, [, Bl = az,af = =af =P =1 (i=
1,2));
(3) G - @7(2111)1)2 - <Oé,O[1,0[2,0[3,,6 | [Oéi,Oé] = QG41, [al7ﬁ]2 = OZ%,O[% = 043,043 = 057,3-1-1 = ﬂ?) =
1(i=1,2));
(4) G = <I>7(2111)C = <Oé,0£1,0(2,0(3,,8 | [Oéi,Oé] = aiJrl’[al?ﬁ] = a3 = ﬁsvag = Oé?ag = O‘?+1 =
1(i=1,2));
(5) G = ®7(1°) = (v, a1, 02,03, | [ai, 0] = aipr, [0, 8] = a3,0° =afas = o, =3 =1 (i =
1,2)).
For p > 5:
(1) G = @7(2111)& = <a,051,052,053,ﬁ ‘ [Oéi,Oé] = Qi41, [ahﬁ] = a3 = Oépaazl) = af«kl =pr=1 (Z =
1,2));
(2) G = ®7(2111)by = (@, 1, 02,3, B | [viy 0] = iy, [0, Bl =az =of,aP =af | =P =1 (i =
1,2));

(3) G = ®7(2111)b, = (v, 0, 00,03,0 | [, 0] = g1, (a1, )Y = off = o/f,ap = afH = [P =

1 (i =1,2)) where v is a fixed quadratic non-residue mod p and 2 <v <p—1;
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(4) G = ®7(2111)c = (a, a1, 02,03, 0 | [0, 0] = iq1, [0, 8]l =3 = BP0l =) =ab | =1 (i =
1,2));

(5) G = ®7(1°) = (o, a1, a9,03, 8 | [as,a] = g1, [oq, 8] = as,af = o = afﬂ =pP=10G=
1,2)).

It is clear that |Z(G)| = |(a3)| = p and
G/Z(G)=H x K = (a,a1,0s3 | [a1,a] = ag, o = ol = ol =1) x (B)

is of order p* for all G € ®7, where H is extra-special p-group of order p? and K is a cyclic group
of order p. Hence, by Lemma we have cd(G/Z(G)) = {1,p} C ¢d(G). Since G has no abelian
subgroup of index p for all G € ®7, from Theorem and Lemma we get cd(G) = {1,p,p*}.
From Lemma it is easy to observe that if x(1) = p?, then x(g) = 0 for all ¢ € G \ Z(G). Hence
(G, Z(@Q)) is a Camina pair. Since H is a extra-special p-group, every nonlinear irreducible character
¢ of H vanishes outside Z(H) = (ag) in H and qﬁLg(H) = pA for some \ € Irr(Z(H)) \ {1z(s)}, where
1z(m) is the trivial character of Z(H). Hence

nl(G/Z(G)) = {6 x v | ¢ € nl(H), v € Ie(K)}.

Now if g = ag, then

ala) = > x@+ Y, x@+ D>, x

Y€lin(@) YeIrr(G|Z(G)) xenl(G/Z(G))
= |G/Ga|+0+ > (px)(a2) ((G.Z(G))is a Camina pair)
penl(H)
Yelrr(K)
= p’+ Z (pA x ¢¥)(a2) (H is a extra-special group)
Al (Z(H)\{1z(m)}
Yelrr(K)
= pP+p > PA(o2)
Al (Z(H))\{1z(m)}
(6.3) = p’ -7

Since (G, Z(G)) is a Camina pair and H is a extra-special group,
(6.4) @)= Y. x@+ D, x@+ D, x(9=0

xelin(G) xelrr(GZ(@)) xenl(G/Z(@))
for all g € H\ Z(H). Now suppose G has a Johnson polynomial f(x) such that f(x) = 7¢g, where
X € nl(G). Therefore x is faithful and x € Irr(G|Z(G)). Since x € Irr(G|Z(G)), x(g) = 0 for all
g € G\ Z(G). In particular, x(a1) = x(a2) = 0. Now f(0) = f(x(a2)) = 7g(az2) = p> — p? whereas
f(0) = f(x(a1)) = 7¢(a1) = 0, which is a contradiction. Thus, G cannot have a Johnson polynomial.

Next suppose G is in the isoclinism family ®g;
G = D5(32) = (a1, 02,8 | [or, 00 = B = o, B = ol =1). Here |Z(G)| = |(¥)| = p and

2 2
G/Z(G) = (a1,az | [a1,az] = o, =af =1)
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is of order p*. To show that cd(G) = {1, p, p*}, we may use the same argument as we do for the groups
in the family ®7; hence we skip the details. Now one can observe that (G, Z(G)) is a Camina pair and
(G/Z(G),Z(G/Z(@))) is a generalized Camina pair. Therefore, by Theorem B, G has no Johnson
polynomial. (|

Lemma 6.9. Let
H = (a,a1, 00,03 | [ar, 0] = ag, [, 0] = a3,0P = of = o = off = 1).

Then, H is a group of order p* for an odd prime p > 5 and

> xla2)= Y x(az)=-—p.

XEnl(H) x€Enl(H)

Proof. Observe that Z(H) = (a3) and Hy = (ag,as). Since H has a normal abelian subgroup
N = {(a1,a9,a3) = {a1) x (ag) x {ag) of order p3, by Theorem cd(H) = {1,p}. Now, if we

consider the group
H:=H/Z(H) = {a,a1,az2 | [a1,0] = ag,a? = off = b = 1),

we see that it is an extra-special p-group of order p®. Therefore, H has p — 1 nonlinear irreducible

characters of degree p which vanish outside Z(H) = {az) and, for x € nl(H), we have

(6'5) Xlz(ﬁ) =pA

for some A € Irr(Z(H)) \ {1 Z(ﬁ)}' In particular, we have all the nonlinear irreducible characters of H
having Z(H) in their kernel. Now, let ¢» € Irr(H|Z(H)). Since |Z(H)| = p, v is faithful and hence
¢ is not H-invariant, where ¢ is an irreducible constituent of mi. Therefore, by Clifford’s theorem
¢lg2 =7 ¢;, where ¢1 = ¢ and p is the index of the inertia group N of ¢ in H. Now (ﬁilg(QH) = A,
where A € Irr(Z(H)) \ {1z(m)} for each 1 <i < p. Therefore, by [7, Corollary 6.17], we have

(6.6) $lH, = Z Bé1 = pHyjz(H) P15

Belr(Hz/Z(H))

where pp,/z(m) is the regular character of Hy/Z(H). Hence for each ) € Irr(H|Z(H)), we have
Y(Hz \ Z(H)) = 0.
Now

> xlaa) = > xle)+ D x(aw)

Xx€E€nl(H) XEnl(H/Z(H)) x€lrr(H|Z(H))
= > pMaz)+ Y x(a2) (Use (6.3))
NI (Z(K))\{1z(x)} X€lrr(H|Z(H))

(6.7) = —p+0=-p



64 Int. J. Group Theory 3 no. 3 (2014) 47-67 S. K. Prajapati and B. Sury

and
> xlas) = > xlas)+ x(as)
xenl(H) xenl(H/Z(H)) xelrr(H|Z(H))
= plp—1)+ Z x(a3) (Since x(as3) = p for all x € nl(H))
x€lrr(H|Z(H))
(6.8) = plp—1)—p*=—p
This completes the proof of the lemma. (|

Lemma 6.10. If G € &g, then G has no Johnson polynomial.

Proof. Suppose G is in the isoclinism family ®g; these are defined as follows. For p = 3:

(1) G = ®9(2111)a = (o, a1, a9, a3, 04 | [, 0] = 1,0 = ag,0az = aday = a3 =af =1 (i =
1,2,3));
(2) G = ®g(2111)bg = (v, a1, a2, a3, a4 | [, 0] = qig1, dag = ay,a® = aday = ag =al=1(G=
1,2,3));
(3) G = ®9(1%) = (o, a1,0a2,a3,04 | [vi,0] = @i11,0% = adag = aday = a3 = af =1 (i =
1,2,3)).
For p > b:

(1) G = ®9(2111)a = (o, a1, a2, a3, 04 | [, 0] = @ig1, 0P = oy, 0l = af_H =1(=1,2,3));
(2) G = ®9(2111)b, = (o, a1, a2, a3,04 | [, 0] = ajy1,0] = ok P = afﬂ =10¢=123))
where k =¢" forr+1=1,2,--- ,(p—1,3);

(3) G = ®g(1°) = (a, a1, a2, a3, 4 | [viy 0] = g1, 0P = o) = Ozfﬂ =1(i=123)).
Here |Z(G)| = |{a4)| = p and

G/Z(G) = (o, a1,a9,a3 | [ag, ] = qjqpq,af = P = ag =1(=1,2))

i
is of order p* for all G € ®9. Note that G has an abelian normal subgroup N = (a1, a9, a3, o) of

index p for all G € ®g. Therefore, by Theorem (6.5 we have cd(G) = {1, p} for all G € @g.

Now consider p > 5. In this case

G/Z(G) ={a, a1, 00,03 | [, 0] = aiq1, 0P = =af =1 (i =1,2)).

Since N = (a1, g, a3, o) is a normal abelian subgroup of index p, every nonlinear irreducible charac-
ter of G must be induced from N and hence x(G\N) = 0 for all x € nl(G). Let K = (a3, a4). Now, let
x € Irr(G|Z(G)). Since |Z(G)| = p, x is faithful. Let ¢ be an irreducible constituent of x|%. Since x
is faithful, ¢ is not G-invariant. And hence by Clifford’s theorem, we have xl% = > 1 ¢i, where ¢ = ¢
and p is the index of the inertia group N of ¢ in G. Now (Z)ilIZ((G) = A\, where A € Irr(Z(G)) \ {17(¢)}
for each 1 < i < p. Therefore, by [7, Corollary 6.17], we have

(6.9) XE= > %1 =przc)¢1,
~velrr(K/Z(G))
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where pg/z(q) is the regular character of K/Z(G). Hence for each x € Irr(G|Z(G)), we have x (K \
Z(@)) = 0. Therefore,

malas) = Y xlas)+ > x(as)

x€lin(G) xenl(G)
= |G/Gs| + Z x(as) + Z x(a3) (Since ag € G2)
x€lrr(G|Z(Q)) xenl(G/Z(G))
= p*4+0—p (Use Lemma
(6.10) = p’—p

Now suppose G has a Johnson polynomial f(x) such that f(x) = 7, where x € nl(G). Therefore
x is faithful and x € Irr(G|Z(G)). By (6.9), we have x(a3) = 0 for all x € Irr(G|Z(G)). Now
by (6.10), we have f(0) = f(x(as)) = 7a(as) = p* — p. and since x(a) = 0 for all x € nl(G),
f(0) = f(x(a)) = 7q¢(a) = 0, which is a contradiction. Hence in the case of p > 5, G has no Johnson
polynomial.

Very similarly, for p = 3, one can show that G has no Johnson polynomial. This completes the proof

of this lemma. N
Lemma 6.11. If G € ®1g, then G has no Johnson polynomial.

Proof. Suppose that G € ®1p; these are defined as follows.

For p = 3:
(1) ®19(2111)ap = (o, a1, a2, a3, a4 | [i, o] = qip1, [ar, a0] = ag = a3, 0faz = aday = af = af =
1 (2 = 1,2,3)>;
2) ®19(2111)a1 = (o, a1, a9, a3, a4 | |, ] = a4a1, |ar, as 2 =2 = a3,a3a3 = aday = a3 =
+ 1 1 2 3
af =1 (i=1,2,3));
(3) @10(1%) = (a, a1, a0, a3,04 | [, 0] = a1, [a1, 0] = g, 0 = afag = a3ay = o = af =
1(i=1,2,3)).
For p > 5:
(1) ®10(2111)a, = (o, 01,0, a3,a4 | (o, 0] = ai+1,[a1,a2]k = a{j = al,df = afﬂ =10G=

1,2,3)) where k = ¢" forr+1=1,2,--- ,(p—1,4) and g is the smallest positive integer which
is primitive root mod p;

(2) ®10(2111)b, = (v, a1, 9,03, a4 | [, 0] = i1, [a1,a0)f = of = of a? = o =10=
1,2,3)) where k = g" forr+1=1,2,---,(p—1,3) and g is the smallest positive integer which
is primitive root mod p;

(3) @10(1%) = (a, 1, 2, a3, . | [, @] = g1, [o, o] = g, 0P = o = afﬂ =1(=1,2,3)).
Here |Z(G)[ = [{au)| = p and
G/Z(G) = (o, a1,a9,a3 | [, a] = qjqpq, 0P = ozl(p) =af=1(i=1,2)
is of order p* for all G € ®1y. Note that G has no abelian subgroup of index p for all G € ®;y. By
Lemma we have cd(G/Z(G)) = {1,p} C cd(G). Therefore from Theorem and Lemma we
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get cd(G) = {1,p,p*}. If x(1) = p?, then by Lemma X vanish outside Z(G) in G for all G in ®qp.
This shows that (G, Z(G)) is a Camina pair for all G in ®;9. Now consider the group G/Z(G) for
p =5,

G/Z(G) = (o, a1,a9,a3 | [a1,a] = a9, [ag, o] = az,af = azf = ozg = ozg =1)
Then
malae) = Y xla)+ D x(a2)
x€E€lin(G) x€nl(G@)
= |G/Go| + Z x(ag) + Z X(ag) (Since ay € Ga)
YEI(G|Z(Q)) xenl(G/Z(@))
= p*+0+ Z x(a2) (Since (G, Z(G)) is a Camina pair)
xenl(G/Z(@))
(6.11) = p’—p (Use Lemmal6.9)

Next suppose that G has a Johnson polynomial f(x) such that f(x) = 7@, where x € nl(G). Therefore
x is faithful and x € Irr(G|Z(G)). Since (G, Z(G)) is a Camina pair, x(g) = 0 for all g € G\ Z(G)
and xy € Irr(G|Z(G)). In particular, x(a) = x(a2) = 0. Now £(0) = f(x(a2)) = 7g(a2) = p*> — p
and f(0) = f(x(a)) = 7q¢(a) = 0, which is a contradiction. Hence in this case, G has no Johnson
polynomial.

Next, for p = 3, the group G/Z(G) is

G/Z(G) = (o, a1, 9,03 | [aq, 0] = ag, [ag, o] = as,a’ = oz:fozg = oz% = ag =1),

and one can use a very similar argument to show that G has no Johnson polynomial in this case also.

This completes the proof of the lemma. O
Finally, we may summarize the results of this section in the form of Theorem D.

Proof of Theorem D. As above, we use the list of nonabelian p-group of order p® given by R. James [8,
Section 4.5]. From Lemma and Proposition it is clear that if G has a Johnson polynomial then
Z(G) must be cyclic. The nonabelian p-groups of order p° with Z(G) cyclic occur in the isoclinism
family @y, @3, @5, 7, Pg, Py, and P1g (see [8 pages 620-621]). Therefore, the result follows from

Lemmata 5.6} 67 68, .10} and 11} 0

In view of the above results, it seems reasonable to pose the following conjecture for p-groups:
Conjecture: A p-group (with p odd) admits a Johnson polynomial if and only if Z(G) is cyclic and
G < Z(Q).
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