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Abstract. For a finite group G, we study the total character τG afforded by the direct sum of all the

non-isomorphic irreducible complex representations of G. We resolve for several classes of groups (the

Camina p-groups, the generalized Camina p-groups, the groups which admit (G,Z(G)) as a generalized

Camina pair), the problem of existence of a polynomial f(x) ∈ Q[x] such that f(χ) = τG for some

irreducible character χ of G. As a consequence, we completely determine the p-groups of order at most

p5 (with p odd) which admit such a polynomial. We deduce the characterization that these are the

groups G for which Z(G) is cyclic and (G,Z(G)) is a generalized Camina pair and, we conjecture that

this holds good for p-groups of any order.

1. Introduction

In this paper, G denotes a finite group. Let Irr(G) and nl(G) be the set of all irreducible characters

of G and the set of all nonlinear irreducible characters of G respectively. Then lin(G) = Irr(G)\nl(G)

is the set of linear characters of G. Suppose ρ is the direct sum of all the non-isomorphic irreducible

complex representations of G. The character τG afforded by ρ is called the total character of G, that

is, τG =
∑

χ∈Irr(G) χ. Since τG is stable under the action of the Galois group of the splitting field of

G, τG(g) ∈ Z for all g ∈ G.

The dimension τG(1) of ρ seems to have remarkable connections with the geometry of the group.

For instance, in the case of the symmetric group G = Sn, τG(1) is the number of involutions of Sn
([10]) and, in the case of G = GL(n, q), τG(1) is the number of symmetric matrices in GL(n, q) ([5]).
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It is a consequence of a well known theorem due to Burnside and Brauer ([7, Theorem 4.3]) that,

the total character of the group G is a constituent of 1 + χ + · · · + χm−1 if χ is a faithful character

which takes exactly m distinct values on G. S. M. Gagola, Jr. & M. L. Lewis classified (in [4]) all the

solvable groups for which τG equals χ2, for some χ ∈ Irr(G). A. Mann also studied the decomposition

of χ2 and proved:

“A nonabelian group G has a faithful irreducible character χ such that Irr(χ2) ⊆ lin(G) if and only if

|G′| = 2 and Z(G) is cyclic”.

Here, Irr(χ2) is the set of all irreducible constituents of χ2 ([1, Theorem 22.7]).

Motivated by this, K. W. Johnson raised the following question:

Does there exist an irreducible character χ of G and a monic polynomial f(x) ∈ Z[x] such that

f(χ) = τG? (see [18]).

The aim of the article is to answer a weaker version of this question for several classes of p-groups

including all p-groups of order at the most p5; we examine the existence of a polynomial f(x) ∈ Q[x]

and χ ∈ Irr(G) such that f(χ) = τG. We call such a polynomial f(x) ∈ Q[x], if it exists, a Johnson

polynomial of G. This problem has been studied for dihedral groups D2n in [18] where it is proved

that D2n has a Johnson polynomial if and only if 8 - n. To describe the classes of groups to which our

results apply, we recall some definitions.

A pair (G,N) is said to be a generalized Camina pair (abbreviated GCP) if N is normal in G and,

all nonlinear irreducible characters of G vanish outside N ([12]). There are a number of equivalent

conditions for (G,Z(G)) to be a GCP. An equivalent condition we will refer to is:

A pair (G,Z(G)) is a GCP if and only if for all g ∈ G \ Z(G), the conjugacy class of g in G is gG′.

In this case, one can easily observe that G′ ⊆ Z(G) and χ(1) = |G/Z(G)|1/2 for all χ ∈ nl(G). For

such types of groups, the first author and R. Sarma investigated (in [19]) the existence of a Johnson

polynomial. The following theorem was proved in [19].

Theorem 1.1. [19, Theorem 3.2] Let (G,Z(G)) be a GCP. Then G has a Johnson polynomial if and

only if Z(G) is cyclic. In fact, if Z(G) is cyclic then a Johnson polynomial of G is given by

f(x) = d2
r∑
j=1

(x/d)lj + d

m∑
j=1
l-j

(x/d)j ,

where d = |G/Z(G)|1/2, r = |Z(G)/G′|, m = |Z(G)| and l = |G′|. In particular, f(x) = d2(x/d)m +

d
∑m−1

j=1 (x/d)j when Z(G) is cyclic and Z(G) = G′.

Further, the above theorem was used by the authors in [19] to classify all the nonabelian p-groups

of order p4 (p an odd prime) which have a Johnson polynomial. The purpose of this article is to

examine the existence of a Johnson polynomial for p-groups of order greater than p4. In this direction,

we examine the family of Camina p-groups and generalized Camina groups. As a consequence, we are

able to obtain a complete classification of groups of order p5 which admit a Johnson polynomial.

A pair (G,N) is said to be a Camina pair if 1 < N < G is a normal subgroup of G and for every

element g ∈ G \N , gN ⊆ ClG(g), the conjugacy class of g. In the special case N = G′, the group G
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is said to be a Camina group. More generally, a group G is said to be a generalized Camina group if

ClG(g) = gG′ for every element g ∈ G \ G′Z(G). It is known (see [13]) that a nilpotent, generalized

Camina group G is isoclinic to Camina group which is a p-group; the prime p is said to be associated

to G.

Then, our main results can be stated as follows:

Theorem A. Let G be a Camina p-group. Then G has a Johnson polynomial if and only if the

nilpotency class of G is 2 and Z(G) is cyclic.

Theorem B. Let (G,Z(G)) be a Camina pair and let (G/Z(G), Z(G/Z(G))) be a generalized Camina

pair. Then G does not possess a Johnson polynomial.

Theorem C. Let G be a nilpotent, generalized Camina group with associated prime p. Then G has a

Johnson polynomial if and only if the nilpotency class of G is 2 and Z(G) is cyclic.

In the last section, we apply the above theorems to obtain the complete list of all groups of order

p5 (with p odd) which admit a Johnson polynomial. This is proved using case-by-case considerations

(using a description of all groups of order p5 by R. James ([8, Section 4.5])) but, in particular, we

deduce the following:

Theorem D. Let G be a nonabelian p-group of order p5 with p odd. Then G has a Johnson polynomial

if Z(G) is cyclic and (G,Z(G)) is a GCP.

In view of Theorem 1.1 and the above theorems, it seems reasonable to pose the following conjecture

for p-groups:

Conjecture: A nonabelian p-group (with p odd) admits a Johnson polynomial if and only if Z(G) is

cyclic and G′ ≤ Z(G).

2. Notations and Preliminaries

Throughout, Cn denotes the cyclic group of order n. Suppose G is a finite group. Then Z(G),

G′ = G2 and cd(G) denote respectively the center, the commutator subgroup and the set of irreducible

character degrees of G. If a, b ∈ G, then ba = b−1ab and [a, b] = a−1b−1ab. For g ∈ G, ClG(g) denotes

its conjugacy class {x−1gx : x ∈ G}. The nilpotency class of a nilpotent group G is the number n

such that Gn 6= 1 and Gn+1 = 1, where G2 = [G,G] = G′ and Gi+1 = [Gi, G] for i ≥ 2. Further, if

H is a subgroup of G and χ a character of G, χ↓H denotes the restriction of χ to H. Suppose N is a

normal subgroup of G. Then we denote by Irr(G|N) = Irr(G) \ Irr(G/N).

We start by recalling some basic results that we will need later.

Lemma 2.1. [7, Theorem 2.32]

(1) If G has a faithful irreducible character, then Z(G) is cyclic.

(2) If G is a p-group and Z(G) is cyclic, then G has a faithful irreducible character.
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Proposition 2.2. An abelian group has a Johnson polynomial if and only if it is cyclic. In fact, if G

is a cyclic group of order n then f(x) = 1+x+ · · ·+xn−1 is a Johnson polynomial of G and f(χ) = τG

for every faithful irreducible character of G.

Proof. Let f(x) be a Johnson polynomial of G. Suppose, to the contrary, G is non-cyclic. Then by

Lemma 2.1, ker(χ) 6= {1} for all χ ∈ Irr(G). Since G is an abelian group, τG is the regular character

of G. Hence

τG(g) =

{
|G| if g = 1,

0 otherwise.

Thus for g 6= 1 ∈ ker(χ), we have τG(g) = f(χ(g)) = f(χ(1)) = τG(1), which is a contradiction.

Conversely, let G = 〈a〉 be the cyclic group of order n. Set ζn = e
2πi
n and f(x) =

∑n−1
i=0 x

i. Consider

the linear character λ : G −→ C∗ defined by a 7→ ζn. Then λ is a faithful irreducible character and

f(λ) =
∑n−1

i=0 λ
i = τG. �

Lemma 2.3. Let G be a non-abelian group. Then
∑

χ∈lin(G) χ(g) = 0 for each g ∈ G \G2.

In this article, whenever we prove a certain group G does not possess a Johnson polynomial, we use

the following simple observation.

Proposition 2.4. Let χ be an irreducible character of G. If g1, g2 ∈ G are such that χ(g1) = χ(g2)

but τG(g1) 6= τG(g2), then there does not exist f(x) ∈ C[x] such that f(χ) = τG.

Proposition 2.5. Let G be a non-abelian group. Suppose f(x) ∈ Q[x] is a Johnson polynomial of G

and χ ∈ Irr(G) is such that f(χ) = τG. Then χ is a nonlinear faithful character.

Proof. Suppose f(x) ∈ Q[x] and χ ∈ lin(G). Since G is non-abelian, nl(G) is non-empty. Pick

ψ ∈ nl(G). Then the inner product of ψ with f(χ) is zero but with τG is 1. Hence f(χ) 6= τG.

Suppose f(x) ∈ Q[x] is a Johnson polynomial of G and χ ∈ nl(G) is such that f(χ) = τG with

ker(χ) 6= {1}. Since ∩χ∈Irr(G) ker(χ) = {1}, τG(1) 6= τG(g) for all g 6= 1 ∈ G. Take g 6= 1 ∈ ker(χ).

Then τG(1) = f(χ(1)) = f(χ(g)) = τG(g), which is a contradiction. �

3. Camina p-Groups

In this section, we investigate the existence question of a Johnson polynomial for Camina p-groups.

A. R. Camina in [2] initiated the study of these groups. We start by recalling the definition.

Definition 3.1. ([2]) Suppose N is a normal subgroup of G. A pair (G,N) is a Camina pair if

1 < N < G is a normal subgroup of G and for every element g ∈ G \N , gN ⊆ ClG(g).

It is clear that if (G,N) is a Camina pair and if H is normal in G and H ≤ N then (G/H,N/H)

is also a Camina pair. The following lemma gives a number of equivalent condition for a pair (G,N)

to be a Camina pair.

Lemma 3.2. [17, Lemma 3] Let N be a normal subgroup of G and let g ∈ G \N . Then following are

equivalent:
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(1) χ(g) = 0 for all χ ∈ Irr(G|N),

(2) |CG(g)| = |CG/N (gN)|,
(3) gN ⊆ ClG(g).

It is easy to see that if (G,N) is a Camina pair, then Z(G) ≤ N ≤ G′.
Camina groups have been studied by many authors [3, 15, 16]. By Lemma 3.2, it is clear that if G

is Camina group, then χ(g) = 0 for all χ ∈ nl(G) and g ∈ G \G′. In [3], Dark and Scoppola proved:

Theorem 3.3. ([3]) If G is a finite Camina p-group, then the nilpotency class of G is at most 3, i.e.,

G4 = {1}.

Lemma 3.4. [15, Corollary 2.3] Let G be a p-group of nilpotency class r. If (G,Gk) is a Camina

pair, then Gi/Gi+1 has exponent p for k − 1 ≤ i ≤ r.

Theorem 3.5. [15, Theorem 5.2] Let G be a Camina p-group of nilpotency class 3 and let |G/G2| =
pm, |G2/G3| = pn. Then

(1) (G,G3) is a Camina pair,

(2) m = 2n and n is even.

Corollary 3.6. [15, Corollary 5.3] If G is a Camina p-group of nilpotency class 3, then Z2(G) = G2

and Z(G) = G3.

Remarks on Camina p-groups of class 3.

Suppose G is a Camina p-group of nilpotency class 3. Then by Lemma 3.4, G/G2, G2/G3, and G3

are elementary abelian p-groups and by Corollary 3.6, we have G3 = Z(G). Now by Theorem 3.5, we

have (G,G3) is a Camina pair, |G/G2| = p2n, |G2/G3| = pn and |G/G3| = p3n where n is even. We

will show that nl(G) = Irr(G|G3) t nl(G/G3) and cd(G) = {1, pn, p3n/2}.

Take χ ∈ Irr(G|G3). Now χ↓G3
= χ(1)λ for some λ ∈ Irr(G3). Thus

|G| =
∑
g∈G
|χ(g)|2 =

∑
g∈G3

|χ(g)|2 ( since (G,G3) is a Camina pair)

=
∑
g∈G3

|χ(1)λ(g)|2

= χ(1)2|G3|.

Hence χ(1)2 = |G/G3| = p3n for all χ ∈ Irr(G|G3). Thus we have a bijection

Φ : Irr(G3) \ {1G3} −→ Irr(G|G3) defined by

Φ(λ)(g) :=

{
p3n/2λ(g) if g ∈ G3,

0 otherwise,
(3.1)
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where 1G3 is the trivial character of G3. Therefore |Irr(G|G3)| = |G3| − 1.

Since (G,G2) is a Camina pair, (G/G3, G2/G3) is also a Camina pair. By Corollary 3.6, we have

Z(G/G3) = Z2(G)/G3 = G2/G3 = [G/G3, G/G3]. Thus G/G3 is a Camina p-group of nilpotency

class 2. Now take χ ∈ nl(G/G3). Then χ↓G2/G3
= χ(1)λ for some λ ∈ Irr(G2/G3). Now

|G/G3| =
∑

gG3∈G/G3

|χ(gG3)|2 =
∑

gG3∈G2/G3

|χ(gG3)|2 ( since G/G3 is a Camina group)

=
∑

g∈G2/G3

|χ(1)λ(gG3)|2

= χ(1)2|G2/G3|.

Hence χ(1)2 = |G/G2| = p2n for all χ ∈ nl(G/G3). Thus we have a bijection

Ψ : Irr(G2/G3) \ {1G2/G3
} −→ nl(G/G3) such that

Ψ(λ)(g) :=

{
p3n/2(λ ◦ η)(g) if g ∈ G2,

0 otherwise,
(3.2)

where η : G −→ G/G3 is the natural homomorphism and 1G2/G3
is the trivial character of G2/G3.

Therefore we have |nl(G/G3)| = |G2/G3| − 1 = pn − 1. Now

|G| =
∑

χ∈Irr(G)

χ(1)2 = |G/G2|+ (|G3| − 1)|G/G3|+ (|G2/G3| − 1)|G/G2|.

This shows that nl(G) = Irr(G|G3) t nl(G/G3) as a disjoint union and cd(G) = {1, pn, p3n/2}.

Now, we can compute the total character of a Camina p-group of nilpotency class 3.

Proposition 3.7. Let G be a Camina p-group of nilpotency class 3. Then the total character τG is

given by,

τG(g) =


p2n + (|G3| − 1)p3n/2 + (pn − 1)pn if g = 1,

p2n − p3n/2 + (pn − 1)pn if g ∈ G3 \ {1},
p2n − pn if g ∈ G2 \G3,

0 otherwise.

(3.3)

Proof. By Theorem 3.5, we have |G/G2| = p2n, |G2/G3| = pn and |G/G3| = p3n where n is even. In

view of (3.1) and (3.2), we have all the nonlinear irreducible character of G. Hence, if g = 1, then

τG(1) =
∑

χ∈lin(G)

χ(1) +
∑

χ∈nl(G)

χ(1)

= p2n + (|G3| − 1)p3n/2 + (pn − 1)pn.

If g ∈ G \G2, then by Lemma 2.3 and (3.1), (3.2), we get

τG(g) =
∑

χ∈Irr(G)

χ(g) =
∑

χ∈lin(G)

χ(g) = 0.
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If g 6= 1 ∈ G3, then

τG(g) =
∑

χ∈lin(G)

χ(g) +
∑

χ∈nl(G)

χ(g)

= |G/G2|+
∑

χ∈Irr(G|G3)

χ(g) +
∑

χ∈nl(G/G3)

χ(g)

= p2n − p3n/2 + (pn − 1)pn (by (3.1) and (3.2)).

Finally, if g ∈ G2 \G3, then

τG(g) =
∑

χ∈lin(G)

χ(g) +
∑

χ∈nl(G)

χ(g)

= |G/G2|+
∑

χ∈Irr(G|G3)

χ(g) +
∑

χ∈nl(G/G3)

χ(g)

= p2n − pn (by (3.1) and (3.2)).

This completes the proof. �

Now, we are ready to characterize Camina p-groups which admit a Johnson polynomial (Theorem

A).

Proof of Theorem A. By Theorem 3.3, the nilpotency class of G is at most 3, i.e., G4 = 1. Suppose G

is of nilpotency class equal to 3. If Z(G) is not cyclic then by Lemma 2.1, G has no faithful irreducible

character. Therefore, from Proposition 2.5, G has no Johnson polynomial. Now suppose Z(G) is

cyclic and χ is a faithful irreducible character of G. Let f(x) ∈ C[x] with f(χ) = τG. From (3.1)

and (3.2), it is clear that χ ∈ Irr(G|G3) and χ(g) = 0 for all g ∈ G \ G3. Now take h ∈ G2 \ G3.

Then from (3.3), we have f(χ(h)) = f(0) = τG(h) = p2n − pn. If g ∈ G \ G2, then from (3.3), we

get f(χ(g)) = f(0) = τG(g) = 0. Therefore, we have a contradiction to the existence of a Johnson

polynomial.

Next suppose that nilpotency class of G is 2 i.e., 1 < G2 ≤ Z(G). Since G is a Camina group, each

nonlinear irreducible character of G vanishes outside G2. Therefore, G2 = Z(G). Thus (G,Z(G)) is a

generalized Camina pair and hence from Theorem 1.1, the proof is complete. �

4. Groups for which (G,Z(G)) is a Camina pair

In [14], M. L. Lewis began the study of those groups G for which (G,Z(G)) is a Camina pair and,

proved that such a group G must be a p-group for some prime p. The next lemma ([15, Lemma 2.1])

was proved by Macdonald in a more general setting where G is a p-group with (G,N) as a Camina

pair. In the case N = Z(G), this reduces to the following.

Lemma 4.1. ([15]) Let G be a p-group of nilpotency class r and let (G,Z(G)) be a Camina pair.

Then Z(G) = Gr.

Remarks on Irr(G|Z(G)) when (G,Z(G)) is a Camina pair.
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Suppose (G,Z(G)) is a Camina pair. Then by Lemma 3.2, χ(g) = 0 for all χ ∈ Irr(G|Z(G)) and for

all g ∈ G \ Z(G). Let 1Z(G) be the trivial character of Z(G). Now take any χ ∈ Irr(G|Z(G)). Then,

|G| =
∑
g∈G
|χ(g)|2 =

∑
g∈Z(G)

|χ(1)λ(g)|2,

where λ ∈ Irr(Z(G)) \ {1Z(G)}. Therefore, χ(1)2 = |G/Z(G)|. Hence we have a bijection

Φ : Irr(Z(G)) \ {1Z(G)} −→ Irr(G|Z(G)) such that

Φ(λ)(g) :=

{
|G/Z(G)|1/2λ(g) if g ∈ Z(g)

0 otherwise.
(4.1)

Proposition 4.2. Let (G,Z(G)) be a Camina pair and let (G/Z(G), Z(G/Z(G))) be a generalized

Camina pair. Then the total character τG is given by the following expressions:

τG(1) = |G/G2|+ (|Z(G)| − 1)|G/Z(G)|1/2 +m|G/Z2(G)|1/2, where m = |Z(G/Z(G))| − |Z2(G)/G2|;
τG(g) = |G/G2| − |G/Z(G)|1/2 + (|Z(G/Z(G))| − |Z2(G)/G2|)|G/Z2(G)|1/2 when 1 6= g ∈ Z(G);

τG(g) = |G/G2| − |Z2(G)/G2||G/Z2(G)|1/2 if g ∈ G2 \ Z(G);

τG(g) = 0 if g ∈ G \G2.

Proof. Since (G,Z(G)) is Camina pair, Irr(G|Z(G)) is given by (4.1). Therefore, there are |Z(G)| − 1

nonlinear irreducible characters of degree |G/Z(G)|1/2. It is given that (G/Z(G), Z(G/Z(G))) is a

generalized Camina pair. So,

[G/Z(G), G/Z(G)] = G2Z(G)/Z(G) ⊆ Z(G/Z(G) = Z2(G)/Z(G).

Since (G,Z(G)) is a Camina pair, Z(G) ⊆ G2. Hence G2Z(G)/Z(G) = G2/Z(G). There is a bijection

Ψ : Irr(Z(G/Z(G)) |G2/Z(G)) −→ nl(G/Z(G)) such that

Ψ(λ)(g) :=

{
|G/Z2(G)|1/2λ(g) if g ∈ Z(G)

0 otherwise
(4.2)

(see [19, Theorem 3.1]). Thus G has |Z(G/Z(G))| − |Z2(G)/G2| nonlinear irreducible characters with

Z(G) in their kernels and, degree of each such character is |G/Z2(G)|1/2. Now∑
χ∈lin(G)

χ(1)2 +
∑

χ∈Irr(G|Z(G))

χ(1)2 +
∑

χ∈nl(G/Z(G))

χ(1)2

= |G/G2|+ (|Z(G)| − 1)|G/Z(G)|+ (|Z(G/Z(G))| − |Z2(G)/G2|)|G/Z2(G)| = |G|.

This shows that nl(G) = Irr(G|Z(G)) t nl(G/Z(G)).

Since (G/Z(G), Z(G/Z(G))) is a generalized Camina pair, use [19, Proposition 3.1] to get,

τG/Z(G)(g) =


|G/G2|+m|G/Z2(G)|1/2 if g ∈ Z(G)

|G/G2| − |Z2(G)/G2|.|G/Z(G)|1/2 if g ∈ G2 \ Z(G)

0 otherwise,

(4.3)
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where m = |Z(G/Z(G))| − |Z2(G)/G2|. We use τG/Z(G) to calculate τG.

Next, if g = 1, then

τG(1) =
∑

χ∈lin(G)

χ(1) +
∑

χ∈Irr(G|Z(G))

χ(g) +
∑

χ∈nl(G/Z(G))

χ(g)

= |G/G2|+ (|Z(G)| − 1)|G/Z(G)|1/2 +m|G/Z2(G)|1/2,(4.4)

where m = |Z(G/Z(G))| − |Z2(G)/G2|.
If g 6= 1 ∈ Z(G), then by (4.1) and (4.2) we have

τG(g) =
∑

χ∈lin(G)

χ(g) +
∑

χ∈Irr(G|Z(G))

χ(g) +
∑

χ∈nl(G/Z(G))

χ(g)

= |G/G2| − |G/Z(G)|1/2 + (|Z(G/Z(G))| − |Z2(G)/G2|)|G/Z2(G)|1/2.(4.5)

If g ∈ G2 \ Z(G), then then by (4.1), (4.2) and (4.3), we have

τG(g) =
∑

χ∈lin(G)

χ(g) +
∑

χ∈Irr(G|Z(G))

χ(g) +
∑

χ∈nl(G/Z(G))

χ(g)

= |G/G2|+ 0− |Z2(G)/G2||G/Z2(G)|1/2.(4.6)

If g ∈ G \G2, then then by (4.1), (4.2) and (4.3), one can easily get that

τG(g) =
∑

χ∈lin(G)

χ(g) +
∑

χ∈Irr(G|Z(G))

χ(g) +
∑

χ∈nl(G/Z(G))

χ(g)

= 0.(4.7)

This completes the proof. �

Proof of Theorem B. In view of Proposition 2.4 and 4.2, G has no Johnson polynomial. �

5. Generalized Camina groups

In this section, we study the total character for a generalized Camina group and characterize those

groups which admit a Johnson polynomial. We begin by recalling the important notion of isoclinism

introduced by Philip Hall.

Definition 5.1. Let G, H be finite groups. G and H are said to be isoclinic if there exist isomorphisms

θ : G/Z(G) −→ H/Z(H) and φ : G2 −→ H2 such that

[θ(g1Z(G)), θ(g2Z(G))] = φ([g1Z(G), g2Z(G)]) for all g1, g2 ∈ G.

The notion of isoclinism was first introduced by P. Hall [6] who proved that two isoclinic nilpotent

groups have the same nilpotency class. It is also known that isoclinic groups of the same order have

the same character degrees. Recall:

Definition 5.2. ([13]) A group G is said to be a Generalized Camina group if ClG(g) = gG2 for every

g ∈ G \G2Z(G).
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This generalization of a Camina group was introduced by M. L. Lewis in [13]. It is clear from the

definition that if G is a generalized Camina group, then either G has nilpotence class 2 or G/Z(G) is

a Camina group. The author proved that G is a nilpotent generalized Camina group if and only if G

is isoclinic to a nilpotent Camina group H and H must be p-group ([13]). Lewis also pointed out that

a Camina group which is isoclinic to G will be a p-group for the same prime p; one calls p, the prime

associated to G.

Definition 5.3. Let N be a normal subgroup of G and let χ ∈ Irr(G). We say that χ is fully ramified

with respect to G/N if χ↓N = eθ and θ↑G = eχ for some θ ∈ Irr(N) and some integer e.

In [13], Lewis proved the following theorem:

Theorem 5.4. [13, Theorem 3] Let G be a nilpotent, generalized Camina group of nilpotency class 3.

Then following are true:

(1) G/G2Z(G), G2Z(G)/Z(G), and G3 = G2 ∩ Z(G) are elementary abelian p-groups for some

prime p.

(2) |G/G2Z(G)| = p2n and |G2Z(G)/Z(G)| = |G2/G3| = pn for some even integer n.

(3) cd(G) = {1, pn, p3n/2}.
(4) Z(G/G3) = G2Z(G)/G3 and G2Z(G)/G3 = G2/G3 × Z(G)/G3.

(5) Every character in nl(G/G3) is fully ramified with respect to G/G2Z(G) and every character

in Irr(G|G3) is fully ramified with respect to G/Z(G).

Remarks on Generalized Camina groups of nilpotency class 3.

Suppose G is a nilpotent, generalized Camina group of nilpotency class 3. Then from the above

theorem, we have |G/Z(G)| = p3n and one can observe that there are two bijections namely,

Φ1 : Irr(Z(G)|G3) −→ Irr(G|G3) such that

Φ1(λ)(g) :=

{
p3n/2λ(g) if g ∈ Z(G),

0 otherwise,
(5.1)

and

Ψ1 : Irr(G2Z(G)/G3 |G2/G3) −→ nl(G/G3) such that

Ψ1(λ)(g) :=

{
pn(λ ◦ η)(g) if g ∈ G2Z(G),

0 otherwise,
(5.2)

where η : G −→ G/G3 is the natural homomorphism. Therefore G has |Z(G)| − |Z(G)/G3| nonlinear

irreducible characters of degree p3n/2 and (|G2/G3| − 1)|Z(G)/G3| nonlinear irreducible characters of

degree pn, and nl(G) = Irr(G|G3) t nl(G/G3).
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Lemma 5.5. Let G be a generalized Camina group of nilpotency class 3. Then

∑
λ∈Irr(Z(G)|G3)

λ(g) =

{
−|Z(G)/G3| if g ∈ G3,

0 if g ∈ Z(G) \G3

(5.3)

and

∑
λ∈Irr(G2Z(G)/G3 |G2/G3)

λ(g) =


(pn − 1)|Z(G)/G3| if g ∈ G3,

−|Z(G)/G3| if g ∈ G2 \ Z(G),

0 otherwise,

(5.4)

where |G2/G3| = pn.

Proposition 5.6. Let G be a generalized Camina group of nilpotency class 3. Then the total character

τG is given by,

τG(g) =


|G/G2|+ rp3n/2 + (pn − 1)|Z(G)/G3|pn if g = 1,

|G/G2| − |Z(G)/G3|p3n/2 + (pn − 1)|Z(G)/G3|pn if g 6= 1 ∈ G3,

|G/G2| − |Z(G)/G3|pn if g ∈ G2 \ Z(G),

0 otherwise,

(5.5)

where r = |Z(G)| − |Z(G)/G3|.

Proof. If g = 1, then

τG(1) =
∑

χ∈lin(G)

χ(1) +
∑

χ∈nl(G)

χ(1)

= |G/G2|+ (|Z(G)| − |Z(G)/G3|)p3n/2 + (|G2/G3| − 1)|Z(G)/G3|pn

= |G/G2|+ (|Z(G)| − |Z(G)/G3|)p3n/2 + (pn − 1)|Z(G)/G3|pn.

If g 6= 1 ∈ G3, then

τG(g) =
∑

χ∈lin(G)

χ(g) +
∑

χ∈nl(G)

χ(g)

= |G/G2|+
∑

χ∈Irr(G|G3)

χ(g) +
∑

χ∈nl(G/G3)

χ(g).

Now use (5.1), (5.2) and Lemma 5.5 to get

τG(g) = |G/G2| − |Z(G)/G3|p3n/2 + (|G2/G3| − 1)|Z(G)/G3|pn.

If g ∈ Z(G) \G3, then

τG(g) =
∑

χ∈lin(G)

χ(g) +
∑

χ∈nl(G)

χ(g)

= 0 +
∑

χ∈Irr(G|G3)

χ(g) +
∑

χ∈nl(G/G3)

χ(g) (by Lemma 2.3)

= 0 (use (5.1), (5.2) and Lemma 5.5).
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If g ∈ G2 \ Z(G), then

τG(g) =
∑

χ∈lin(G)

χ(g) +
∑

χ∈nl(G)

χ(g)

= |G/G2|+
∑

χ∈Irr(G|G3)

χ(g) +
∑

χ∈nl(G/G3)

χ(g)

= |G/G2| − |Z(G)/G3|pn (use (5.1), (5.2) and Lemma 5.5).

If g ∈ G2Z(G) but neither in G2 nor in Z(G), then

τG(g) =
∑

χ∈lin(G)

χ(g) +
∑

χ∈nl(G)

χ(g)

= 0 +
∑

χ∈Irr(G|G3)

χ(g) +
∑

χ∈nl(G/G3)

χ(g) (by Lemma 2.3)

= 0 (use (5.1), (5.2) and Lemma 5.5).

Finally, if g ∈ G \G2Z(G), then by Lemma 2.3, (5.1) and (5.2), we get

τG(g) =
∑

χ∈Irr(G)

χ(g) =
∑

χ∈lin(G)

χ(g) = 0.

This completes the proof. �

We can now characterize nilpotent, generalized Camina groups (Theorem C).

Proof of Theorem C. Let G be a nilpotent, generalized Camina group with associated prime p. If

p = 2, then G has nilpotency class 2 and for p odd, G has nilpotency class at most 3 (see [13, Theorem

2]). Now if nilpotency class is 2, then (G,Z(G)) is a generalized Camina pair and hence the result

follows from Theorem 1.1.

Next suppose G has nilpotency class 3. If Z(G) is not cyclic then by Lemma 2.1, G has no faithful

irreducible character. Therefore from Proposition 2.5, G has no Johnson polynomial. Now suppose

Z(G) is cyclic. Therefore G has a faithful irreducible character χ (say). Let f(x) be a Johnson

polynomial and let f(χ) = τG. From (5.1) and (5.2), it is clear that χ ∈ Irr(G|G3). Then, in view of

Proposition 2.4 and 5.6, G has no Johnson polynomial.

This completes the proof. �

6. p-groups of order p5

In this final section, we completely classify the groups of order p5 (for p odd) which admit a Johnson

polynomial. Throughout this section p always denotes an odd prime. We will use not only the results

of the previous sections but, more crucially, also use the classification of groups of order p5 by R.

James ([8, Section 4.5]).

We begin by recalling some well known results which we will use.
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Theorem 6.1. [1, Theorem 22.5] If G is a nonabelian p-group with cd(G) = {1, p}, then exactly one

of the following holds:

(1) G has an abelian subgroup of index p,

(2) G/Z(G) is of order p3 and exponent p.

Lemma 6.2. [7, Lemma 2.9] Let H be a subgroup of G. Suppose χ is a character of G. Then

〈χ↓H , χ↓H〉 ≤ |G/H|〈χ, χ〉

with equality if and only if χ(g) = 0 for all g ∈ G \H.

Lemma 6.3. [1, Theorem 20 ] If G is a p-group, then for each χ ∈ Irr(G), χ(1)2 divides |G/Z(G)|.

Here is an easy consequence of the above lemma.

Lemma 6.4. Let G be a non-abelian group of order p4. Then cd(G) = {1, p}.

Proof. Since Z(G) 6= 1, |Z(G)| = p or p2. Therefore |G/Z(G)| = p3 or p2. So by Lemma 6.3, the

result follows. �

Theorem 6.5. [7, Theorem 6.15] Let H be an abelian normal subgroup of G. Then χ(1) divides

|G/H| for all χ ∈ Irr(G).

As mentioned at the outset of this section, we will use the classification of groups of order p5

by R. James ([8, Section 4.5]). More particularly, we will use the list of polycyclic presentations of

these groups that the author compiled, and divided the non-abelian ones into families denoted by

Φ1, · · · ,Φ10, according to isoclinism.

Lemma 6.6. If G ∈ X = {Φ2(41),Φ2(311)b,Φ5(2111),Φ5(15)} (see [8, Section 4.5]), then G has a

Johnson polynomial.

Proof. First we consider the isoclinism family Φ2. There are two type of groups in this family with

Z(G) cyclic namely,

G = Φ2(41) = 〈α, α1, α2 | [α1, α] = αp
3

= α2, α
p
1 = αp2 = 1〉 and

H = Φ2(311)b = 〈α, α1, α2, γ | [α1, α] = γp
2

= α2, α
p = αp1 = αp2 = 1〉.

Here |Z(G)| = |〈αp〉| = p3, |G2| = |〈αp3〉| = p,|Z(H)| = |〈γp〉| = p3, |H2| = |〈γp2〉| = p. By Lemma

6.3, we have cd(G) = {1, p} and cd(H) = {1, p}. Now by Lemma 6.2 it is clear that (G,Z(G)) and

(H,Z(H)) are generalized Camina pair. Hence by Theorem 1.1, G and H have a Johnson polynomial.

Now we discuss the isoclinism family Φ5. There are only two type of groups in this family and both

have cyclic center. Here are the groups:

(1) Φ5(2111) = 〈α1, α2, α3, α4, β | [α1, α2] = [α3, α4] = αp1 = β, αp2 = αp3 = αp4 = βp = 1〉;
(2) Φ5(15) = 〈α1, α2, α3, α4, β | [α1, α2] = [α3, α4] = β, αp1 = αp2 = αp3 = αp4 = βp = 1〉.



60 Int. J. Group Theory 3 no. 3 (2014) 47-67 S. K. Prajapati and B. Sury

Note that both Φ5(2111) and Φ5(15) are extra-special p-groups. Therefore for these two groups

(G,Z(G)) is a GCP (see [9, Theorem 2.18]). Since G is an extra-special p-group, Z(G) = G2 and

|Z(G)| = p. Therefore by Theorem 1.1, the polynomial

f(x) = pn
p−1∑
j=1

(x/pn)j + p2n(x/pn)p

is a Johnson polynomial of G and f(χ) = τG for every χ ∈ nl(G), where G ∈ Φ5. �

Lemma 6.7. If G in the isoclinism family Φ3, then G has no Johnson polynomial.

Proof. Let G ∈ Φ3. There are two type of groups in this family with Z(G) cyclic namely, Φ3(2111)c

and Φ3(311)br (see [8, Section 4.5]). For p = 3 and p ≥ 5, we define these groups separately.

(1) G = Φ3(2111)c = 〈α, α1, α2, α3, γ | [α1, α] = α2, [α2, α] = γp = α3, α
p = αp1α3 = αp2 = αp3 = 1〉

for p = 3;

(2) H = Φ3(2111)c = 〈α, α1, α2, α3, γ | [α1, α] = α2, [α2, α] = γp = α3, α
p = αpi = 1 (i = 1, 2, 3)〉

for p ≥ 5;

(3) K = Φ3(311)br = 〈α, α1, α2, α3 | [α1, α] = α2, [α2, α]r = αp
2

1 = α3, α
p = αp2 = αp3 = 1〉 for r = 1

or ν, where ν is a fixed quadratic non-residue mod p, and p ≥ 3.

Observe that |Z(G)| = |〈γ〉| = p2, |Z(H)| = |〈γ〉| = p2 and |Z(K)| = |〈αp1〉| = p2.

First we will deal with H. Consider a normal abelian subgroup

N = 〈α1, α2, γ | [α1, α] = α2, [α2, α] = γp, αpi = γp
2

= 1 (i = 1, 2)〉

of H of index p. By Theorem 6.5, cd(H) = {1, p}. Since N is a normal abelian subgroup of index p,

every nonlinear irreducible characters of H must be induced from N and hence χ(H \N) = 0 for all

χ ∈ nl(H). Now

H := H/Z(H) = 〈α, α1, α2 | [α1, α] = α2, α
p = αpi = 1 (i = 1, 2)〉

is an extra-special p-group of order p3. Therefore, H has p−1 nonlinear irreducible characters of each

of degree p which vanish out side Z(H) in H and on Z(H) it is pλ, where λ ∈ Irr(Z(H)) \ {1Z(H)}.
In particular, H has p− 1 nonlinear irreducible characters which contains Z(H) in their kernel.

Take Q = 〈γp〉. Then Irr(H|Z(H)) = Irr(H/Q|Z(H)/Q) t Irr(H|Q). Now, suppose χ ∈ Irr(H|Q).

Then χ is faithful. Let φ be an irreducible constituent of χ↓HM , where M = 〈α2, γ〉. Since χ is faithful,

φ is not H-invariant. Therefore, by Clifford’s theorem χ↓HM =
∑p

1 φi, where φ1 = φ and p is the index

of the inertia group N of φ in H. Now φi↓MZ(H) = λ, where λ ∈ Irr(Z(H))\{1Z(H)} for each 1 ≤ i ≤ p.
Therefore, by [7, Corollary 6.17], we have

χ↓HM =
∑

σ∈Irr(M/Z(H))

σφ1 = ρM/Z(H)φ1,(6.1)

where ρM/Z(H) is the regular character of M/Z(H). Hence for each χ ∈ Irr(H|Q), we have χ(M \
Z(H)) = 0.
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Next, we consider χ ∈ Irr(H/Q|Z(H)/Q), where H/Q = 〈α, α1, α2, γ | [α1, α] = α2, α
p = γp =

αpi = 1 (i = 1, 2)〉 and Z(H/Q) = M/Q. Since (H/Q,Z(H/Q)) is a generalized Camina pair,

χ(α2) = pλ(α2), where λ ∈ Irr(Z(H/Q)) \ Irr(Z(H/Q)/(H/Q)2) (see [19, Theorem 3.1]).

But then

τH(α2) =
∑

χ∈lin(H)

χ(α2) +
∑

χ∈Irr(H/Z(H))

χ(α2) +
∑

χ∈nl(H|Z(H))

χ(α2)

= |H/H2|+
∑

λ∈Z(H)\{1Z(H)}

pλ(α2) +
∑

χ∈Irr(H|Q)

χ(α2) +
∑

χ∈Irr(H/Q|Z(H)/Q)

χ(α2)

= p3 − p+ 0− p2 + p

= p3 − p2.(6.2)

Now suppose H has a Johnson polynomial f(x) such that f(χ) = τH , where χ ∈ nl(H). Therefore χ is

faithful and χ ∈ Irr(H|Q). Now f(0) = f(χ(α2)) = τH(α2) = p3−p2 and f(0) = f(χ(α)) = τH(α) = 0.

The resultant contradiction proves that H can have no Johnson polynomial.

One can use a very similar argument to show that neither G nor K can have a Johnson polynomial. �

Lemma 6.8. If G in the isoclinism family Φ7 or Φ8, then G has no Johnson polynomial.

Proof. Suppose G is in the isoclinism family Φ7. For p = 3 and p ≥ 5, we will define these groups

separately.

For p = 3:

(1) G = Φ7(2111)a = 〈α, α1, α2, α3, β | [αi, α] = αi+1, [α1, β] = α3 = α3, α3
1α3 = α3

i+1 = β3 =

1 (i = 1, 2)〉;
(2) G = Φ7(2111)b1 = 〈α, α1, α2, α3, β | [αi, α] = αi+1, [α1, β] = α3, α

3
1 = α3 = α3

i+1 = β3 = 1 (i =

1, 2)〉;
(3) G = Φ7(2111)b2 = 〈α, α1, α2, α3, β | [αi, α] = αi+1, [α1, β]2 = α2

3, α
3
1 = α3, α

3 = α3
i+1 = β3 =

1 (i = 1, 2)〉;
(4) G = Φ7(2111)c = 〈α, α1, α2, α3, β | [αi, α] = αi+1, [α1, β] = α3 = β3, α3 = α3

1α3 = α3
i+1 =

1 (i = 1, 2)〉;
(5) G = Φ7(15) = 〈α, α1, α2, α3, β | [αi, α] = αi+1, [α1, β] = α3, α

3 = α3
1α3 = α3

i+1 = β3 = 1 (i =

1, 2)〉.

For p ≥ 5:

(1) G = Φ7(2111)a = 〈α, α1, α2, α3, β | [αi, α] = αi+1, [α1, β] = α3 = αp, αp1 = αpi+1 = βp = 1 (i =

1, 2)〉;
(2) G = Φ7(2111)b1 = 〈α, α1, α2, α3, β | [αi, α] = αi+1, [α1, β] = α3 = αp1, α

p = αpi+1 = βp = 1 (i =

1, 2)〉;
(3) G = Φ7(2111)bν = 〈α, α1, α2, α3, β | [αi, α] = αi+1, [α1, β]ν = αν3 = αp1, α

p = αpi+1 = βp =

1 (i = 1, 2)〉 where ν is a fixed quadratic non-residue mod p and 2 ≤ ν ≤ p− 1;
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(4) G = Φ7(2111)c = 〈α, α1, α2, α3, β | [αi, α] = αi+1, [α1, β] = α3 = βp, αp = αp1 = αpi+1 = 1 (i =

1, 2)〉;
(5) G = Φ7(15) = 〈α, α1, α2, α3, β | [αi, α] = αi+1, [α1, β] = α3, α

p = αp1 = αpi+1 = βp = 1 (i =

1, 2)〉.

It is clear that |Z(G)| = |〈α3〉| = p and

G/Z(G) = H ×K = 〈α, α1, α2 | [α1, α] = α2, α
p = αp1 = αp2 = 1〉 × 〈β〉

is of order p4 for all G ∈ Φ7, where H is extra-special p-group of order p3 and K is a cyclic group

of order p. Hence, by Lemma 6.4, we have cd(G/Z(G)) = {1, p} ⊆ cd(G). Since G has no abelian

subgroup of index p for all G ∈ Φ7, from Theorem 6.1 and Lemma 6.3 we get cd(G) = {1, p, p2}.
From Lemma 6.2 it is easy to observe that if χ(1) = p2, then χ(g) = 0 for all g ∈ G \ Z(G). Hence

(G,Z(G)) is a Camina pair. Since H is a extra-special p-group, every nonlinear irreducible character

φ of H vanishes outside Z(H) = 〈α2〉 in H and φ↓HZ(H) = pλ for some λ ∈ Irr(Z(H)) \ {1Z(H)}, where

1Z(H) is the trivial character of Z(H). Hence

nl(G/Z(G)) = {φ× ψ | φ ∈ nl(H), ψ ∈ Irr(K)}.

Now if g = α2, then

τG(α2) =
∑

χ∈lin(G)

χ(g) +
∑

χ∈Irr(G|Z(G))

χ(g) +
∑

χ∈nl(G/Z(G))

χ(g)

= |G/G2|+ 0 +
∑

φ∈nl(H)
ψ∈Irr(K)

(φ× ψ)(α2) ((G,Z(G)) is a Camina pair)

= p3 +
∑

λ∈Irr(Z(H))\{1Z(H)},
ψ∈Irr(K)

(pλ× ψ)(α2) (H is a extra-special group)

= p3 + p
∑

λ∈Irr(Z(H))\{1Z(H)}

pλ(α2)

= p3 − p2.(6.3)

Since (G,Z(G)) is a Camina pair and H is a extra-special group,

τG(g) =
∑

χ∈lin(G)

χ(g) +
∑

χ∈Irr(G|Z(G))

χ(g) +
∑

χ∈nl(G/Z(G))

χ(g) = 0(6.4)

for all g ∈ H \ Z(H). Now suppose G has a Johnson polynomial f(x) such that f(χ) = τG, where

χ ∈ nl(G). Therefore χ is faithful and χ ∈ Irr(G|Z(G)). Since χ ∈ Irr(G|Z(G)), χ(g) = 0 for all

g ∈ G \ Z(G). In particular, χ(α1) = χ(α2) = 0. Now f(0) = f(χ(α2)) = τG(α2) = p3 − p2 whereas

f(0) = f(χ(α1)) = τG(α1) = 0, which is a contradiction. Thus, G cannot have a Johnson polynomial.

Next suppose G is in the isoclinism family Φ8;

G := Φ8(32) = 〈α1, α2, β | [α1, α2] = β = αp1, β
p2 = αp

2

2 = 1〉. Here |Z(G)| = |〈αp
2

1 〉| = p and

G/Z(G) = 〈α1, α2 | [α1, α2] = αp1, α
p2

1 = αp
2

2 = 1〉



Int. J. Group Theory 3 no. 3 (2014) 47-67 S. K. Prajapati and B. Sury 63

is of order p4. To show that cd(G) = {1, p, p2}, we may use the same argument as we do for the groups

in the family Φ7; hence we skip the details. Now one can observe that (G,Z(G)) is a Camina pair and

(G/Z(G), Z(G/Z(G))) is a generalized Camina pair. Therefore, by Theorem B, G has no Johnson

polynomial. �

Lemma 6.9. Let

H = 〈α, α1, α2, α3 | [α1, α] = α2, [α2, α] = α3, α
p = αp1 = αp2 = αp3 = 1〉.

Then, H is a group of order p4 for an odd prime p ≥ 5 and∑
χ∈nl(H)

χ(α2) =
∑

χ∈nl(H)

χ(α3) = −p.

Proof. Observe that Z(H) = 〈α3〉 and H2 = 〈α2, α3〉. Since H has a normal abelian subgroup

N = 〈α1, α2, α3〉 = 〈α1〉 × 〈α2〉 × 〈α3〉 of order p3, by Theorem 6.5, cd(H) = {1, p}. Now, if we

consider the group

H := H/Z(H) = 〈α, α1, α2 | [α1, α] = α2, α
p = αp1 = αp2 = 1〉,

we see that it is an extra-special p-group of order p3. Therefore, H has p − 1 nonlinear irreducible

characters of degree p which vanish outside Z(H) = 〈α2〉 and, for χ ∈ nl(H), we have

(6.5) χ↓Z(H) = pλ

for some λ ∈ Irr(Z(H)) \ {1Z(H)}. In particular, we have all the nonlinear irreducible characters of H

having Z(H) in their kernel. Now, let ψ ∈ Irr(H|Z(H)). Since |Z(H)| = p, ψ is faithful and hence

φ is not H-invariant, where φ is an irreducible constituent of ψ↓HH2
. Therefore, by Clifford’s theorem

ψ↓HH2
=

∑p
1 φi, where φ1 = φ and p is the index of the inertia group N of φ in H. Now φi↓H2

Z(H) = λ,

where λ ∈ Irr(Z(H)) \ {1Z(H)} for each 1 ≤ i ≤ p. Therefore, by [7, Corollary 6.17], we have

ψ↓HH2
=

∑
β∈Irr(H2/Z(H))

βφ1 = ρH2/Z(H)φ1,(6.6)

where ρH2/Z(H) is the regular character of H2/Z(H). Hence for each ψ ∈ Irr(H|Z(H)), we have

ψ(H2 \ Z(H)) = 0.

Now ∑
χ∈nl(H)

χ(α2) =
∑

χ∈nl(H/Z(H))

χ(α2) +
∑

χ∈Irr(H|Z(H))

χ(α2)

=
∑

λ∈Irr(Z(K))\{1Z(K)}

pλ(α2) +
∑

χ∈Irr(H|Z(H))

χ(α2) (Use (6.5))

= −p+ 0 = −p(6.7)
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and ∑
χ∈nl(H)

χ(α3) =
∑

χ∈nl(H/Z(H))

χ(α3) +
∑

χ∈Irr(H|Z(H))

χ(α3)

= p(p− 1) +
∑

χ∈Irr(H|Z(H))

χ(α3) (Since χ(α3) = p for all χ ∈ nl(H))

= p(p− 1)− p2 = −p(6.8)

This completes the proof of the lemma. �

Lemma 6.10. If G ∈ Φ9, then G has no Johnson polynomial.

Proof. Suppose G is in the isoclinism family Φ9; these are defined as follows. For p = 3:

(1) G = Φ9(2111)a = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, α
3 = α4, α

3
1α3 = α3

2α4 = α3
3 = α3

4 = 1 (i =

1, 2, 3)〉;
(2) G = Φ9(2111)b0 = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, α

3
1α3 = α4, α

3 = α3
2α4 = α3

3 = α3
4 = 1 (i =

1, 2, 3)〉;
(3) G = Φ9(15) = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, α

3 = α3
1α3 = α3

2α4 = α3
3 = α3

4 = 1 (i =

1, 2, 3)〉.

For p ≥ 5:

(1) G = Φ9(2111)a = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, α
p = α4, α

p
1 = αpi+1 = 1 (i = 1, 2, 3)〉;

(2) G = Φ9(2111)br = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, α
p
1 = αk4 , α

p = αpi+1 = 1 (i = 1, 2, 3)〉
where k = gr for r + 1 = 1, 2, · · · , (p− 1, 3);

(3) G = Φ9(15) = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, α
p = αp1 = αpi+1 = 1 (i = 1, 2, 3)〉.

Here |Z(G)| = |〈α4〉| = p and

G/Z(G) = 〈α, α1, α2, α3 | [αi, α] = αi+1, α
p = α

(p)
i = αp3 = 1 (i = 1, 2)〉

is of order p4 for all G ∈ Φ9. Note that G has an abelian normal subgroup N = 〈α1, α2, α3, α4〉 of

index p for all G ∈ Φ9. Therefore, by Theorem 6.5, we have cd(G) = {1, p} for all G ∈ Φ9.

Now consider p ≥ 5. In this case

G/Z(G) = 〈α, α1, α2, α3 | [αi, α] = αi+1, α
p = αpi = αp3 = 1 (i = 1, 2)〉.

Since N = 〈α1, α2, α3, α4〉 is a normal abelian subgroup of index p, every nonlinear irreducible charac-

ter of G must be induced from N and hence χ(G\N) = 0 for all χ ∈ nl(G). Let K = 〈α3, α4〉. Now, let

χ ∈ Irr(G|Z(G)). Since |Z(G)| = p, χ is faithful. Let φ be an irreducible constituent of χ↓GK . Since χ

is faithful, φ is not G-invariant. And hence by Clifford’s theorem, we have χ↓GK =
∑p

1 φi, where φ1 = φ

and p is the index of the inertia group N of φ in G. Now φi↓KZ(G) = λ, where λ ∈ Irr(Z(G)) \ {1Z(G)}
for each 1 ≤ i ≤ p. Therefore, by [7, Corollary 6.17], we have

χ↓GK =
∑

γ∈Irr(K/Z(G))

γφ1 = ρK/Z(G)φ1,(6.9)
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where ρK/Z(G) is the regular character of K/Z(G). Hence for each χ ∈ Irr(G|Z(G)), we have χ(K \
Z(G)) = 0. Therefore,

τG(α3) =
∑

χ∈lin(G)

χ(α3) +
∑

χ∈nl(G)

χ(α3)

= |G/G2|+
∑

χ∈Irr(G|Z(G))

χ(α3) +
∑

χ∈nl(G/Z(G))

χ(α3) (Since α3 ∈ G2)

= p2 + 0− p (Use Lemma 6.9)

= p2 − p(6.10)

Now suppose G has a Johnson polynomial f(x) such that f(χ) = τG, where χ ∈ nl(G). Therefore

χ is faithful and χ ∈ Irr(G|Z(G)). By (6.9), we have χ(α3) = 0 for all χ ∈ Irr(G|Z(G)). Now

by (6.10), we have f(0) = f(χ(α3)) = τG(α3) = p2 − p. and since χ(α) = 0 for all χ ∈ nl(G),

f(0) = f(χ(α)) = τG(α) = 0, which is a contradiction. Hence in the case of p ≥ 5, G has no Johnson

polynomial.

Very similarly, for p = 3, one can show that G has no Johnson polynomial. This completes the proof

of this lemma. �

Lemma 6.11. If G ∈ Φ10, then G has no Johnson polynomial.

Proof. Suppose that G ∈ Φ10; these are defined as follows.

For p = 3:

(1) Φ10(2111)a0 = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, [α1, α2] = α4 = α3, α3
1α3 = α3

2α4 = α3
3 = α3

4 =

1 (i = 1, 2, 3)〉;
(2) Φ10(2111)a1 = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, [α1, α2]2 = α2

4 = α3, α3
1α3 = α3

2α4 = α3
3 =

α3
4 = 1 (i = 1, 2, 3)〉;

(3) Φ10(15) = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, [α1, α2] = α4, α
3 = α3

1α3 = α3
2α4 = α3

3 = α3
4 =

1 (i = 1, 2, 3)〉.

For p ≥ 5:

(1) Φ10(2111)ar = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, [α1, α2]k = αk4 = αp, αp1 = αpi+1 = 1 (i =

1, 2, 3)〉 where k = gr for r+ 1 = 1, 2, · · · , (p−1, 4) and g is the smallest positive integer which

is primitive root mod p;

(2) Φ10(2111)br = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, [α1, α2]k = αk4 = αp1, α
p = αpi+1 = 1 (i =

1, 2, 3)〉 where k = gr for r+ 1 = 1, 2, · · · , (p−1, 3) and g is the smallest positive integer which

is primitive root mod p;

(3) Φ10(15) = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, [α1, α2] = α4, α
p = αp1 = αpi+1 = 1 (i = 1, 2, 3)〉.

Here |Z(G)| = |〈α4〉| = p and

G/Z(G) = 〈α, α1, α2, α3 | [αi, α] = αi+1, α
p = α

(p)
i = αp3 = 1 (i = 1, 2)〉

is of order p4 for all G ∈ Φ10. Note that G has no abelian subgroup of index p for all G ∈ Φ10. By

Lemma 6.4, we have cd(G/Z(G)) = {1, p} ⊆ cd(G). Therefore from Theorem 6.1 and Lemma 6.3 we
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get cd(G) = {1, p, p2}. If χ(1) = p2, then by Lemma 6.2, χ vanish outside Z(G) in G for all G in Φ10.

This shows that (G,Z(G)) is a Camina pair for all G in Φ10. Now consider the group G/Z(G) for

p ≥ 5,

G/Z(G) = 〈α, α1, α2, α3 | [α1, α] = α2, [α2, α] = α3, α
p = αp1 = αp2 = αp3 = 1〉.

Then

τG(α2) =
∑

χ∈lin(G)

χ(α2) +
∑

χ∈nl(G)

χ(α2)

= |G/G2|+
∑

χ∈Irr(G|Z(G))

χ(α2) +
∑

χ∈nl(G/Z(G))

χ(α2) (Since α2 ∈ G2)

= p2 + 0 +
∑

χ∈nl(G/Z(G))

χ(α2) (Since (G,Z(G)) is a Camina pair)

= p2 − p (Use Lemma 6.9)(6.11)

Next suppose that G has a Johnson polynomial f(x) such that f(χ) = τG, where χ ∈ nl(G). Therefore

χ is faithful and χ ∈ Irr(G|Z(G)). Since (G,Z(G)) is a Camina pair, χ(g) = 0 for all g ∈ G \ Z(G)

and χ ∈ Irr(G|Z(G)). In particular, χ(α) = χ(α2) = 0. Now f(0) = f(χ(α2)) = τG(α2) = p2 − p
and f(0) = f(χ(α)) = τG(α) = 0, which is a contradiction. Hence in this case, G has no Johnson

polynomial.

Next, for p = 3, the group G/Z(G) is

G/Z(G) = 〈α, α1, α2, α3 | [α1, α] = α2, [α2, α] = α3, α
3 = α3

1α3 = α3
2 = α3

3 = 1〉,

and one can use a very similar argument to show that G has no Johnson polynomial in this case also.

This completes the proof of the lemma. �

Finally, we may summarize the results of this section in the form of Theorem D.

Proof of Theorem D. As above, we use the list of nonabelian p-group of order p5 given by R. James [8,

Section 4.5]. From Lemma 2.1 and Proposition 2.5, it is clear that if G has a Johnson polynomial then

Z(G) must be cyclic. The nonabelian p-groups of order p5 with Z(G) cyclic occur in the isoclinism

family Φ2,Φ3,Φ5,Φ7,Φ8,Φ9, and Φ10 (see [8, pages 620-621]). Therefore, the result follows from

Lemmata 6.6, 6.7, 6.8, 6.10, and 6.11. �

In view of the above results, it seems reasonable to pose the following conjecture for p-groups:

Conjecture: A p-group (with p odd) admits a Johnson polynomial if and only if Z(G) is cyclic and

G′ ≤ Z(G).
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