

International Journal of Group Theory

ISSN (print): 2251-7650, ISSN (on-line): 2251-7669 Vol. 3 No. 4 (2014), pp. 13-16. © 2014 University of Isfahan

www.ui.ac.ir

THE UNIT GROUP OF ALGEBRA OF CIRCULANT MATRICES

N. MAKHIJANI*, R. K. SHARMA AND J. B. SRIVASTAVA

Communicated by Evgeny Vdovin

ABSTRACT. Let $Cr_n(F)$ denote the algebra of $n \times n$ circulant matrices over the field F. In this paper, we study the unit group of $Cr_n(\mathbb{F}_{p^m})$, where \mathbb{F}_{p^m} denotes the Galois field of order p^m , p prime.

1. Introduction

Throughout this paper, all the rings considered are associative with identity $1 \neq 0$. The set of all invertible elements of a ring R form a group $\mathcal{U}(R)$, called the unit group of R. Let RG be the group ring of the group G over the ring R. A lot is known about the unit group of group rings of finite groups [1, 2, 3, 4, 5, 6, 7, 8, 12, 13].

A circulant matrix over the ring R is an $n \times n$ matrix of the form

$$circ(\alpha_0, \dots, \alpha_{n-1}) = \begin{pmatrix} \alpha_0 & \alpha_1 & \alpha_2 & \cdots & \alpha_{n-1} \\ \alpha_{n-1} & \alpha_0 & \alpha_1 & \cdots & \alpha_{n-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha_1 & \alpha_2 & \alpha_3 & \cdots & \alpha_0 \end{pmatrix}, \ \alpha_i \in R$$

Let $C_n = \langle a \mid a^n \rangle$. The idea that any element of the group ring RC_n can be written as a circulant matrix over R was introduced by Hurley in [7]. In fact, if $Cr_n(R)$ is the ring of $n \times n$ circulant matrices over R, then

$$\sigma: RC_n \to Cr_n(R)$$

MSC(2010): Primary: 16U60; Secondary: 20C05.

Keywords: Group Algebra, Unit Group, Circulant Matrices.

Received: 24 October 2013, Accepted: 7 March 2014.

 $* Corresponding \ author.\\$

defined by $\sigma\left(\sum_{i=0}^{n-1}\alpha_ia^i\right)=circ\left(\alpha_0,\ldots,\alpha_{n-1}\right)$ is an isomorphism. Therefore the study of units in RC_n suffices to establish the structure of the unit group of $Cr_n(R)$.

Let p be any prime number. In [12], Sharma and Yadav computed the order of the unit groups of some semi-simple algebras of circulant matrices over Galois fields of prime order. In continuation to this investigation, we study the unit group of the \mathbb{F}_{p^m} -algebra $Cr_n(\mathbb{F}_{p^m})$.

2. Units in
$$Cr_n(\mathbb{F}_{p^m})$$

If the \mathbb{F}_{p^m} -algebra $Cr_n(\mathbb{F}_{p^m})$ is semi-simple, the structure of its unit group is given by the following result which is a consequence of the well known theorem by Perlis and Walker about the structure of semi-simple group algebras of abelian groups.

Theorem 2.1. If (n,p) = 1 and $q = p^m$, then

$$\mathcal{U}\left(Cr_{n}\left(\mathbb{F}_{q}\right)\right)\cong C_{q-1}\times\left(\prod_{\substack{l|n\\l>1}}C_{q^{d_{l}}-1}^{e_{l}}\right)$$

where d_l is the multiplicative order of q modulo l and $e_l = \frac{\varphi(l)}{d_l}$.

Proof. Using [10, Theorem 1] and [9, Theorem 2.21, pp. 53], it follows that

(2.1)
$$\mathbb{F}_q C_n \cong \mathbb{F}_q \oplus \bigoplus_{\substack{l \mid n \\ l > 1}} \mathbb{F}_q^{e_l}$$

and hence the proof.

Remark 2.2. The results in [12] can be obtained using Theorem 2.1.

Now consider the case when $p \mid n$.

Lemma 2.3. Let $k \in \mathbb{N}$. Then

$$\mathcal{U}\left(\mathbb{F}_{p^m}C_{p^k}\right)\cong\left\{\begin{array}{ll} C_p^{m(p-1)}\times C_{p^m-1} & \text{ if } k=1\\ \prod\limits_{t=1}^k C_{p^t}^{n_t}\times C_{p^m-1} & \text{ otherwise} \end{array}\right.$$

where $n_k = m(p-1)$ and $n_t = mp^{k-t-1}(p-1)^2 \ \forall \ t, \ 1 \le t < k$.

Proof. As a direct consequence of Wedderburn Malcev theorem, it follows that

$$\mathcal{U}(\mathbb{F}_{p^m}C_{p^k}) \cong (1 + \Delta(C_{p^k})) \times \mathbb{F}_{p^m}^*$$

where $\Delta(C_{p^k})$ is the augmentation ideal of $\mathbb{F}_{p^m}C_{p^k}$.

It is obvious that $\mathcal{U}(\mathbb{F}_{p^m}C_p)\cong C_p^{m(p-1)}\times C_{p^m-1}$. Now suppose that $k\geq 2$.

If $C_{p^k} = \langle a \mid a^{p^k} \rangle$, then every element $X \in \Delta(C_{p^k})$ is expressible as

$$X = \sum_{i=1}^{p-1} \sum_{j=0}^{k-1} \sum_{l=0}^{p^{k-j-1}-1} \beta_{i,j,l} \left(a^{p^{j}(lp+i)} - 1 \right)$$

for some $\beta_{i,j,l} \in \mathbb{F}_{p^m}$.

For any t, $1 \le t \le k - 1$,

$$(1+X)^{p^{t}} = 1$$

$$\Leftrightarrow X^{p^{t}} = 0$$

$$\Leftrightarrow \sum_{i=1}^{p-1} \sum_{j=0}^{k-1} \sum_{l=0}^{p^{k-j-1}-1} \beta_{i,j,l}^{p^{t}} \left(a^{p^{j+t}(lp+i)} - 1 \right) = 0$$

$$\Leftrightarrow \sum_{i=1}^{p-1} \sum_{j=0}^{k-t-1} \sum_{l=0}^{p^{k-j-1}-1} \beta_{i,j,l}^{p^{t}} \left(a^{p^{j+t}(lp+i)} - 1 \right) = 0$$

$$\Leftrightarrow \sum_{i=1}^{p-1} \sum_{j=0}^{k-t-1} \sum_{l=0}^{p^{k-j-1}-1} \left(\sum_{s=0}^{p^{t-1}} \beta_{i,j,l+sp^{k-j-t-1}} \right)^{p^{t}} \left(a^{p^{j+t}(lp+i)} - 1 \right) = 0$$

$$\Leftrightarrow \sum_{i=1}^{p-1} \sum_{j=0}^{k-t-1} \sum_{l=0}^{p^{k-j-t-1}-1} \left(\sum_{s=0}^{p^{t-1}} \beta_{i,j,l+sp^{k-j-t-1}} \right)^{p^{t}} \left(a^{p^{j+t}(lp+i)} - 1 \right) = 0$$

$$\Leftrightarrow \sum_{i=1}^{p^{t-1}} \beta_{i,j,l+sp^{k-j-t-1}} = 0 \ \forall \ 1 \le i \le p-1, \ 0 \le j \le k-t-1, \ 0 \le l \le p^{k-j-t-1} - 1$$

Thus from above, we conclude that for any t, $1 \le t \le k-1$, the number of elements of order $\le p^t$ in $1 + \Delta(C_{p^k})$ is p^{mN_t} , where

$$N_{t} = (p^{t} - 1) (p - 1) \sum_{j=0}^{k-t-1} p^{k-j-t-1} + (p - 1) \sum_{j=k-t}^{k-1} p^{k-j-1}$$
$$= (p^{t} - 1) (p^{k-t} - 1) + (p^{t} - 1)$$
$$= (p^{t} - 1) p^{k-t}$$

If
$$1 + \Delta(C_{p^k}) = \prod_{i=1}^k C_{p^i}^{n_i}$$
, then

$$\sum_{i=1}^t in_i + t \sum_{t+1}^k n_i = mN_t \ \forall \ t, \ 1 \le t \le k-1$$
and
$$\sum_{i=1}^k in_i = m(p^k - 1) = mN_k \text{ (say)}$$

Solving the above system of equations over \mathbb{F}_{p^m} , we get $n_1 = m(2N_1 - N_2) = mp^{k-2}(p-1)^2$, $n_k = m(N_k - N_{k-1}) = m(p-1)$ and $n_t = m(2N_t - N_{t-1} - N_{t+1}) = mp^{k-t-1}(p-1)^2$ for all 1 < t < k.

Theorem 2.4. Let $n = p^k n_1$, where $(n_1, p) = 1$ and $k \ge 1$. Then

$$\mathcal{U}\left(Cr_n(\mathbb{F}_{p^m})
ight) \;\;\cong\;\; \mathcal{U}\left(\mathbb{F}_{p^m}C_{p^k}
ight) imes \left(\prod_{\substack{l|n_1\l>1}} \mathcal{U}\left(\mathbb{F}_{p^{md_l}}C_{p^k}
ight)^{\;\;e_l}
ight)$$

where d_l is the multiplicative order of p^m modulo l and $e_l = \frac{\varphi(l)}{d_l}$.

Proof. Observe that

$$Cr_n(\mathbb{F}_{p^m}) \cong \mathbb{F}_{p^m}(C_{n_1} \times C_{p^k})$$

 $\cong (\mathbb{F}_{p^m}C_{n_1}) C_{p^k}$
 $\cong \mathbb{F}_{p^m}C_{p^k} \oplus \bigoplus_{\substack{l \mid n_1 \\ l > 1}} \left(\mathbb{F}_{p^{md_l}}C_{p^k}\right)^{e_l} \text{ by equation (2.1)}$

Using this and Lemma 2.3, the structure of the unit group of $Cr_n(\mathbb{F}_{p^m})$ can be obtained.

References

- [1] V. Bovdi, On symmetric units in group algebras, Comm. Algebra, 29 no. 12 (2001) 5411-5422.
- [2] V. Bovdi, Group rings in which the group of units is hyperbolic, J. Group Theory, 15 no. 2 (2012) 227–235.
- [3] L. Creedon and J. Gildea, The Structure of the Unit Group of the Group Algebra $\mathbb{F}_{2^k}D_8$, Canad. Math. Bull., **54** no. 2 (2011) 237-243.
- [4] J. Gildea, The special circulant matrix and units in group rings, *Acta Math. Acad. Paedagog. Nyhazi.*, **24** no. 2 (2008) 221–225.
- [5] J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{3^k}(C_3 \times D_6)$, Comm. Algebra, **38** no. 9 (2010) 3311–3317.
- [6] J. Gildea, Units of the group algebra $\mathbb{F}_{2^k}(C_2 \times D_8)$, J. Algebra Appl., 10 no. 4 (2011) 643–647.
- [7] T. Hurley, Group rings and rings of matrices, Int. J. Pure Apl. Math., 31 no. 3 (2006) 319–335.
- [8] K. Kaur and M. Khan, Units in F_2D_{2p} , J. Algebra Appl., 13 no. 2 (2014) DOI: 10.1142/S0219498813500904.
- [9] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, 2000.
- [10] S. Perlis and G. L. Walker, Abelian group algebras of finite order, Trans. Amer. Math. Soc., 68 no. 3 (1950) 420-426
- [11] C. P. Milies and S. K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, 2002.
- [12] R. K. Sharma and P. Yadav, Unit group of algebra of circulant matrices, Int. J. Group Theory, 2 no. 4 (2013) 1-6.
- [13] R. K. Sharma, P. Yadav and K. Joshi, Units in $\mathbb{Z}_2(C_2 \times D_\infty)$, Int. J. Group Theory, 1 no. 4 (2012) 33–41.

Neha Makhijani

Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, India

Email: nehamakhijani@gmail.com

R. K. Sharma

Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, India

Email: rksharmaiitd@gmail.com

J. B. Srivastava

Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, India

Email: jbsrivas@gmail.com