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THE UNIT GROUP OF ALGEBRA OF CIRCULANT MATRICES
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ABSTRACT. Let Cry,(F') denote the algebra of n X n circulant matrices over the field F. In this paper,

we study the unit group of Cry(Fpm ), where Fpm denotes the Galois field of order p™, p prime.

1. Introduction

Throughout this paper, all the rings considered are associative with identity 1 # 0. The set of all
invertible elements of a ring R form a group U(R), called the unit group of R. Let RG be the group
ring of the group G over the ring R. A lot is known about the unit group of group rings of finite
groups [1}, 21 3] [4, [5, [6l, 7], 8, 12, 13].

A circulant matrix over the ring R is an n X n matrix of the form

Qp Q1 Gz - Qp-]
. Qnp-1 @y Q1 - Qp-2
circ(ag, ..., 0p—1) = _ o ) ) , & €ER
o g a3 - Qo
Let C,, = ( a | a™ ). The idea that any element of the group ring RC,, can be written as a circulant

matrix over R was introduced by Hurley in [7]. In fact, if C'ry,(R) is the ring of n x n circulant matrices

over R, then
o: RC,, — Cry(R)
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n—1 .
defined by o <Z aial> = circ(ap,. .., ap—1) is an isomorphism. Therefore the study of units in RC),
i=0

suffices to establish the structure of the unit group of Cr,(R) .

Let p be any prime number. In [I2], Sharma and Yadav computed the order of the unit groups of
some semi-simple algebras of circulant matrices over Galois fields of prime order. In continuation to

this investigation, we study the unit group of the F,m-algebra Cry, (Fpm).

2. Units in C'I"n (]Fpm)

If the Fym-algebra Cry, (Fpm) is semi-simple, the structure of its unit group is given by the following
result which is a consequence of the well known theorem by Perlis and Walker about the structure of

semi-simple group algebras of abelain groups.

Theorem 2.1. If (n,p) =1 and ¢ = p™, then

U(Cr (Fy) = Cor x| T
lln
o

(1)
d

where d; is the multiplicative order of ¢ modulo | and e; =

Proof. Using [10, Theorem 1] and [9, Theorem 2.21, pp. 53], it follows that

(2.1) FCn =2F, & le|9 Fqill
>1

and hence the proof. O
Remark 2.2. The results in [I2] can be obtained using Theorem
Now consider the case when p | n.

Lemma 2.3. Let k € N. Then
CprD Gy ifk =1
U (Fpmcpk) = k

HC;LJ x Cpm_1  otherwise
t=1

where ny = m(p —1) and ng = mpF "1 p—-12Vt 1<t<k.

Proof. As a direct consequence of Wedderburn Malcev theorem, it follows that
UFpm Cpi) = (14 A(Cpi)) x Fpm

where A(Ck) is the augmentation ideal of Fym C.

It is obvious that U (F,m C)) = C';,n(pfl) x Cpm_1. Now suppose that k£ > 2.
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If Cpe =(al a?* ), then every element X € A(C,x) is expressible as

o . . (apj(zp+z‘) _ 1)

@
Il
i

<
Il
=)
o~
Il
=)

for some (3; ;; € Fym
Forany t, 1<t<k-1,
(1+X) =

& XV =0

-1

N DS SRR T

T
A
??‘

o Z ﬂzl‘j;l (apj+t(lp+i) B 1) —0

p—1 k—t—1 pF—i-t-1_1 [pt—1

e
< Z Z Bi g ispk—i—t-1 <6ij (tpte) _ 1) =0
i j 5=0

pi—1

S Y Bt =0Y1<i<p-1,0<j<k—t—1,0<1<pril—

s=0

1

Thus from above, we conclude that for any ¢, 1 < ¢ < k — 1, the number of elements of order < p' in

1+ A(Cpr) is p™Yt, where

k—t—1 k—1 ‘
No= @ -1)-0 D> P 1) ) P
7=0 j=k—t
— (pt 1) pk t
k .
If1+A(C) =11 C’;L;, then
i=1
t k
D ing+tY ni=mN, Vi, 1<t<k-1
=1 t+1

k
and Zml = m(p® — 1) = mN,, (say)
=1

Solving the above system of equations over Fpm, we get n; = m(2N; — Na) = mp*2(p —1)2, ng, =
m(Ny — Ni_1) = m(p— 1) and ny = m(2N; — Ny_1 — Nipq) = mpF "L p—1)2 forall 1 <t < k. O
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Theorem 2.4. Let n = pFny, where (n1,p) =1 and k > 1. Then

UCTa(Fpm)) = U FpCy) x | [T U (FpanCp) ™
lln1
>1

where d; is the multiplicative order of p™ modulo | and e; = ('chl)
l
Proof. Observe that

Cro(Fpm) = Fpm(Cpy X Cpr)

= (Fpm nl)Cpk
e
> FpmCpe @ lﬁi (Fpmdl Cpk) by equation |
>1
Using this and Lemma the structure of the unit group of Cry,(Fpm) can be obtained. O
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