On zero patterns of characters of finite groups

Document Type: Research Paper


1 School of Science, Sichuan University of Science and Engineering, Zigong, 643000, P. R. China

2 Sichuan University of Science and Engineering

3 China Agricultural University


The aim of this note is to characterize the finite‎ ‎groups in which all non-linear irreducible characters have distinct zero entries number‎.


Main Subjects

Y. Berkovich, D. Chillag and M. Herzog (1992). Finite groups in which the degrees of the non-linear irreducible characters are distinct. Proc. Amer. Math. Soc.. 115, 955-959
W. Feit and G. M. Seitz (1989). On finite rational groups and related topics. Illinois J. Math.. 33, 103-131
S. M. Gagola (1983). Characters vanishing on all but two conjugacy classes. Pacific J. Math.. 109, 363-385
I. M. Isaacs (1976). Character theory of finite groups. Academic Prees, New York.
I. M. Isaacs, G. Navarro and T. R. Wolf (1999). Finite group elements where no irreducible character vanishes. J. Algebra. 222, 413-423
P. P. Pacutealfy (1981). Groups with two non-linear irreducible representations. Ann. Uni. Sci. Budapest. E"{o}tv"{o}s Sect. Math.. 24, 181-192
Y. C. Ren and X. Y. Li (2000). The action of the linear character group on the set of non-linear irreducible characters. Chinese Ann. Math. Ser. B. 21, 511-524
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Park and R. A. Wilson (1985). Atlas of finite groups. Oxford University Press, Eynsham.
J. S. Zhang, Z. C. Shen and S. L. Wu (2013). A note on the number of zeros in the columns of the character table of a group. J. Algebra Appl.. 12, 1-10