Finite simple groups which are the products of symmetric or alternating groups with $L_{3}(4)$

Document Type: Research Paper

Authors

1 University of Shahrekord

2 University of Tehran

Abstract

In this paper‎, ‎we determine the simple groups $G=AB$‎, ‎where $B$ is isomorphic to $L_{3}(4)$ and $A$ isomorphic to an alternating or a symmetric group on $n\geq5$‎, ‎letters‎.

Keywords

Main Subjects


[1] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Eynsham, 1985.

[2] M. R. Darafsheh and A. Mahmiani, Products of the symmetric or alternating groups with L3(3), Quasigroups
Related Systems, 17 (2009) 9–16.

[3] M. R. Darafsheh, G. R. Rezaeezadeh and G. L. Walls, Groups which are the product of S6 and a simple group, Algebra Colloq., 10 (2003) 195–204.

[4] J. D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1996.

[5] M. Giudici, Factorization of sporadic simple groups, J. Algebra, 303 (2006) 311–323.

[6] P. Kleidman and M. Liebeck, The struture of the finite classical groups, Cambridge University Press, 1990.

[7] M. W. Liebeck, C. E. Praeger and J. Saxl, Regular subgroups of primitive permutation groups, Mem. Amer. Math. Soc., 203 (2010).

[8] M. W. Liebeck, C. E. Praeger and J. Saxl, The maximal factorizations of the finite simple groups and their auto-morphism groups, Mem. Amer. Math. Soc., 86 1990.

[9] W. R. Scott, Product of A5 and a finite simple group, J. Algebra, 37 (1975) 165–171.