The local nilpotence theorem for 4-Engel groups revisited

Document Type: Research Paper

Author

University of Bath

Abstract

‎The proof of the local nilpotence theorem for $4$-Engel groups was‎ ‎completed by G‎. ‎Havas and M‎. ‎Vaughan-Lee in 2005‎. ‎The complete proof on the other hand is spread over several articles and the aim of this paper is to give a‎ ‎complete coherent linear version‎. ‎In the process we are also‎ ‎able to make a few simplifications and in particular we are able to merge two of‎ ‎the key steps into one‎.

Keywords

Main Subjects


K. W. Gruenberg (1953). Two theorems on Engel groups. Proc. Cambridge Philos. Soc.. 49, 377-380
G. Havas and M. R. Vaughan-Lee (2005). 4-Engel groups are locally nilpotent. Internat. J. Algebra Comput.. 15, 649-682
H. Heineken (1961). Engelsche Elemente der Lange drei. Illinois J. Math.. 5, 681-707
Y. K. Kim and A. H. Rhemtulla (1995). Weak maximality condition and polycyclic groups. Proc. Amer. Math. Soc.. 123, 711-714
P. Longobardi and M. Maj (1999). Semigroup identities and Engel groups. Groups St. Andrews 1997 in Bath II, London Math. So c., Lecture Note Series, Cambridge Univ. Pess, Cambridge. 261, 527-531
M. Newell (1996). On right-Engel elements of length three. Proc. Roy. Irish Acad. Sect. A. 96, 17-24
W. Nickel (1999). Computation of nilp otent Engel groups. J. Austral. Math. Soc. Ser. A. 67, 214-222
G. Traustason (1995). On 4-Engel groups. J. Algebra. 178, 414-429
G. Traustason (1999). Semigroup identities in 4-Engel groups. J. Group Theory. 2, 39-46
G. Traustason (2005). Two generator 4-Engel groups. Internat. J. Algebra Comput.. 15, 309-316
G. Traustason (2005). A note on the local nilpotence of 4-Engel groups. Internat. J. Algebra Comput.. 15, 757-764
G. Traustason (2011). Engel groups. Groups St Andrews 2009 in Bath, Volume I I, London Math. So c. Lecture Note serie, Cambridge University Press, Cambridge. 388, 520-550
M. R. Vaughan-Lee (1997). Engel-4 groups of exponent 5. Proc. London Math. Soc. (3). 74, 306-334