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Abstract. Suppose Γ is a graph with V (Γ) = {1, 2, . . . , p} and F = {Γ1, . . . ,Γp} is a family of

graphs such that nj = |V (Γj)|, 1 ≤ j ≤ p. Define Λ = Γ[Γ1, . . . ,Γp] to be a graph with vertex set

V (Λ) =
∪p

j=1 V (Γj) and edge set E(Λ) =
(∪p

j=1 E(Γj)
)
∪
(∪

ij∈E(Γ){uv;u ∈ V (Γi), v ∈ V (Γj)}
)
. The

graph Λ is called the Γ-join of F . The power graph P(G) of a group G is the graph which has the group

elements as vertex set and two elements are adjacent if one is a power of the other. The aim of this paper

is to prove that P(Zn) = Kϕ(n)+1+∆n[Kϕ(d1),Kϕ(d2), . . . ,Kϕ(dp)], where ∆n is a graph with vertex and

edge sets V (∆n) = {di | 1, n ̸= di|n, 1 ≤ i ≤ p} and E(∆n) = {didj | di|dj , 1 ≤ i < j ≤ p}, respectively.
As a consequence it is proved that Aut(P(Zn)) ∼= Sϕ(n)+1 ×

∏
1,n̸=d|n Sϕ(d). This proves a recent

conjecture by Doostabadi et al. [A. Doostabadi, A. Erfanian and A. Jafarzadeh, Some results on the

power graph of groups, The Extended Abstracts of the 44th Annual Iranian Mathematics Conference,

27–30 August 2013, Ferdowsi University of Mashhad, Iran]. Finally, we apply our results to obtain

complete descriptions of the power graphs of some finite groups.

1. Introduction

All groups and graphs in this paper are assumed to be finite. Suppose G is a finite group. The

power graph P(G) is a graph in which V (P(G)) = G and two distinct elements x and y are adjacent

if and only if one of them is a power of the other. The investigation of graphs related to groups as

well as other algebraic structures is very important, because such graphs have valuable applications

(see [7]) and are related to automata theory (see [8, 9]). These graphs were introduced in [6], see also

[10, 11, 12].
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We refer to [13] for a survey of all recent results on the power graphs. Let us include only a

brief overview of some relevant facts here. Chakrabarty et al. [4] proved that for a finite group

G, P(G) is complete if and only if G is a cyclic group of order 1 or pm, for some prime number

p and positive integer m. They also obtained a formula for the number of edges in a finite power

graph. Cameron and Ghosh [1] proved that non-isomorphic finite groups may have isomorphic power

graphs, but that finite abelian groups with isomorphic power graphs must be isomorphic. They also

show that the only finite group whose automorphism group is the same as its power graph is the

Klein group of order 4. In this paper, the authors conjectured that two finite groups with isomorphic

power graphs have the same number of elements of each order. Cameron [2] proved that in a finite

group, the undirected power graph determines the directed power graph up to isomorphism. As a

consequence, he responded affirmatively to the main conjecture of [1]. Pourgholi et al. [17], presented

counterexamples for a conjecture maid by Chakrabarty et al. [3] regarding the values of n for which

P (Un) is Hamiltonian. They also proved some results about characterization of simple groups by

power graphs. Moghaddamfar et al. [15] considered the proper power graph P⋆(G). This graph

can be constructed from P(G) by deleting the identity element of G. They provided necessary and

sufficient conditions for a proper power graph P⋆(G) to be a strongly regular graph, a bipartite

graph or a planar graph. They also obtained some infinite families of finite groups G for which the

power graph P⋆(G) contains some cut-edges. Finally, Moghaddamfar et al. [16] found the number

of spanning trees of the power graph associated with specific finite groups. They determined, up to

isomorphism, the structure of a finite group G whose power graph has exactly n spanning trees, for

n < 53. The author of the mentioned paper presented also a new characterization of the alternating

group A5 by tree-number of its power graph.

Suppose that G is a finite group and x ∈ G. If G is a finite group then it easy to prove that the power

graph P(G) is a connected graph of diameter at most 2. The degree of x in P(G) can be calculated

by deg(x) = |{g ∈ G | ⟨x⟩ ≤ ⟨g⟩ or ⟨g⟩ ≤ ⟨x⟩}|. Suppose Γ is a graph with V (Γ) = {1, 2, . . . , p} and

F = {Γ1, . . . ,Γp} is a family of graphs such that nj = |V (Γj)|, 1 ≤ j ≤ p. Define Λ = Γ[Γ1, . . . ,Γp] to

be a graph with vertex set V (Λ) =
∪p

j=1 V (Γj) and edge set

E(Λ) =
( p∪
j=1

E(Γj)
)
∪
( ∪
ij∈E(Γ)

{uv;u ∈ V (Γi), v ∈ V (Γj)}
)
.

The graph Λ is called the Γ-join of F [3]. The set of all positive divisors of an integer n is denoted

by D(n). Our other notations are standard and can be taken from [14, 18].

2. Main Results

The aim of this section is to prove P(Zn) = Kϕ(n)+1+∆n[Kϕ(d1),Kϕ(d2), . . . ,Kϕ(dp)], where ∆n is a

graph with vertex and edge sets V (∆n) = {di | 1, n ̸= di|n, 1 ≤ i ≤ p} and E(∆n) = {didj | di|dj , 1 ≤
i < j ≤ p}, respectively. As a consequence it is proved that Aut(P(Zn)) ∼= Sϕ(n)+1 ×

∏
1,n̸=d|n Sϕ(d).
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This proves a recent conjecture by Doostabadi et al. [5]. We start by computing the order and size of

M = ∆n[Kϕ(d1),Kϕ(d2), . . . ,Kϕ(dp)].

Lemma 2.1. |V (M)| = n− ϕ(n)− 1 and |E(M)| = 1
2

∑
1,n̸=d|n(2d− ϕ(d)− 3)ϕ(d).

Proof. Since
∑

d|n ϕ(d) = n, |V (M)| =
∑

1,n̸=d|n ϕ(d) = n− ϕ(n)− 1. On the other hand,

∑
(d ̸=d′),d|d′
1,n̸=d,d′|n

ϕ(d)ϕ(d′) =
∑

1,n̸=d|n

∑
d′|d

d′ ̸=1,d

ϕ(d)ϕ(d′)

=
∑

1,n̸=d|n

ϕ(d)
∑

1,d ̸=d′|d

ϕ(d′)

=
∑

1,n̸=d|n

(d− ϕ(d)− 1)ϕ(d).

Therefore,

2|E(M)| =
∑

1,n̸=d|n

ϕ(d)(ϕ(d)− 1) + 2
∑

dd′∈E(∆n)

ϕ(d)ϕ(d′)

=
∑

1,n̸=d|n

ϕ(d)2 −
∑

1,n̸=d|n

ϕ(d) + 2
∑

1,n̸=d|n

(d− ϕ(d)− 1)ϕ(d)

= 2
∑

1,n̸=d|n

dϕ(d)− 3
∑

1,n̸=d|n

ϕ(d)−
∑

1,n̸=d|n

ϕ(d)2

=
∑

1,n̸=d|n

(2d− ϕ(d)− 3)ϕ(d),

proving the result. □

Theorem 2.2. P(Zn) = Kϕ(n)+1 +∆n[Kϕ(d1),Kϕ(d2), . . . ,Kϕ(dp)].

Proof. We first assume that the power graph P(Zn) has a subgraph isomorphic to

Kϕ(n)+1 +∆n[Kϕ(d1),Kϕ(d2), . . . ,Kϕ(dp)].

Suppose {d1, . . . , dp} = D(n)− {1, n} and x, y are vertices in P(Zn). Clearly, if x and y are adjacent

then o(x)|o(y) or o(y)|o(x). Thus, P(Zn) has complete subgroups of orders ϕ(di), 1 ≤ i ≤ p. If for

some i and j, di|dj , then since Zn is a cyclic group, all vertices of degree di and dj are adjacent. On

the other hand, all generators of Zn together with identity element constitute a complete subgraph of

order ϕ(n)+1 that its vertices are adjacent to all other vertices of P(Zn). This proves that the power

graph P(Zn) has a subgraph H isomorphic to Kϕ(n)+1 +∆n[Kϕ(d1),Kϕ(d2), . . . ,Kϕ(dp)].

To complete the proof, we calculate the number of vertices and edges of H. By Lemma 2.1,

|V (H)| = ϕ(n)+1+ |V (M)| = ϕ(n)+1+n−ϕ(n)− 1 = n and |E(H)| = ϕ(n)(ϕ(n)+1)
2 +(ϕ(n)+1)(n−
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ϕ(n)− 1) + |E(M)|. Therefore,

2|E(H)| = (2n− ϕ(n)− 1)ϕ(n) + 2(n− ϕ(n)− 1) +
∑

1,n̸=d|n

(2d− ϕ(d)− 3)ϕ(d)

= (2n− ϕ(n)− 1)ϕ(n) + 2
∑

1,n̸=d|n

ϕ(d) +
∑

1,n̸=d|n

(2d− ϕ(d)− 3)ϕ(d)

= (2n− ϕ(n)− 1)ϕ(n) +
∑

1,n̸=d|n

(2d− ϕ(d)− 1)ϕ(d)

=
∑
d|n

(2d− ϕ(d)− 1)ϕ(d).

By [4, Corollary 4.3], 2|E(P(Zn))| =
∑

d|n(2d−ϕ(d)−1)ϕ(d), which shows that H = P(Zn). Hence,

P(Zn) = Kϕ(n)+1 +∆n[Kϕ(d1),Kϕ(d2), . . . ,Kϕ(dp)] which completes the proof. □

By [4, Theorem 2.12], it is clear that the mentioned conjecture made by Doostabadi et al. [5] is

incorrect, when n is prime power. In the next theorem this conjecture is proved for positive integer n

such that n cannot be written as a prime power.

Theorem 2.3. If n is not a prime power then Aut(P(Zn)) ∼= Sϕ(n)+1 ×
∏

1,n̸=d|n Sϕ(d).

Proof. It is well-known that for each graph Γ, Aut(Γ) ∼= Aut(Γ̄). Applying Theorem 2.2, we have:

Aut(P(Zn)) = Aut(P(Zn))

= Aut(Kϕ(n)+1 +M)

= Aut(Kϕ(n)+1 ∪M)

= Aut(Kϕ(n)+1)×Aut(M).

Since Aut(Kϕ(n)+1) = Aut(Kϕ(n)+1) ∼= Sϕ(n)+1, Aut(P(Zn)) ∼= Sϕ(n)+1 × Aut(M) ∼= Sϕ(n)+1 ×
Aut(M). So, it is enough to prove that Aut(M) ∼=

∏
1,n̸=d|n Sϕ(d). To do this, we first calculate the

degree of each vertex x ∈ Kϕ(d) in M . By the definition of M , we have:

degM (x) = ϕ(o(x))− 1 +
∑
d|o(x)

1,n,o(x)̸=d|n

ϕ(d) +
∑
o(x)|d

1,n,o(x)̸=d|n

ϕ(d)

= ϕ(o(x))− 1 + o(x)− ϕ(o(x))− 1 +
∑
o(x)|d

1,n,o(x)̸=d|n

ϕ(d)

= o(x)− 2 +
∑

o(x)|d|n
1,n,o(x) ̸=d

ϕ(d).

Define Hd = Kϕ(d). We prove that for each automorphism α ∈ Aut(M), α(Hdi) = Hdi . To do this,

we prove that there is no automorphism β ∈ Aut(M) such that β(Hdi) = Hdj , i ̸= j. Choose x ∈ Hdi

and y ∈ Hdj , i ̸= j. If degM (x) ̸= degM (y) then it is obvious that there is no automorphism β such
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that β(x) = y. If degM (x) = degM (y) then

o(x)− 2 +
∑

o(x)|d|n

ϕ(d) = o(y)− 2 +
∑

o(y)|d|n

ϕ(d).(2.1)

Without loss of generality, we can assume that o(x) < o(y). So,∑
o(x)|d|n

ϕ(d) >
∑

o(y)|d|n

ϕ(d).(2.2)

We consider two separate cases as follows:

Case 1: o(x)|o(y). In this case, if o(y) | d then o(x) | d and so each summand in the right hand

side of (2) is a summand of the left hand side of this equation. Thus the inequality (2.2) implies that

there is a positive integer d such that d | n, o(x) | d and o(y) ∤ d. Consider the complete subgraphs

A = Kϕ(d), B = Kϕ(o(x)) and C = Kϕ(o(y)). Then each vertex of A is adjacent to each vertex of B, but

there is no edge connecting a vertex of A and a vertex of C. Hence there is no automorphism that

sends x to y.

Case 2: o(x) ∤ o(y). Suppose there is no d such that d|n and o(x)|d. Then
∑

o(x)|d|n ϕ(d) = 0.

Apply inequality o(x) < o(y) and Eq. (2.1) to deduce that degM (x) ̸= degM (y), which is im-

possible. Put d = ko(x) | n, where k ̸= 0, 1, t
o(y)

gcd(o(x), o(y))
, for t ≥ 1. If o(y)|d then there

exists k′ such that ko(x) = k′o(y), that means that k
o(x)

gcd(o(x), o(y))
= k′

o(y)

gcd(o(x), o(y))
. But

o(x)

gcd(o(x), o(y))
and

o(y)

gcd(o(x), o(y))
are coprime, which implies that

o(x)

gcd(o(x), o(y))
| k′. Hence,

k =
(k′gcd(o(x), o(y))

o(x)

)( o(y)

gcd(o(x), o(y))

)
= t

o(y)

gcd(o(x), o(y))
,

a contradiction. Again, we consider the complete subgraphs A = Kϕ(d), B = Kϕ(o(x)) and C = Kϕ(o(y)).

Then each vertex of A is adjacent to each vertex of B, but there is no edge connecting a vertex of A and

a vertex of C. Hence there is no automorphism that sends x to y. This completes our argument. □

Corollary 2.4. The automorphism group of the power graph D2n can be computed as follows:

Aut(P(D2n)) ∼=


Sn−1 × Sn n is a prime power

Sn ×
∏

d|n Sϕ(d) otherwise

Proof. By [14, Proposition 7], P(D2n) is a union of P(Zn) and n copies of K2 that share the identity

element of D2n. If n is prime power then P(D2n) ∼= Kn−1+K1+Kn and so Aut(P(D2n)) ∼= Sn−1×Sn.

Otherwise, P(D2n) ∼= P(Zn
∗) + K1 + Kn and we have Aut(P(D2n)) ∼= Sn ×

∏
d|n Sϕ(d), proving the

result. □

To describe our result, we compute the automorphism groups of P(G), for some special group G.

Example 2.5. In this example the automorphism groups of P(Zpq), P(Zpqr) and P(Zp2q2) are

calculated. We first assume that n = pq, x ∈ Hp and y ∈ Hq. Then degM (x) = p − 2 and

degM (y) = q − 2 and so degM (x) ̸= degM (y). Applying Theorem 2.3, we have Aut(P(Zpq)) ∼=
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Sϕ(pq)+1 × Sp−1 × Sq−1. Next, we suppose that n = pqr. Then V (∆n) = {p, q, r, pq, pr, qr} and

E(∆n) = {(p, pq), (p, pr), (q, pq), (q, qr), (r, pr), (r, qr)}. By Theorem 2.2,

P(Zpqr) = Kϕ(pqr)+1 +∆n[Hp,Hq,Hr,Hpq, Hpr,Hqr].

Choose x ∈ Hp, y ∈ Hq, z ∈ Hr, u ∈ Hpq, v ∈ Hpr and w ∈ Hqr. Then,

degM (x) = p− 2 + pq − p− q + 1 + pr − p− r + 1 = pq + pr − p− q − r,

degM (y) = q − 2 + pq − p− q + 1 + qr − q − r + 1 = pq + qr − p− q − r,

degM (z) = r − 2 + pr − p− r + 1 + qr − q − r + 1 = pr + qr − p− q − r,

degM (u) = pq − 2, degM (v) = pr − 2, degM (w) = qr − 2.

Therefore by Theorem 2.3,

Aut(P(Zpqr)) ∼= Sϕ(pqr)+1 × Sp−1 × Sq−1 × Sr−1 × Sϕ(pq) × Sϕ(pr) × Sϕ(qr).

Finally, we consider the case that n = p2q2. Then,

V (∆n) = {p, p2, q, q2, pq, pq2, p2q}

E(∆n) = {(p, p2), (p, pq), (p, pq2), (p, p2q), (q, q2), (q, pq),

(q, pq2), (q, p2q), (p2, p2q), (q2, pq2), (pq, pq2), (pq, p2q)}.

Again by Theorem 2.2,

P(Zp2q2) = Kϕ(p2q2)+1 +∆n[Hp,Hp2 ,Hq,Hq2 ,Hpq,Hpq2 ,Hp2q].

Choose x ∈ Hp, y ∈ Hp2 , z ∈ Hq, u ∈ Hq2 , v ∈ Hpq, w ∈ Hpq2 and r ∈ Hp2q. Then,

degM (x) = pq2 + p2q − pq − q2 − 1,

degM (y) = p2q − pq + p− 2,

degM (z) = pq2 + p2q − p2 − pq − 1,

degM (u) = pq2 − pq + q − 2,

degM (v) = pq2 + p2q − pq − p2 − q2 + p+ q − 2,

degM (w) = pq2 − 2, degM (r) = p2q − 2.

Since degrees are different, by Theorem 2.3,

Aut(P(Zp2q2)) ∼= Sϕ(p2q2)+1 × Sp−1 × Sϕ(p2) × Sq−1 × Sϕ(q2) × Sϕ(pq) × Sϕ(pq2) × Sϕ(p2q).

3. Concluding Remarks

The semidihedral group SD8n and dicyclic group T4n can be presented as follows:

SD8n = < a, b|a4n = b2 = 1, bab = a2n−1 >,

T4n = < a, b|a2n = 1, an = b2, b−1ab = a−1 > .
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Figure 1. The Power Graph of SD8n.

Figure 2. The Power Graph of T4n.

Figure 3. The Power Graph of M11.
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Figure 4. The Power Graph of J1.

In this section, we apply similar methods as Theorem 2.2 to obtain the graph structure of P(G),

whereG is isomorphic to SD8n, T4n, the Mathieu groupM11 or the Janko group J1. The automorphism

groups of these graphs can be computed in a similar way as those of the cyclic groups.

The power graph P(SD8n) is a union of P(Z4n), n copies of P(Z4) that share an edge and 2n copies

of P(Z2), all of them are connected to each other in the identity element of SD8n, as shown in Figure

1.

The power graph P(T4n) can be constructed in a similar way as a union of P(Z2n) and n copies

of P(Z4) that share an edge, all connected to each other in the identity element of T4n, as shown in

Figure 2.

In what follows, we explain the power graph of the sporadic groups M11, Figure 3, and J1, Figure 4.

The power graph P(M11) has exactly 7920 vertices. It can be constructed from 165 copies of a graph

L, 55 copies of P(Z3), 396 copies of P(Z5) and 144 copies of P(Z11), all connected to each other in

the identity element of M11.
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The Janko group J1 has exactly 175560 elements and its power graph is a union of 1463 copies of

a graph K, 1540 copies of P(Z19), 1596 copies of P(Z11) and 4180 copies of P(Z7), all connected to

each other in the identity element of J1.

We end this paper with the following open question:

Question 3.1. What is the automorphism group of P(G), where G is a sporadic group?
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