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Abstract. This work is a continuation of [A. O. Asar, On infinitely generated groups whose proper

subgroups are solvable, J. Algebra, 399 (2014) 870-886.], where it was shown that a perfect infinitely

generated group whose proper subgroups are solvable and in whose homomorphic images normal clo-

sures of finitely generated subgroups are residually nilpotent is a Fitting p-group for a prime p. Thus

this work is a study of a Fitting p-group whose proper subgroups are solvable. New characterizations

and some sufficient conditions for the solvability of such a group are obtained.

1. Introduction

In [2] it was shown that if G is a Fitting p-group whose proper subgroups are solvable and hy-

percentral, then G is solvable. In [4] this result was generalized by replacing hypercentrality with a

property called (∗)-triple (see below) as follows. Let G be an infinitely generated group whose proper

subgroups are solvable and in whose homomorphic images normal closures of finitely generated sub-

groups are residually nilpotent. If every homomorphic image of G has a (∗)-triple for non-central

elements, then G is solvable ([4, Theorem 1.1]). If G is not solvable, then it has a homomorphic

image H which is a Fitting p-group for a prime p and in every homomorphic image of H there are no

(∗)-triples for non-central elements ([4, Theorem 1.4]). Moreover H has a homomorphic image K such

that K has a dominant pair (wK , VK) with the property that W ∗(wK , VK) = 1 and Z(K) is non-trivial

locally cyclic. However if residually nilpotent is replaced by residually (finite and nilpotent), then G

becomes solvable ([4, Corollary 2.5]). An interesting property observed by the referee in [4, p. 874] is

that a minimal non-solvable group (MNS-group for short) G in whose homomorphic images finitely
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generated subgroups have residually nilpotent normal closers is locally nilpotent if and only if G is

periodic.

In the present work it is shown that a Fitting p-group G satisfying the normalizer condition and a

condition denoted by (∗∗) (see below) either is not perfect or Ω1(G/M) ̸= G/M for anM◁G (Theorem

1.1), where p ̸= 2. Hence it follows that a Fitting p-group satisfying the normalizer condition and

(∗∗) in which every proper subgroup has finite exponent cannot be perfect and in particular cannot be

an MNS-group (Corollary 1.2). (A similar result is contained in ([1, Theorem 1.1]). Using Theorem

1.1 and [4, Theorem 1.4] a further description of the structure of a group whose proper subgroups

are solvable is obtained for p ̸= 2 (Theorem 1.4). Specifically if the group in question is not solvable

and thus perfect, then normal solvable subgroups of bounded derived length generate a proper normal

subgroup and the group cannot be generated by a subset of finite exponent. In particular there exists

a proper subgroup of infinite exponent. As application of these results two solvability criterions are

given (Theorems 1.5,1.6).

The main results of this work are stated below. These results are special cases of [11, problems

16.5, 16.6]. First some definitions are needed.

Let G be a group, w ∈ G \ Z(G) and V be a finitely generated subgroup of G with w /∈ V . Then,

for brevity, the ordered pair (w, V ) is called a Λ-pair for G. A subgroup E of G which is maximal

with respect to the condition that w /∈ E but V ≤ E is called a (w, V )-maximal subgroup of G.

Let

E∗(w, V ) = {E : E is an (w, V )−maximal subgroup of G}

and

W ∗(w, V ) = {CoreG(E) : E ∈ E∗(w, V )}

We say that (w, V ) satisfies the (∗∗)-property if

(**) NG(E) = NG(E
′) for an E ∈ E∗(w, V ).

Again let (w, V ) be a Λ-pair for G. If there exists a proper subgroup L of G such that

w /∈ V but w ∈ ⟨V, y⟩ for every y ∈ Y \ L

then (w, V, L) is called a (∗)-triple for G. Note that the statement “(w, V, L) is a (∗)-triple” is equiv-

alent to the property that
∩

y∈G\L⟨V, y⟩ ̸= V . Furthermore the pair (w, V ) is called a distinguished

pair for G, if there exists no (∗)-triple (w,U,L) with V ≤ U and if

d(⟨V, y⟩) > d(V ) implies that w ∈ ⟨V, y⟩ for every y ∈ G

where d(V ) denotes the derived length of V .

Let (w, V ) be a distinguished pair for G and let E ∈ E∗(w, V ). Then d(⟨V, y⟩) = d(V ) for y ∈ E,

because if d(⟨V, y⟩) > d(V ), then w ∈ ⟨V, y⟩ by the definition of a distinguished pair but w /∈ E by the

definition of E. We note also that if G is an MNS-group, then for any element w ̸= 1 of G always there

exists either a (∗)-triple or a distinguished pair for G. For convenience a distinguished pair (w, V )

for G satisfying the stronger condition that d(E) = d(V ) for every E ∈ E∗(w, V ) is called dominant
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pair for G. ([4, Lemmas 3.1, 4.1] for the existence of distinguished pairs and dominant pairs). Finally

we note that if (w, V, L) is a (∗)-triple or (w, V ) a distinguished pair, then also (wv, V, L) is a (∗)-triple
or (w, V ) a distinguished pair and E∗(w, V ) = E∗(wv, V ) for every v ∈ V . The nilpotent class of a

nilpotent group G is denoted by nc(G). Finally G is called n-Engel for a number n ≥ 1 if [x,n y] = 1

for all x, y ∈ G.

Theorem 1.1. Let G be a Fitting p-group satisfying the normalizer condition, where p ̸= 2. Suppose

that in every homomorphic image H of G, |Z(H)| ̸= 3 and the (∗∗)-property is satisfied by every

Λ-pair. Then G either is not perfect or has a proper normal subgroup M such that Ω1(G/M) is

abelian.

Corollary 1.2. Let G be a Fitting p-group satisfying the normalizer condition, where p ̸= 2. Suppose

that in every homomorphic image H of G, |Z(H)| ̸= 3 and the (∗∗)-property is satisfied by every

Λ-pair. If G is perfect, then G cannot be generated by a subset of finite exponent. In particular G

has a proper subgroup of infinite exponent. In other words if every proper subgroup of G has finite

exponent, then G cannot be perfect.

The commutator subgroup of the totally imprimitive p-group G given in [3, Theorem 1.1], cannot

satisfy the normalizer condition but satisfies the conclusion of Corollary 1.2. It is perfect and Ωk(G) =

⟨g ∈ G : gp
k
= 1⟩ is nilpotent of finite exponent for every k ≥ 1. (e.g. see the explanation following [3,

Lemma 2.2]). Also a point stabilizer of the group has infinite exponent. But it is not known whether

(∗∗) is satisfied by Λ-pairs of G.

Theorem 1.3. Let G be a Fitting p-group which is an MNS-group and satisfies the normalizer

condition, where p ̸= 2. Suppose that in every homomorphic image of G the (∗∗)-property is satisfied

by every dominant pair. Let

St(G) = {K ◁G : d(K) ≤ t}

where d(K) denotes the derived length of the subgroup K. Then ⟨St(G)⟩ ̸= G for every t ≥ 1.

Furthermore there exists a proper subgroup E of G such that ⟨EG⟩ = G.

The above results combined with [4, Theorem 1.4] give the following general result.

Theorem 1.4. Let G be an infinitely generated periodic group with 2 /∈ π(G) in which every proper

subgroup is solvable and in every homomorphic image of G normal closures of finitely generated sub-

groups are residually nilpotent. Suppose that G satisfies the normalizer condition. Furthermore suppose

that if H is a homomorphic image of G, then |Z(H)| ̸= 3 and every dominant pair for H satisfies

(∗∗). Then G either is solvable or there exists a proper normal subgroup M of G such that Ω1(G/M)

is abelian. In the second case G contains a proper subgroup of infinite exponent, ⟨St(G)⟩ ̸= G for

every t ≥ 1 and G = ⟨EG⟩ for a proper subgroup of G. In particular if every proper subgroup of G has

finite exponent, then G is solvable.

Theorem 1.4 holds also in the non-periodic case if the group is locally nilpotent by [4, Corollary

1.7] .



10 Int. J. Group Theory, 5 no. 2 (2016) 7-24 A. O. Asar

As application of the above results we can state the followings. The first one shows the influence on

the group structure of the domination of the exponents of normal abelian subgroups by the exponent

of the group center.

Theorem 1.5. Let G be a Fitting p-group satisfying the normalizer condition in which every proper

subgroup is solvable, where p ̸= 2. Suppose that in every homomorphic image H of G, |Z(H)| ̸= 3

and the (∗∗)-property is satisfied by dominant pairs. Furthermore suppose that the following holds.

If B = [B,H] is a normal metabelian nilpotent subgroup and A is a normal abelian subgroup of H

contained in B, then exp(A) ≤ exp(Z(H)) whenever Z(H) ̸= 1. Then G is solvable.

Theorem 1.6. Let G be a Fitting p-group satisfying the normalizer condition in which every proper

subgroup is solvable, where p ̸= 2. Suppose that in every homomorphic image H of G, |Z(H)| ̸= 3 and

the (∗∗)-property is satisfied by dominant pairs. Furthermore suppose that every proper subgroup of G

is n-Engel for an n ≥ 1. Then G is solvable.

The proof of Theorem 1.6 depends on the following.

Proposition 1.7. Let G be a locally finite p-group and let A be a normal elementary abelian subgroup

of G. Suppose that every proper subgroup L of G is n-Engel for an n = n(L) ≥ 1. Then every proper

subgroup of G/CG(A) has finite exponent.

Let G be a Fitting p-group in which every proper subgroup is solvable and let (w, V ) be a dominant

pair for G. The present work together with [4] shows that the elements of W ∗(w, V ) has considerable

influence on the structure of G. For example if every E ∈ W ∗(w, V ) is hypercentral, then G is solvable

by [4, Lemma 4.6(b)]. The methods used in [4] also show that if any two elements of W ∗(w, V )

intersect in a subgroup of finite index in each of them, then G is solvable. Another easy observation

is the following. If every metabelian subgroup of every E ∈ W ∗(w, V ) is nilpotent, then again G

is solvable by [5, Theorem B] or [14, Theorem 1.1]. The proofs of Theorem 1.1 and Theorem 1.5

are based on showing that certain metabelian nilpotent groups are abelian. This situation in a way

resembles [5, Theorem B] and [14, Theorem 1.1].

The notations and the definitions are standard and may be found in [6, 7, 8, 12, 13].

2. Proof of Theorem 1.1

We begin by showing that a Λ-pair satisfies many of the properties of a distinguished pair given in

[4].

Lemma 2.1. Let G be a locally finite p-group and let (w, V ) be a Λ-pair for G. Then the following

hold.

(a) Let v ∈ V . Then E∗(w, V ) = E∗(wv, V ).

(b) W ∗(w, V ) contains maximal elements.
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(c) Suppose that G is perfect. Let M be a maximal element of W ∗(w, V ). There exists a finite

subgroup U of G containing V so that w /∈ U ≰ M and if wM ∈ Z(G/M), then wuM /∈
Z(G/M) for every u ∈ U \ M . Furthermore E∗(wuM,UM/M) = E∗(wM,UM/M) and if

R/M ∈ E∗(wuM,UM/M), then R ∈ E∗(w, V ). Thus W ∗(wuM,UM/M) = 1 and Z(G/M) ̸=
1.

Proof. (a) This is obvious since E ≤ G is (w, V )-maximal if and only if it is (wv, V )-maximal.

(b) This follows from the proof of [4, Lemma 3.4].

(c) Suppose that G is perfect. There exists an E ∈ E∗(w, V ) so that M < E by [4, Lemma 4.3].

Hence there exists a finite subgroup U of E satisfying V ≤ U ≰ M . Also w /∈ U since w /∈ E. Thus

(w,U) is a Λ-pair of G and E∗(w,U) ⊆ E∗(w, V ) by the proof of [4, Lemma 3.2]. It is easy to see that

if wM ∈ Z(G/M) and if u ∈ U \M , then wuM /∈ Z(G/M). For in the contrary case ū ∈ Z(Ḡ) and

then ⟨u,M⟩ ≤ E which contradicts the maximality of M . Thus (wuM,UM/M) is a Λ-pair for G/M

and E∗(wM,UM/M) = E∗(wuM,UM/M) by (a). Also if R/M ∈ E∗(w, V ), then R ∈ E∗(w, V )

by the proof of [4, Lemma 4.2]. Hence it follows that W ∗(wM,UM/M) = 1 since M is a maximal

element of W ∗(w, V ). Finally Z(G/M) ̸= 1 by [4, Lemma 3.5] since G is perfect and contains proper

normal subgroups ̸= 1 by [13, 12.1.6]. □

Lemma 2.2. Let G be a locally finite p-group and let (w, V ) be a Λ-pair for G. Let E ∈ E∗(w, V ).

Then NG(E)/E either is locally cyclic or p = 2 and isomorphic to a locally quaternion group.

Proof. Let N = NG(E) and N̄ = N/E. Let Ā be a finite abelian subgroup of N̄ . Assume if possible

that Ā is not cyclic. Then Ā contains an elementary abelian subgroup ⟨ā⟩×⟨b̄⟩. But since E is (w, V )-

maximal we must have w ∈ ⟨a⟩E and w ∈ ⟨b⟩E. Hence w ∈ ⟨a⟩E ∩ ⟨b⟩E and hence w ∈ E, which

is impossible since w /∈ E. It follows from this that every finite abelian subgroup of N̄ is cyclic. In

this case every finite subgroup of N̄ is cyclic or isomorphic to a generalized quaternion group by [6,

Theorem 5.4.10(ii)]. Therefore N̄ is locally cyclic or isomorphic to a 2-group which is isomorphic to a

locally quaternion group. □

Note that a (generalized) quaternion group Qn of order 2n, (n ≥ 3), is not abelian and every

maximal subgroup is either (generalized) quaternion or cyclic, in particular, |Z(Qn)| = 2 (see [6,

Theorem 5.4.3]). Therefore in any case the group N/E of Lemma 2.1 has a unique subgroup of order

p for every prime number p.

Lemma 2.3. Let G be a locally finite p-group and let (w, V ) be a Λ-pair for G. Let A be an abelian

subgroup of G. Let E ∈ E∗(w, V ) such that E ∩ A is maximal and A is normalized by NG(E). Then

A/(A ∩NG(E) is finite.

Proof. Assume that A/(A ∩ NG(E) is infinite. Let N = NG(E), H = NA and R = N ∩ A. Then

A,R ◁ H. Put H̄ = H/R. Let B̄ = Ω1(Ā). First suppose that B̄ is finite. Then Ā is Chernikov

by [9, Proposition 1.G.6]. Let C̄ = CN̄ (Ā). Then N̄/C̄ is finite by [12, Theorem 3.29.2]. Next let
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K̄/C̄ = CĀC̄/C̄(N̄/C̄). Then K̄/C̄ ̸= 1 since N̄/C̄ is finite and G is a locally finite p-group. Also

K̄ ≤ ĀC̄ and hence K̄ = (K̄ ∩ Ā)C̄, which implies that K̄ ∩ Ā ̸= 1. But now

[K̄ ∩ Ā, N̄ ] ≤ N̄ ∩ Ā = 1

and so K̄ ∩ Ā ≤ CĀ(Ē) ≤ N̄ which is a contradiction since N̄ ∩ Ā = 1. Therefore B̄ is infinite.

Next let D = A ∩ E, H̄ = H/D and B̄ = Ω1(Ā). If B̄ is finite, then Ā is Chernikov. But then

Ω1(A/R) is finite since D ≤ R which is impossible by the preceding paragraph. Therefore B̄ is infinite.

Put L = BDV and L̄ = L/D. Let C̄ = CB̄(V̄ ). Assume that C̄ is infinite. Then

C̄ = ⟨c1⟩ × · · · × ⟨cn⟩ × · · ·

where cn ∈ C \E and (cn)
p = 1 for every n ≥ 1. Now there exists an i > 1 so that ⟨c1⟩V̄ ∩ ⟨ci⟩V̄ = V̄

since V is finite. Taking the inverse images we get ⟨c1⟩V D∩⟨ci⟩V D = V D. Without loss of generality

we may suppose that w /∈ ⟨c1⟩V D since V D ≤ E but w /∈ E. Then ⟨c1⟩V D ≤ E1 for an E1 ∈ E∗(w, V ).

But since D is a maximal intersection and ⟨c1, D⟩ ≤ A it follows that c1 ∈ D, which is impossible.

Therefore C̄ must be finite and so B̄ is Chernikov by [9, Corollary 3.2]. But since B̄ is elementary

abelian B̄ must be finite, which contradicts the assumption that B̄ is infinite. Therefore A/(A ∩N)

must be finite. □

Lemma 2.4. Let G be a perfect locally finite p-group and let (w, V ) be a Λ-pair for G such that

W ∗(w, V ) = 1. Let A be an abelian subgroup of G and let E ∈ E∗(w, V ) such that E ∩A is maximal,

NG(E) normalizes A and NG(E) = NG(E
′). Then A ≤ NG(E).

Proof. Assume that the assertion is false. Let N = NG(E), R = N ∩ A and H = NA. Then

A/(A ∩N) is nontrivial finite by Lemma 2.3 and N/E has a unique subgroup of order p by Lemma

2.2 Put H̄ = H/R and C̄ = CN̄ (Ā). Then H̄/C̄ is finite since |Ā| is finite and hence T̄ /C̄ =

N(Ω1(Ā)N̄)/C̄)(N̄/C̄) > N̄/C̄. Hence there exists an a ∈ NA(N) \N so that ap ∈ N .

Next let D = A ∩ E and put H̄ = H/D. Now [R̄, Ē] ≤ R̄ ∩ Ē = 1. Then also [āp, Ē] = 1 since

ap ∈ R. Hence

1 = [āp, Ē] = [ā, Ē]p

by [6, Lemma 2.2.(i)] and so [ā, Ē] has order equal to p. Also [ā, Ē] ≤ Ā ∩ N̄ = R̄. Thus ⟨[ā, Ē]Ē/Ē⟩
is the unique subgroup of order p of N̄/Ē by Lemma 2.2. But also 1 ̸= Z(G) ≤ N and Z(G) ∩E = 1

by Lemma 2.1(c). Clearly then [ā, Ē]Ē/Ē ≤ Z(G)Ē/Ē which implies that a normalizes Z(G)E. In

this case also a normalizes E′ since [Z(G)E,Z(G)E] = E′. But then a ∈ N since N = NG(E
′) by the

hypothesis, which is a contradiction and so the proof of the lemma is complete. □

Lemma 2.5. Let G be a locally finite p-group and let (w, V ) be a Λ-pair for G satisfying (∗∗). Suppose
that G satisfies the normalizer condition and W ∗(w, V ) = 1. Then Z(G) is cyclic.

Proof. Assume that Z(G) is infinite. Let E ∈ E∗(w, V ) such that NG(E) = NG(E
′) and put N =

NG(E). Then Z(G) ≤ N . In this case Z(G) is infinite locally cyclic and so N = Z(G)E by Lemma 2.2

since Z(G)∩E = 1 by the hypothesis. Also there exists a b ∈ G\N so that N b = N by the hypothesis.
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Then b normalizes Z(G)E since N = Z(G)E and then also b normalizes [Z(G)E,Z(G)E] = E′. But

then b ∈ N by the hypothesis, which is a contradiction. Therefore the assumption is false and so Z(G)

is cyclic. □

Corollary 2.6. Let G be a locally finite p-group and let (w, V ) be a Λ-pair for G satisfying (∗∗),
where p ̸= 2. Suppose that G satisfies the normalizer condition and W ∗(w, V ) = 1. Let B be a normal

subgroup of G of exponent ≤ exp(Z(G)). Then B is abelian and B ≤ NG(E) for an E ∈ E∗(w, V ).

Proof. Assume that B is not abelian. We may suppose that B∩Z(G) ̸= 1 and exp(B) = exp(B∩Z(G)).

Then Z(G) ∩ B = ⟨z⟩ for a 1 ̸= z ∈ Z(G) by Lemma 2.5 and exp(B) = |z|. Let E ∈ E∗(w, V ) such

that NG(E) = NG(E
′) and put N = NG(E), T = NB(N) and R = N ∩ B. Clearly B ≰ N

since CoreG(E) = 1 and B′ ̸= 1 which implies that T ≰ N . Also R ◁ TN since R ◁ N and

[T,R] ≤ B ∩ N = R. Furthermore RE/E = ⟨z⟩E/E since RE/E is a normal abelian subgroup of

N/E and so cyclic by Lemma 2.2 with exp(R) = |z| and ⟨z⟩ ∩ E = 1. Now T normalizes ⟨z⟩E since

[T,N ] ≤ B ∩N = R ≤ ⟨z⟩E. Then also T normalizes (⟨z⟩E)′ = E′ and so T ≤ N by the hypothesis

which is impossible since T ≰ N . Therefore the assumption is false and so B ≤ N and then B′ = 1

since B′ ≤ E. □

Lemma 2.7. Let G be a locally finite p-group with Z(G) ̸= 1 and let (w, V ) be a Λ-pair for G satisfying

(∗∗). Suppose that G satisfies the normalizer condition and W ∗(w, V ) = 1. Let A be a normal abelian

subgroup of G with exp(A) ≤ p(exp(Z(G))). Then A ≤ NG(E) for an E ∈ E∗(w, V ). Let p ̸= 2. Then

any two normal abelian subgroups of G of exponent ≤ p|Z(G)| commute element-wise.

Proof. Let E ∈ E∗(w, V ) such that NG(E) = NG(E
′) and assume that A ≰ NG(E). Put N = NG(E),

R = A∩N and H = NA. Then R◁H. There exists an a ∈ A\N so that Na = N by the hypothesis.

We may suppose that ap ∈ N and so ap ∈ R. Furthermore since RE/E is a normal abelian subgroup

of N/E it follows from Lemma 2.2 that RE/E is cyclic and so R = ⟨b⟩(R ∩ E) for a b ∈ R. Also

Z(G) ̸= 1 by the hypothesis and cyclic by Lemma 2.5 and so Z(G) = ⟨z⟩ for a z ∈ Z(G). Thus

⟨z⟩E/E ≤ ⟨b⟩E/E and |bE/E| ≤ p|zE/E| = p|z| since ⟨z⟩ ∩ E = 1. Now apE/E ∈ ⟨z⟩E/E since

|a| ≤ p|z| by the hypothesis. Hence it follows that

1 = [apE,N/E] = [ap, N ]E/E = [a,N ]pE/E

by [6, Lemma 2.2.2((i)] since [a,N ] ≤ A. This implies that |[a,N ]E/E| = p and hence [a,N ]E/E ≤
⟨z⟩E/E. Consequently it follows that [a,N ] ≤ ⟨z⟩E. Clearly then a normalizes ⟨z⟩E and then also

E′ is normalized by a. But then a normalizes E and so belongs to N by the hypothesis, which is a

contradiction. Therefore the assumption is false and so A ≤ N .

Next let p ̸= 2 and let A,B be two normal abelian subgroups of G with exponents ≤ p(exp(Z(G))).

Then A,B ≤ NG(E) by the first part of the proof. Also N/E is locally cyclic by Lemma 2.2. Hence it

follows that [A,B] ≤ E. But since CoreG(E) = 1 by the hypothesis this implies that [A,B] = 1 and

so AB is abelian. This completes the proof. □
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Lemma 2.8. Let G be a locally finite p-group satisfying the normalizer condition and Z(G) ̸= 1,

where p ̸= 2. Let (w, V ) be a Λ-pair for G and let E ∈ E∗(w, V ) such that NG(E) = NG(E
′) and

W ∗(w, V ) = 1. Let B be a normal non-abelian subgroup of G and A be a normal abelian subgroup of G

contained in B such that exp(A) = exp(A ∩ Z(G)) and B/A is elementary abelian. Put N = NG(E),

R = N ∩B, D = R ∩ E, T = NB(N), H = TN and D∗ = CoreH(D). Then the following hold.

(a) R = ⟨b⟩D, b /∈ AD, ⟨b⟩ ∩D = 1, |b| = p|z| and A = ⟨z⟩(A ∩D), where ⟨z⟩ = Z(G).

(b)

R/D∗ ≤ Z(N/D∗) and CT/D∗(R/D∗) = R/D∗

Proof. If B ≤ N , then B′ ≤ E since N/E is locally cyclic and then B′ = 1 since W ∗(w, V ) = 1,

which is impossible since B is not abelian. Therefore B ≰ N and then also T ≰ N but T ◁H. Now

Z(G) ̸= 1 by the hypothesis and cyclic by Lemma 2.5. Thus A ∩ Z(G) = ⟨z⟩ for a 1 ̸= z ∈ Z(G).

Furthermore A ≤ R by Lemma 2.7. Clearly R ◁ NB since A ≤ R. Now R = ⟨b⟩D for a b ∈ R \ D
and A = ⟨z⟩(A ∩D) since N/E is locally cyclic, |z| = exp(A) and E ∩ Z(G) = 1 by the hypothesis.

Note that if ⟨b⟩D = ⟨z⟩D, then ⟨b⟩E = ⟨z⟩E. Hence [T,E] ≤ N ∩B = R = ⟨z⟩D ≤ ⟨z⟩E and so ⟨z⟩E
and then also E′ is normalized by T . But then T ≤ N by the hypothesis, a contradiction. Therefore

⟨b⟩D > ⟨z⟩D ≥ A which implies that b /∈ AD. Since R/A is elementary abelian, exp(A) = |z| and
⟨z⟩ ∩D = 1 we have (bD)p ∈ ⟨zD⟩ since ⟨zD⟩ ≤ ⟨bD⟩ and hence |bpD| = |zD| = |z|. Thus |bD| = p|z|
which implies that p|z| ≤ |b|. However as bp ∈ A we have |bp| ≤ exp(A) = |z| and hence |b| ≤ p|z|.
Comparison gives |b| = p|z| and so ⟨b⟩ ∩D = 1. Thus (a) follows.

Put H̄ = H/D∗. Clearly [N,R] ◁H and [N,R] ≤ E ∩ R ≤ D since N/E is abelian which implies

that [N,R] ≤ D∗. Therefore [N̄ , R̄] = 1 and so R̄ ≤ Z(N̄). Next assume if possible that there exists

a t ∈ T \N so that [t̄, R̄] = 1. We may suppose that tp ∈ N . Then

1 = [t̄p, N̄ ] = [t̄, N̄ ]p

by [6, Lemma 2.2.2(i)] since t̄p ∈ B̄ ∩ N̄ = R̄ and R̄ ≤ Z(N̄). Hence [t̄, N̄ ] has order equal to p and

since ⟨z̄⟩ is the only cyclic subgroup of N̄/Ē of order |z| ≥ p it follows that [t̄, N̄ ] ≤ ⟨z̄⟩ and this

implies that [t,N ] ≤ ⟨z⟩D ≤ ⟨z⟩E. This shows that t normalizes ⟨z⟩E and then also E′ is normalized

by t. But then t ∈ N by the hypothesis, which is a contradiction. Therefore CT̄ (R̄) = R̄ and so (b)

follows. This completes the proof of the lemma. □

Lemma 2.9. Let B be a group and A be a normal abelian subgroup of B. Let a ∈ A, b ∈ B and

n ≥ 1. Then

(ab)n = bnan
n∏

k=1

[a,k b]
mk

where mk =
(
n
k

)
+

(
n−1
k

)
+ · · ·+

(
k
k

)
. If n = ps and 1 ≤ k < p− 1, then n|mk.

Proof. The following hold.

(ab)n = bnan[a, bn] · · · [a, b]

[a, bn] =

n∏
k=1

[a,k b]
(nk)
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for n ≥ 1. Using these equalities we get

(ab)n = bnan
n∏

k=1

[a,k b]
mk

and mk =
(
n
k

)
+ · · · +

(
k
k

)
, where 1 ≤ k ≤ n. Also it is well known that mk =

(
n+1
k+1

)
for 1 ≤ k ≤ n.

Now let n = ps and 1 ≤ k < p− 1. We have

mk =

(
n+ 1

k + 1

)
=

(n+ 1)!

(k + 1)!(n+ 1− k − 1)!
=

(n+ 1)!

(k + 1)!(n− k)!

Since n− k < n the last equality takes the form

(n+ 1)!

(k + 1)!(n− k)!
=

(n− k + 1) · · ·n(n+ 1)!

(k + 1)!

Also p ∤ (k + 1)! since k < p− 1. Therefore

n|(n− k + 1) · · ·n(n+ 1)!

(k + 1)!

which completes the proof of the lemma □

Lemma 2.10. Let K be a locally finite p-group such that K = Ω1(K) and nc(K) = 3, where p ≥ 3.

Then exp(K/γ3(K)) = p and exp(K) ≤ p2.

Proof. Put K̄ = K/γ3(K). Since nc(K̄) = 2 and p ̸= 2 it follows that Ω1(K̄) = p by [6, 5.3.9(i)].

Since K = Ω1(K) it follows that exp(K̄) = p. Since exp(K/K ′) = p it follows that K ′/γ3(K) and

γ3(K) have exponents p by [10, 1.2.14(i)]. Therefore exp(K) ≤ p2, which completes the proof of the

lemma. □

Lemma 2.11. Let G be a locally finite p-group satisfying the normalizer condition and Z(G) ̸= 1,

where p ̸= 2. Let (w, V ) be a Λ-pair for G satisfying (∗∗) such that W ∗(w, V ) = 1. Let B be a normal

nilpotent subgroup of G with nc(B) = c and A be a normal abelian subgroup of G such that A ≤ B

and B/A is elementary abelian. Then B is abelian if one of the following conditions are satisfied.

(a) c < p and exp(A) = exp(A ∩ Z(G)).

(b) B = Ω1(B), c ≤ 3 and |Z(G)| ̸= 3.

(c) c ≤ 3, exp(A) = exp(A ∩ Z(G)) and |Z(G)| ̸= 3.

Proof. (a) Let c < p. Assume that B is not abelian. Then c ≥ 2 and p ≥ 3. Let E ∈ E∗(w, V ) such

that NG(E) = NG(E
′). Then B ≰ NG(E) since NG(E)/E is abelian and W ∗(w, V ) = 1. Also Z(G)

is cyclic by Lemma 2.5 and non-trivial by the hypothesis. Let A∩Z(G) = ⟨z⟩. Then exp(A) = |z| by
the hypothesis. Put N = NG(E), R = N ∩ B, D = R ∩ E, T = NB(N), Z = Z(B) and H = TN .

Then AZ ≤ N by Lemma 2.7 and T ≰ N since G satisfies the normalizer condition. Furthermore

R = ⟨b⟩D, b /∈ AD, ⟨b⟩ ∩D = 1, |b| = p|z|, A = ⟨z⟩(A ∩D) and ⟨b⟩D > ⟨z⟩D by Lemma 2.8(a). Next

let D∗ = CoreH(D) and put H̄ = H/D∗. Then R̄ ≤ Z(N̄) and CT̄ (R̄) = R̄ by Lemma 2.8(b). Then

also Z(T̄ ) ≤ R̄.
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Choose a t̄ ∈ T̄ \ R̄. Then |t̄| ≤ p|z̄| = p|z|. We claim that [t̄, Ē] ≤ ⟨z̄⟩D̄. Let ē ∈ Ē. Then

[ē, t̄−1] ≤ T̄ ∩ N̄ = R̄. Hence [ē, t̄−1] = b̄iȳ for a ȳ ∈ D̄ and i ≥ 1 and hence te = (b̄iȳ)t̄. Taking the

|z|th power of each side and applying Lemma 2.9 we get

(t̄e)|z| = t̄|z|(b̄iȳ)|z|
|z|∏
k=1

[b̄iȳ,k t̄]
(|z|+1

k+1 )

Since p||z| we have t̄|z| ∈ R̄ ≤ Z(N̄) which implies that (t̄e)|z| = t̄|z|. Substituting this above and

simplifying gives

1 = b̄i|z|ȳ|z|
|z|∏
k=1

[b̄iȳ,k t̄]
(|z|+1

k+1 )

Consider a factor [b̄iȳ,k t̄]
(|z|+1

k+1 ). If k ≥ c, then this factor is equal to 1 since nc(B) = c. If k < c then

again this factor is equal to 1 by Lemma 2.9 since k ≤ c− 1 < p− 1. Consequently it follows that

|z|∏
k=1

[b̄iȳ,k t̄]
(|z|+1

k+1 ) = 1

and substituting this value above gives b̄i|z|ȳ|z| = 1. Thus we get b̄i|z| = ȳ−|z| ∈ D̄. This forces

b̄i|z| = 1 = ȳ−|z| since ⟨b⟩ ∩ D = 1. Since |b| = p|z| we see that p|i and so b̄i ∈ ⟨z̄⟩D̄. Clearly then

[ē, t̄−1] ∈ ⟨z̄⟩D̄ ≤ ⟨z̄⟩Ē since y ∈ D ≤ E. This is equivalent to [e, t−1] ∈ ⟨z⟩E. Since e is any element

of E it follows that [E, t−1] ∈ ⟨z⟩E and so t normalizes ⟨z⟩E. But then t normalizes E′ and so t ∈ N ,

which is a contradiction. Therefore the assumption is false and so B must be abelian.

(b) Assume that B is not abelian. By the hypothesis B/B′ is elementary abelian, nc(B) ≤ 3,

p ≥ 3 and |Z(G)| ̸= 3. Since exp(B/B′) = p it follows that exp(B′/γ3(B)) = exp(γ3(B)) = p by [10,

1.2.14(i)]. Thus exp(B/γ3(B)) = p and exp(B) ≤ p2 by Lemma 2.10. Furthermore B′ is abelian by

(a) since nc(B′) ≤ 2 < p and exp(B′/γ3(B)) ≤ p. Define A = B′. Then B/A is elementary abelian.

We use the same notation as above. Now if |Z(G)| ≥ p2, then considering BZ(G) and AZ(G) it

follows that B is abelian by (a) since exp(B) ≤ p2. Therefore we may suppose that |Z(G)| = p. Let

Z(G) = ⟨z⟩. We may suppose that z ∈ A.

Clearly p > 3 since |Z(G)| ̸= 3. Thus p ≥ 5. Since |z| = p the simplified equality in (a) can be

written as

1 = b̄ipȳp[b̄iȳ, t̄](
p+1
2 )[b̄iȳ, t̄, t̄](

p+1
3 )

It is easy to see that p divides
(
p+1
2

)
and

(
p+1
3

)
since p ≥ 5. Hence

(
p+1
2

)
= pu and

(
p+1
3

)
= pv for some

u, v ≥ 1. Also [biy, t, t] ∈ Z(B) since c ≤ 3. Using these we get

[b̄iȳ, t̄, t̄](
p+1
3 ) = [b̄iȳ, t̄, t̄]pv = [b̄iȳ, t̄, t̄p]v = 1

since tp ∈ γ3(B)(or t̄p ∈ R̄ ≤ Z(N̄)). In the same way

[b̄iȳ, t̄](
p+1
2 ) = [b̄iȳ, t̄]pu = [(b̄iȳ)p, t̄]u = 1

since b̄i, ȳ ∈ R̄ and b̄ip, ȳp ∈ Z(N̄). Substituting these values above we obtain 1 = b̄ipȳp which gives a

contradiction as in (a). Therefore B must be abelian.
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(c) If p > 3, then B abelian by (a) since c ≤ 3. So suppose that p = 3. In this case |Z(G)| ≥ 32.

Again we use the same notation which is used in (a). Thus we have

1 = b̄i|z|ȳ|z|
|z|∏
k=1

[b̄iȳ,k t̄]
(|z|+1

k+1 )

= b̄i|z|ȳ|z|[b̄iȳ, t̄](
|z|+1

2 )[b̄iȳ, t̄, t̄](
|z|+1

3 )

Obviously
(|z|+1

2

)
= |z|u for a u ≥ 1, which implies that [b̄iȳ, t̄](

|z|+1
2 ) = 1. Furthermore

(|z|+1
3

)
= 3v

for a v ≥ 1 since |z| ≥ 32. Also [b̄iȳ, t̄, t̄] ∈ Z(T̄ ). Hence, as in (b),

[b̄iȳ, t̄, t̄](
|z|+1

3 ) = [b̄iȳ, t̄, t̄]3v = [b̄iȳ, t̄, t̄3]v = 1

Substituting these values above we get 1 = b̄i|z|ȳ|z| which gives a contradiction as in (a). Therefore B

must be abelian in this case as well. This completes the proof of the lemma. □

Proof of Theorem 1.1. Assume that G is perfect. We claim that there exists a proper normal

subgroup M of G so that Ω1(G/M) = ⟨aM ∈ G : |aM | = p⟩ is abelian. From Lemma 2.1(c) we

know that if (w, V ) is a Λ-pair for G and if 1 ̸= M is a maximal element of W ∗(w, V ), then there

exists a finite subgroup U of G with U ≰ M and containing V so that (wuM/M,UM/M) is a Λ-

pair for G/M with W ∗(wuM/M,UM/M) = 1 for a u ∈ U . This shows that every homomorphic

image H of G has a homomorphic image K with a Λ-pair (wK , VK) such that W ∗(wK , VK) = 1. Let

IG = {a ∈ G : |a| = p}. For each a ∈ IG put Na = ⟨ag : g ∈ G⟩. Then each Na is nilpotent since G is

a Fitting group. Let n(G) be the minimum of all the nc(Na) > 1 as a ranges over IG.

First we show the following. G has a homomorphic image H with the following property. H

has a Λ-pair (wH , VH) satisfying (∗∗) and the condition W ∗(wH , VH) = 1 such that for every a ∈
IH the subgroup Na is abelian, that is n(H) = 1. Assume that there exists no such H. Among

all the homomorphic images X of G having a Λ-pair (wX , VX) satisfying (∗∗) and the condition

W ∗(wX , VX) = 1 there is a homomorphic image H such that 1 < n(H) ≤ n(X) for all such X.

Without loss of generality we may suppose that H = G. Thus G has a Λ-pair (w, V ) such that (∗∗)
and the condition W ∗(w, V ) = 1 are satisfied. In particular 1 ̸= |Z(G)| ̸= 3 by Lemma 2.1(c) and

by the hypothesis. Also n(G) is minimal in the above sense and n(G) > 1 by the assumption. Let

a ∈ IG so that nc(Na) = n(G). Put K = Na. Then K = Ω1(K). First suppose that nc(K) = 2.

Then K/γ2(K) is elementary abelian. Also exp(γ2(K)) = p by [10, 1.2.14(i)] since exp(K/γ2(K)) = p

which implies that K is abelian by Lemma 2.11(a). Therefore nc(K) > 2. Let nc(K) = c and put

Ḡ = G/γc(K). Then nc(K̄) = c− 1.

First assume if possible that K̄ ′ ≤ Z(Ḡ). Then [K̄ ′, Ḡ] = 1 and hence [K ′, G] ≤ γc(K) which implies

that [K ′, G,K] = 1. This implies that [K,K,K,K] = 1 and so c = 3 since c > 2. Furthermore it follows

as above that K ′/γ3(K) and γ3(K) have exponents equal to p since exp(K/K ′) = p. Since nc(K ′) ≤ 2

if we put A = γ3(K) in Lemma 2.11(a), then it follows that K ′ is abelian. Thus K = Ω1(K), K ′ is

abelian, K/K ′ is elementary abelian and |Z(G)| ̸= 3. But then applying Lemma 2.11(b) shows that K

must be abelian which is a contradiction. Therefore K ′ ≰ Z(Ḡ) and so there exists an s̄ ∈ K ′ \Z(Ḡ).
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Let T be a finite subgroup of G so that s̄ /∈ T̄ . Then (s̄, T̄ ) is a Λ-pair for Ḡ. Let M̄ be a maximal

element of W ∗(s̄, T̄ ). If M̄ = 1, then K̄ is abelian by the induction hypothesis. But then nc(K) = 2,

which gives a contradiction as above. Therefore M̄ ̸= 1. Now consider Ḡ/M̄ . By Lemma 2.1(c) there

exists a finite subgroup U of G such that s̄ /∈ Ū and T̄ ≤ Ū ≰ M̄ . Then there exists a u ∈ U so that

(s̄ūM̄ , ŪM̄/M̄) is a Λ-pair for Ḡ/M̄ . Without loss of generality we may suppose that (s̄M̄ , ŪM̄/M̄)

is a Λ-pair for Ḡ/M̄ . Also (s̄M̄ , ŪM̄/M̄) satisfies the hypothesis and W ∗(s̄M̄ , ŪM̄/M̄) = 1. In this

case K̄M̄/M̄ is abelian by the induction hypothesis and this implies that K̄ ′ ≤ M̄ . However since

s̄ ∈ K̄ ′ but s̄ /∈ M̄ this is another contradiction. Therefore the assumption is false and so it follows

that Na is abelian for every a ∈ IG. In particular each Na has exponent p.

Put N = ⟨Na : a ∈ Ia⟩. Then N is abelian by Lemma 2.7 since exp(Na) = p for every a ∈ IG and

G has a Λ-pair (w, V ) such that (∗∗) and the condition W ∗(w, V ) = 1 are satisfied. Since N = Ω1(G)

the proof of the theorem is complete. □

Proof of Corollary 1.2. Suppose that G is a Fitting p-group satisfying the normalizer condition,

where p ̸= 2. Furthermore suppose that in every homomorphic image H of G every Λ-pair satisfies

(**) and Z(H) ̸= 3. Suppose also that G is perfect. Assume if possible that G = Ωk(G) for a k ≥ 1.

Without loss of generality we may suppose that k = 1. Then G = Ω1(G). By Theorem 1.1 there exists

a proper normal subgroup M of G so that Ω1(G/M) is abelian. But since Ω1(G)M/M ≤ Ω1(G/M)

it follows that Ω1(G)M/M ̸= G/M since G is perfect which is a contradiction since G = Ω1(G).

Therefore Ωk(G) ̸= G for every k ≥ 1.

Next suppose that G is perfect and assume that every proper subgroup of G has finite exponent.

Then there exists a smallest k ≥ 1 so that G = Ωk(G) by [1, Theorem 1.1]. But since G cannot

be generated by a subset of finite exponent by the first paragraph this gives a contradiction. Hence

it follows that if every proper subgroup of G has finite exponent, then G cannot be perfect. This

completes the proof of the corollary. □

3. Proof of Theorems 1.3, 1.4

Lemma 3.1. Let G be an infinitely generated MNS-group such that G has no (∗)-triples for non-

central elements. If the (∗∗)-property is satisfied by dominant (distinguished) pairs, then the same

property is satisfied for Λ-pairs.

Proof. Let (w, V ) be a Λ-pair for G. By [4, Lemmas 3.1, 4.1(a)] there exist a finite subgroup U of G

containing V so that (w,U) is a dominant pair forG. By the hypothesis there exists an E ∈ E∗(w,U) so

thatNG(E) = NG(E
′). But since E∗(w,U) ⊆ E∗(w, V ) by [4, Lemma 3.2] it follows that E ∈ E∗(w, V )

and so (∗∗) is satisfied by (w, V ). □

Lemma 3.2. Let G be a Fitting p-group which is an MNS-group satisfying the normalizer condition,

where p ̸= 2. Suppose that G has no homomorphic images having (∗)-triples for non-central elements.
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Let (w, V ) be a dominant pair for G with W ∗(w, V ) = 1. Finally suppose that in every homomorphic

image of G dominant pairs satisfy (∗∗). Then ⟨S1(G)⟩ ̸= G.

Proof. Note that Z(G) ̸= 1 by Lemma 2.1(c) since W ∗(w, V ) = 1. First we show that S1(G)e = {A ∈
S1(G) : exp(A) ≤ pe} generates a proper subgroup of G for every e ≥ 1. We may use induction on

e ≥ 1. Let e = 1. Then ⟨S1(G)1⟩ is abelian by Lemma 2.7 since p ̸= 2 and W ∗(w, V ) = 1. Now

suppose that the assertion holds for an e ≥ 1. We show that it holds for e+1. Let K = ⟨S1(G)1⟩ and
put Ḡ = G/K. Clearly then {Ā : A ∈ S1(G)e+1} ⊆ S1(Ḡ)e. Let ū ∈ Ḡ \Z(Ḡ). By the hypothesis and

by [4, Lemmas 3.1, 4.1(a)] there exists a finite subgroup S of G so that (ū, S̄) is a dominant pair for Ḡ.

If W ∗(ū, S̄) = 1, then ⟨S1(Ḡ)e⟩ ̸= Ḡ by the induction hypothesis which implies that ⟨S1(G)e+1⟩ ̸= G.

Therefore we may suppose that W ∗(ū, S̄) ̸= {1}. Let M̄ be a maximal element of W ∗(ū, S̄) and

consider the group Ḡ/M̄ . By Lemma 2.1(c) there exists a finite subgroup T̄ of Ḡ with S̄ ≤ T̄ ≰ M̄

and a t ∈ T so that (ūt̄M̄ , T̄ M̄/M̄) is a Λ- pair for Ḡ/M̄ such that W ∗(ūt̄M̄ , T̄ M̄/M̄) = 1. By [4,

Lemmas 3.1, 4.1(a)] we may suppose that (ūt̄M̄ , T̄ M̄/M̄) is a dominant pair for Ḡ/M̄ . Without loss

of generality we may assume that ūM̄ /∈ Z(Ḡ/M̄) and so consider (ūM̄ , T̄ M̄/M̄). Also (ūM̄ , T̄ M̄/M̄)

satisfies (∗∗) by the hypothesis. Therefore ⟨S1(Ḡ)e⟩ ̸= Ḡ by the induction hypothesis which implies

that ⟨S1(G)e+1⟩ ̸= G as before. This completes the proof of the assertion.

Now consider the general case of S1(G). Let g ∈ G\Z(G). Let |g| = n and let the subnormal index

of ⟨g⟩ in G be m. Then applying [2, Corollary 2.2] we see that K = ⟨Amn
: A ∈ S1(G)⟩ ≤ CG(g).

Also K ̸= G by the choice of g. Put e = mn and Ḡ = G/K. Choose an s̄ ∈ Ḡ \ Z(Ḡ). Then

there exists a finite subgroup T̄ of Ḡ so that (s̄, T̄ ) is a dominant pair for Ḡ. Moreover there exists

a normal subgroup M̄ of Ḡ and a finite subgroup R̄ of Ḡ containing T̄ such that (s̄M̄ , R̄M̄/M̄) is a

dominant pair for Ḡ/M̄ and W ∗(s̄M̄ , R̄M̄/M̄) = 1 as above. Then Ḡ/M̄ satisfies the hypothesis of

the lemma and so ⟨S1(Ḡ/M̄)e⟩ ̸= Ḡ/M̄ by the first part of the lemma. Also ĀM̄/M̄ ∈ S1(Ḡ/M̄)e

since Ae ≤ K for all A ∈ S1(G) which implies that ⟨ĀM̄/M̄ : A ∈ S1(G)⟩ ̸= Ḡ and hence it follows

that ⟨A : A ∈ S1(G)⟩ ̸= G which completes the proof of the lemma. □

Lemma 3.3. Let G be an infinitely generated MNS-group and in every homomorphic image of G

normal closures of finitely generated subgroups are residually nilpotent. Suppose that St(G) ̸= G for

every t ≥ 1. Then there exists a homomorphic image H of G and a subgroup E of H which is maximal

with respect to a dominant pair for H so that ⟨EH⟩ = H.

Proof. Since G is an infinitely generated perfect group whose proper subgroups are solvable there

exists a homomorphic image H of G so that H and its homomorphic images cannot satisfy the (∗)-
property for non-central elements by [4, Theorem 1.4(b)]. Without loss of generality we may suppose

that H = G. Let (w, V ) be a dominant pair for G and assume if possible that ⟨EG⟩ ̸= G for ev-

ery E ∈ E∗(w, V ). Choose an E1 ∈ E∗(w, V ) and let L1 = ⟨M ◁ G : d(M) ≤ d(⟨EG
1 ⟩) ⟩. Then

L1 ̸= G by the hypothesis. Hence there exists an E2 ∈ E∗(w, V ) so that E2 ≰ L1 by [4, Lemma

3.3]. Choose a y1 ∈ E2 \ L1. Then d(⟨yg1 : g ∈ G⟩) > d(⟨Eg
1 : g ∈ G⟩). Also w /∈ ⟨V, y1⟩. So there

exists a finite subgroup V1 of G containing V and y1 so that (w, V1) is a dominant pair for G and

E∗(w, V1) ⊆ E∗(w, V ) by [4, Lemmas 4.1(a), 3.2]. Put L2 = ⟨M ◁ G : d(M) ≤ d(⟨yg1 : g ∈ G⟩)⟩.
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Then L2 ̸= G and so as in the first case there exists a y2 ∈ G \ L2 so that w /∈ ⟨V1, y2⟩ and

d(⟨yg2 : g ∈ G⟩) > d(⟨yg1 : g ∈ G⟩). Continuing in this way we obtain an infinite sequence y1, y2, . . . of

elements of G so that d(⟨ygi+1 : g ∈ G⟩) > d(⟨ygi : g ∈ G⟩) for all i ≥ 1 and w /∈
∪∞

i=1⟨V, y1, . . . , yi⟩.
Hence there exists a (w, V )-maximal subgroup R of G so that

∪∞
i=1⟨V, y1, . . . , yi⟩ ≤ E. Also d(R) = ∞

by the choice of the yi and this implies that R = G, which is a contradiction since w /∈ R and so the

proof of the lemma is complete. □

Proof of Theorem 1.3. Let G be a Fitting p-group which is an MNS-group and satisfies the

normalizer condition, where p ̸= 2. Suppose that in every homomorphic image of G dominant pairs

satisfy (∗∗). Let (w, V ) be a dominant pair for G. First we show that ⟨St(G)⟩ ̸= G for every t ≥ 1.

By Lemma 2.1(c) we may suppose that W ∗(w, V ) = 1. If t = 1, then the assertion follows by Lemma

3.2. Next assume that t > 1 and the assertion holds for t − 1. Put K = ⟨St−1(G)⟩ and Ḡ = G/K.

Then Ḡ ̸= 1. By the hypothesis Ḡ contains no (∗)-triples for non-central elements. Therefore there

exists an s̄ ∈ Ḡ, a finite subgroup T̄ and a normal subgroup M̄ of Ḡ so that (s̄M̄ , T̄ M̄/M̄) is a dom-

inant pair for Ḡ and W ∗(s̄M̄ , T̄ M̄/M̄) = 1. Then again ⟨S1(Ḡ/M̄)⟩ ̸= Ḡ/M̄ by Lemma 3.2. Since

L̄M̄/M̄ ∈ S1(Ḡ/M̄) for every L ∈ S1(G) it follows that ⟨L̄M̄/M̄ : L ∈ St(G)⟩ ̸= Ḡ/M̄ which implies

that ⟨St(G)⟩ ̸= G and so the induction is complete. The second part follows from Lemma 3.3 and so

the proof of the theorem is complete. □

Proof of Theorem 1.4. Assume that G is not solvable. Then G is perfect and applying [4,

Theorem 1.4(b)] we see that G is a Fitting p-group and has a homomorphic image H such that in

every homomorphic of H there are no (∗)-triples for non-central elements. Also p ̸= 2. Furthermore if

K is a homomorphic image of H, then every dominant pair forK satisfies (∗∗) and |Z(K)| ̸= 3. Finally

G satisfies the normalizer condition and without loss of generality we may suppose that H = G. Then

in every homomorphic image of G there are no (∗)-triples for non-central elements and the dominant

pairs for G satisfy (∗∗).
Let H be a homomorphic image of G. Let wH ∈ H \ Z(H) and VH be a finite subgroup of H with

wH /∈ VH . Thus (wH , VH) is a Λ-pair for H. Also (wH , VH) satisfies (∗∗) by Lemma 3.1. Consequently

it follows that G satisfies the hypothesis of Theorem 1.1. Therefore there exists a proper normal

subgroup M of G such that Ω1(G/M) is abelian. Furthermore G contains a proper subgroup of

infinite exponent, St(G) ̸= G for every t ≥ 1 and G = ⟨EG⟩ for a proper subgroup of G by Corollary

1.2 and Theorem 1.3.

Finally if every proper subgroup of G has finite exponent, then G cannot be perfect by Corollary

1.2 and then G must be solvable. This completes the proof of the theorem. □

4. Applications

In this last section we apply the above results to obtain two results on solvability. The first result

also shows the influence on the group structure of the bounding of the exponents of the normal abelian
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subgroups by the exponent of the group center.

Proof of Theorem 1.5. Let G be a Fitting p-group satisfying the normalizer condition in which

every proper subgroup is solvable, where p ̸= 2. Furthermore suppose that every homomorphic image

H of G satisfies (∗∗) and Z(H) ̸= 3. Assume if possible that G is not solvable. Then G is perfect.

As in the proof of Theorem 1.4 we may suppose that in every homomorphic image of G there are no

(∗)-triples for non-central elements. First we show the following. G has a homomorphic image H with

the following property. H has a dominant pair (wH , VH) satisfying W ∗(wH , VH) = 1 such that every

normal metabelian nilpotent subgroup B = [B,H] of H is abelian. Assume not. We may suppose

that G has a dominant pair (w, V ) with the property W ∗(w, V ) = 1. Let n(G) be the minimum of

the nilpotent classes of all the normal metabelian but not abelian nilpotent subgroups B = [B,G]

of G. Then n(G) > 1. As in the proof of Theorem 1.1 we may suppose that n(G) ≤ n(X) for all

homomorphic images X of G having a dominant pair (wX , VX) and satisfying W ∗(wX , VX) = 1.

Let B = [B,G] be a normal metabelian nilpotent subgroup of G such that n(G) = nc(B). First

suppose that nc(B) = 2. Then B is already abelian by Lemma 2.11(a) since p > 2 and exp(A) ≤
exp(Z(G)) for every normal abelian subgroup A of G contained in B by the hypothesis. Therefore we

may suppose that nc(B) ≥ 3. Put Ḡ = G/Z(B). Let t̄ ∈ B̄ \ Z(Ḡ). By [4, Lemmas 3.1, 4.1(a)] there

exists a finite subgroup Ū of Ḡ such that (t̄, Ū) is a dominant pair for Ḡ since Ḡ has no (∗)-triples for
non-central elements and satisfies (∗∗) by the hypothesis. First suppose that W ∗(t̄, Ū) = 1. Then B̄

is abelian since nc(B̄) < nc(B) = n(G). Hence since B̄ = B/Z(B) it follows that nc(B)=2, which is

impossible since nc(B) ≥ 3. Therefore W ∗(t̄, Ū) ̸= 1.

Assume if possible that B̄′ ≤ Z(Ḡ). Then B′ is abelian by Lemma 2.11(a) as above since nc(B′) ≤ 2.

Also [B̄′, Ḡ] = 1 and hence [B′, G] ≤ Z(B) which implies that [B,B,B,B] = 1 and so nc(B) = 3

since nc(B) ≥ 3. Let A be a maximal normal abelian subgroup of G containing B′ and contained

in B. Let T/A = Ω1(B/A). Then T is abelian by Lemma 2.11(c) since exp(A) ≤ exp(Z(G)) and

|Z(G)| ̸= 3. But this contradicts the maximality of A. Therefore B̄′ ≰ Z(Ḡ) and so there exists

an s̄ ∈ B̄′ \ Z(Ḡ). As above there exists a finite subgroup T̄ of Ḡ so that (s̄, T̄ ) is a dominant pair

for Ḡ. Let M̄ be a maximal element of W ∗(s̄, T̄ ). If M̄ = 1, then B̄ is abelian by the induction

hypothesis. But then nc(B) = 2 which is impossible. Therefore M̄ ̸= 1. Consider Ḡ/M̄ . By Lemma

2.1(c) there exists a finite subgroup R of G such that s̄ /∈ R̄ and T̄ ≤ R̄ ≰ M̄ . As before without loss

of generality we may suppose that (s̄M̄ , R̄M̄/M̄) is a Λ-pair for Ḡ/M̄ . Furthermore using [4, Lemmas

3.1, 4.1(a)], as before, we may suppose that (s̄M̄ , R̄M̄/M̄) is a dominant pair and so satisfies (∗∗).
Also W ∗(s̄M̄ , ŪM̄/M̄) = 1. This implies that B̄M̄/M̄ is abelian by the induction hypothesis which

means that B̄′ ≤ M̄ . However since t̄ ∈ B̄′ but t̄ /∈ M̄ this is another contradiction. Consequently it

follows that B is abelian.

Let F be a finite non-abelian subgroup of G and put N = ⟨FG⟩. Then N is a normal nilpotent

subgroup of G. Let A be a maximal normal abelian subgroup of G contained in N . Put Z/A =

Z(N/A). Then Z is a normal metabelian nilpotent subgroup of G and Z > A. Clearly then [Z,G] is

abelian by the first part of the proof. Furthermore G has a dominant pair (w, V ) satisfying (∗∗) and
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the equality W ∗(w, V ) = 1 holds by our supposition above. Hence there exists an E ∈ E∗(w, V ) so

that NG(E) = NG(E
′). Then [Z,G]Z(G) ≤ NG(E) by Lemma 2.7 since exp([Z,G]) ≤ exp(Z(G)) by

the hypothesis. Moreover if Z(G) = ⟨z⟩, then [Z,G] ≤ ⟨z⟩E by Lemma 2.8(a) which implies that Z

normalizes ⟨z⟩E and then Z ≤ NG(E) as before. But then 1 ̸= Z ′ ≤ E, which is a contradiction since

W ∗(w, V ) = 1. Therefore the assumption that G is perfect is false and so G must be solvable. This

completes the proof of the theorem. □

Lemma 4.1. Let L be a locally finite p-group which is n-Engel for an n ≥ 1 and let A be an elementary

abelian normal subgroup of L. Then L/CL(A) has exponent ≤ pn

Proof. Let x ∈ L and y ∈ A and put H = ⟨x, [x, y]⟩. Then

[xp
n
, y] ≡ [x, y]p

n
(mod (γ2(H)p

n
n∏

r=1

γpr(H)p
n−r

))

by [8, VIII.1.1 Lemma (b)]. Clearly ⟨[x, y]H⟩ ≤ H ∩A and hence H = (H ∩A)⟨x⟩ since A◁ L. Thus

γi(H) ≤ A and so γi(H) is elementary abelian for every i ≥ 2. By using this property above we get

[xp
n
, y] ≡ 1 (mod γpn(H))

Clearly pn ≥ 2n for all n ≥ 1. Furthermore γpn(H) = ⟨[h1, h2, . . . , hpn ] : hi ∈ H⟩ by [7, III.1.11

Hilfsatz]. We claim that γpn(H) = 1. Assume that [h1, h2, . . . , hpn ] ̸= 1. Now each hi ∈ H has the

form hi = aix
mi for an ai ∈ H ∩A and i,mi ≥ 1. Substituting these values above gives

[h1, h2, . . . , hpn ] = [a1x
m1 , a2x

m2 , . . . , apnx
mpn ]

The following identities are well-known. Let x, y, z ∈ L and a, b ∈ A. Then

[xy, z] = [x, z][x, z, y][y, z], [x, yz] = [x, z][x, y][x, y, z], [ab, x] = [a, x][b, x]

[a, xb] = [a, x] = [a, bx], [x, a] = [a−1, x]

First of all

[a1x
m1 , a2x

m2 , . . . , apnx
mpn ] = [a1x

m1 , a2x
m2 , xm3 , . . . , xmpn ]

since [a1x
m1 , a2x

m2 ] ∈ A. Also [a1x
m1 , a2x

m2 ] is a product of elements of the form [a1, ix] and [a−1
2 , jx]

for i, j ≥ 1. Combining the above results we see that

[h1, h2, . . . , hpn ] =
∏
i≥1

[bi, jix]

as a product of non-trivial factors, where bi ∈ ⟨a1⟩ ∪ ⟨a2⟩, and ji ≥ n since pn − 1 ≥ n for every i ≥ 1.

But since L is n-Engel each factor [bi, jix] = 1 and then [h1, h2, . . . , hpn ] = 1, which is a contradiction.

Therefore γpn(H) = 1 and substituting this value above we get [xp
n
, y] = 1. Since x is any element of

E and y is any element of A it follows that L/CL(A) has exponent ≤ pn. □

Proof of Proposition 1.7. Let G be a locally finite p-group such that every proper subgroup of G

is n-Engel for an n ≥ 1. Let A be an elementary abelian normal subgroup of G and put C = CG(A).

Then C ◁ G. Let K be proper subgroup of G and put L = KA. Then L is n-Engel for an n ≥ 1.
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Hence LC/C and then also KC/C has finite exponent ≤ pn by Lemma 4.1. Since K is any subgroup

of G the assertion follows. □

Proof of Theorem 1.6. Assume that G is perfect. As in the proof of Theorem 1.4 we may

suppose that in every homomorphic image H of G there are no (∗)-triples for non-central elements

and every dominant pair of H satisfies the (∗∗)-property. In particular G itself satisfies this property.

Let (w, V ) be a dominant pair for G. Let M be a maximal element of W ∗(w, V ). First suppose that

M = 1. Then Z(G) is cyclic by Lemma 2.5. Let A be a maximal normal elementary abelian subgroup

of G. Then A ̸= Z(G) since A is infinite by [9, 1.G.6 Proposition]. Hence CG(A) ̸= G. By Theorem

1.3 there exists a proper subgroup E of G such that ⟨EG⟩ = G. Also AE is n-Engel for an n ≥ 1 by

the hypothesis. Therefore ECG(A)/CG(A) has finite exponent in G/CG(A) by Proposition 1.7 and

generates G/CG(A) by the choice of E. But since G/CG(A) cannot be generated by a subset of finite

exponent by Corollary 1.2 this gives a contradiction.

Next suppose that M ̸= 1 and consider G/M . By Lemma 2.1(c) there exists a finite subgroup U

and a u ∈ U so that (wuM,UM/M) is a Λ-pair for G/M . As before, without loss of generality, we

may suppose that (wM,UM/M) is a dominant pair for G/M . Also W ∗(wM,UM/M) = 1 by the

choice of M . Clearly then we get another contradiction as in the first case. Therefore the assumption

is false and so G must be solvable, which completes the proof of the theorem. □
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