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NORMAL EDGE-TRANSITIVE AND 1
2−ARC−TRANSITIVE CAYLEY GRAPHS

ON NON-ABELIAN GROUPS OF ORDER 2pq, p > q ARE ODD PRIMES

ALI REZA ASHRAFI∗ AND BIJAN SOLEIMANI

Communicated by Mohammad Reza Darafsheh

Abstract. Darafsheh and Assari in [Normal edge-transitive Cayley graphs on non-abelian groups of

order 4p, where p is a prime number, Sci. China Math. 56 (1) (2013) 213−219.] classified the connected

normal edge transitive and 1
2
−arc-transitive Cayley graph of groups of order 4p. In this paper we

continue this work by classifying the connected Cayley graph of groups of order 2pq, p > q are primes.

As a consequence it is proved that Cay(G,S) is a 1
2
−arc-transitive Cayley graph of order 2pq, p > q

if and only if |S| is an even integer greater than 2, S = T ∪ T−1 and T ⊆ {cbjai | 0 ≤ i ≤ p − 1},
1 ≤ j ≤ q − 1, such that T and T−1 are orbits of Aut(G,S) and

G ∼= ⟨a, b, c | ap = bq = c2 = e, ac = ca, bc = cb, b−1ab = ar⟩, or

G ∼= ⟨a, b, c | ap = bq = c2 = e, cac = a−1, bc = cb, b−1ab = ar⟩,

where rq ≡ 1 (modp).

1. Introduction

All groups considered here are finite. For notations and definitions not defined here we refer the

reader to [1]. Let Γ = (V,E) be a simple graph, where V = V (Γ) is the set of vertices and E = E(Γ)

is the set of edges of Γ. The group of automorphisms Aut(Γ) is acting obviously on the set of vertices,

edges and arcs of Γ. If Aut(Γ) acts transitively on vertices, edges or arcs of Γ, then Γ is called vertex−,

edge− or arc−transitive, respectively. If Γ is vertex− and edge−transitive but not arc−transitive, then

Γ is called 1/2−arc−transitive.
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Let G be a finite group and S be a subset of G such that S = S−1 and S ⊆ G \ {1}. The Cayley

graph Γ = Cay(G,S) is defined by V (Γ) = G and E(Γ) = {{g, sg}|g ∈ G, s ∈ S}. For every g ∈ G, the

mapping ρg : G → G given by ρg(x) = xg is an automorphism of Γ. Thus, R(G) = {ρg | g ∈ G} is a

subgroup of Aut(Γ) isomorphic to G. Define Aut(G,S) = {α ∈ Aut(G) | α(S) = S}.
Following Xu [10], the Cayley graph Γ = Cay(G,S) is called normal, if R(G)⊴Aut(Γ). The graph Γ

is said to be normal edge transitive, if NAut(Γ)(R(G)) is transitive on the set of edges of Γ. Wang et al.

[9], obtained all disconnected normal Cayley graphs on finite groups. Thus for studying the problem of

normality in Cayley graphs, it suffices to consider the connected Cayley graphs. The following theorem

is crucial throughout this paper:

Theorem 1.1. Let Γ = Cay(G,S) and A = Aut(Γ), then the following hold:

(1) [4] NA(R(G)) = R(G) ⋊ Aut(G,S). The group R(G) is normal in A if and only if A =

R(G)⋊Aut(G,S);

(2) [4] Γ is normal if and only if A1 = Aut(G,S);

(3) [7] Let Γ = Cay(G,S) be a connected Cayley graph on S. Then Γ is normal edge-transitive if

and only if Aut(G,S) is either transitive on S, or has two orbits in S in the form of T and

T−1, where T is a non-empty subset of S such that S = T
∪

T−1;

(4) [2, Corollary 2.3] Let Γ = Cay(G,S) and H be the subset of all involutions of the group G. If

< H > ̸= G and Γ is connected normal edge−transitive, then its valency is even;

(5) [4] If Γ = Cay(G,S) is a connected Cayley graph on S then Γ is normal arc−transitive if and

only if Aut(G,S) acts transitively on S;

(6) [2, Corollary 2.5] If G is a Cayley graph of an abelian group, then G is not a normal 1
2−arc−transitive

Cayley graph.

Throughout this paper our notation is standard and taken from [1, 4]. We encourage the interested

readers to consult papers [3, 5, 6] for more information on this topic. Our work is a continuation

of recent paper of Darafsheh and Assari [2]. Our aim is to classify all normal edge-transitive and
1
2−arc−transitive Cayley graphs on non-abelian groups of order 2pq, when p and q are odd distinct

primes. We encourage to the interested readers to consult [11] for more information on groups of order

2pq, p > q are primes.

2. Main Results

It is well−known that a Cayley graph Γ = Cay(G,S) is connected if and only if G is generated by

S. In this section, the connected Cayley graphs of groups of orders 2pq, p and q are distinct primes,

are investigated. Since the Cayley graph Cay(G,S) is not normal arc−transitive, when G is abelian,

it is enough to consider non-abelian groups of orders 2pq. In [8], Talebi proved that if G = D2n, the

dihedral group of order 2n, and Γ = Cay(G,S) is connected normal edge−transitive then Aut(D2n, S)

is transitive on S. Using this result, he proved that the Cayley graphs of dihedral groups are not normal
1
2−arc−transitive. So, it is enough to investigate the groups G3, G4, G5 and G6. All Cayley graphs

considered here are assumed to be undirected.
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As a consequence of our result, it is proved that Γ = Cay(G,S) is a 1
2−arc−transitive Cayley

graph of order 2pq, p > q, if and only if |S| is an even integer greater than 2, S = T ∪ T−1 and

T ⊆ {cbjai | 0 ≤ i ≤ p− 1}, 1 ≤ j ≤ q − 1, such that T and T−1 are orbits of Aut(G,S) and

G = ⟨a, b, c | ap = bq = c2 = e, ac = ca, bc = cb, b−1ab = ar⟩, or

G = ⟨a, b, c | ap = bq = c2 = e, cac = a−1, bc = cb, b−1ab = ar⟩,

where rq ≡ 1 (mod p).

Theorem 2.1. (See [11]) A group of order 2pq, p and q with p > q are distinct odd primes, is isomorphic

to one of the following groups:

(1) G1 = ⟨a⟩,
(2) G2 = ⟨a, b | apq = b2 = 1, b−1ab = a−1⟩,
(3) G3 = ⟨a, b, c | ap = bq = c2 = 1, ab = ba, cac−1 = a−1, bc = cb⟩,
(4) G4 = ⟨a, b, c | ap = bq = c2 = 1, ab = ba, ac = ca, cbc = b−1⟩,
(5) G5 = ⟨a, b, c | ap = bq = c2 = 1, ac = ca, bc = cb, b−1ab = ar⟩,
(6) G6 = ⟨a, b, c | ap = bq = c2 = 1, cac = a−1, bc = cb, b−1ab = ar⟩,

where r is an element of order q in Up.

Lemma 2.2. The automorphism groups of G3, G4, G5 and G6 can be computed as follows:

(1) Aut(G3) ∼= (Zp × Up)⋊ Uq.

(2) Aut(G4) ∼= (Zq × Uq)⋊ Up.

(3) Aut(G5) ∼= Zp ⋊ Up.

(4) Aut(G6) ∼= Zp ⋊ Up.

Proof. From the presentations of G3, G4, G5 and G6, Theorem 2.1, we record their element orders in

Table 1. In this table, 1 ≤ i ≤ p − 1, 1 ≤ j ≤ q − 1 and 0 ≤ k ≤ p − 1. Our main proof will consider

four cases as follows:

(1) If σ ∈ Aut(G3) then σ is an order preserving function. This implies that σ(a) = ai, 1 ≤ i ≤
p − 1, σ(b) = bj , 1 ≤ j ≤ q − 1, and σ(c) = cak, where 0 ≤ k ≤ p − 1. Thus, Aut(G3) =

{σi,j,k | σi,j,k(a) = ai, σi,j,k(b) = bj & σi,j,k(c) = cak ; 1 ≤ i ≤ p − 1, 1 ≤ j ≤ q − 1, 0 ≤
k ≤ p − 1}. On the other hand, σi,j,kσi′,j′,k′ = σii′,jj′,k+k′i. It is clear that eAut(G3) = σ1,1,0

and σ−1
i,j,k = σi−1,j−1,−i−1k, where i−1 and j−1 are computed in Up and Uq, respectively. Define

A = {σi,1,k | 1 ≤ i ≤ p − 1, 0 ≤ k ≤ p − 1} andB = {σ1,j,0, 1 ≤ j ≤ q − 1}. Then by an easy

calculation, one can see that Aut(G3) = A⋊B ∼= (Zp × Up)⋊ Uq, which completes this case.

(2) A similar argument as (1) shows that Aut(G4) = {σi,j,k | σi,j,k(a) = ai, σi,j,k(b) = bj & σi,j,k(c) =

cbk ; 1 ≤ i ≤ p − 1, 1 ≤ j ≤ q − 1, 0 ≤ k ≤ q − 1}. We now define A = {σ1,j,k | 1 ≤ j ≤
q − 1, 0 ≤ k ≤ q − 1} and B = {σi,1,0 | 1 ≤ i ≤ p − 1}. Then A ⊴ Aut(G4), B ≤ Aut(G4),

A ∩B = 1 and G = AB. Therefore, Aut(G4) = A⋊B ∼= (Zq × Uq)⋊ Up, which completes this

part.
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(3) Suppose σ ∈ Aut(G5). Since σ is an order preserving function, σ(a) = ai, 1 ≤ i ≤ p − 1,

σ(b) = baj , 0 ≤ j ≤ p − 1, and σ(c) = c. Thus, Aut(G5) = {σi,j | σi,j(a) = ai, σi,j(b) =

baj & σi,j(c) = c ; 1 ≤ i ≤ p− 1, 0 ≤ j ≤ p− 1}. On the other hand, σi,jσi′,j′(b) = σi,j(ba
j′) =

σi,j(b)σi,j(a
j′) = bajaj

′i = baj+j′i and σi,jσi′,j′(a) = σi,j(a
i′) = aii

′
, where ii′ ≡ 1 (mod p). So,

σi,jσi′,j′ = σii′,j+j′i. Since σ1,0(a) = a, σ1,0(b) = b and σ1,0(c) = c, σ1,0 = id. This shows that

σ−1
i,j = σi−1,−i−1j , where i−1 is computed in Up. Set A = {σ1,j | 0 ≤ j ≤ p− 1}. It is clear that

A is normal in Aut(G5). Put B = {σi,0 | 1 ≤ i ≤ p − 1}. Then obviously B is a subgroup of

Aut(G5) and Aut(G5) = A⋊B ∼= Zp ⋊ Up, as desired.

(4) By a similar argument as above, Aut(G6) = {σi,j | σi,j(a) = ai, σi,j(b) = baj & σi,j(c) =

caj ; 1 ≤ i ≤ p − 1, 0 ≤ j ≤ p − 1}. Again, we define A = {σ1,j | 0 ≤ j ≤ p − 1} and

B = {σi,0 | 1 ≤ i ≤ p− 1}. Then Aut(G6) ∼= Zp ⋊ Up.

This completes the proof. □

We now apply Lemma 2.2 to compute the orbits of Aut(Gi) under natural action on Gi, 3 ≤ i ≤ 6.

Suppose ni, 3 ≤ i ≤ 6, denote the number of orbits of Aut(Gi) on Gi under natural group action. Then

by a tedious calculation, one can see that n3 = n4 = 6, n5 = 2q + 2 and n6 = 2q + 1. Moreover, we

assume that Ωj
i , 3 ≤ j ≤ 6 and 1 ≤ i ≤ nj , denote the ith orbit of Aut(Gj) on Gj . Our calculations are

recorded in Table 2.

Example 2.3. Define S = {cbjal, cbjal′ , (cbjal)−1, (cbjal
′
)−1}, l ̸= l′ and Γ = Cay(G3, S). Obviously,

(cbjal)−1 = cbq−jal, (cbjal
′
)−1 = cbq−jal

′
and S is a generating set for G3. Hence, Cay(G3, S) is

connected. We now consider the automorphisms σ−1,1,l+l′ , σ−1,q−1,l+l′ and σ1,q−1,0 that introduced in

the proof of Lemma 2.2(1). By a simple calculation, one can see that

σ−1,1,l+l′(b
jcal) = σ−1,q−1,l+l′(b

q−jcal) = σ1,q−1,0(b
q−jcal

′
) = bjcal

′
,

σ−1,1,l+l′(b
jcal

′
) = σ−1,q−1,l+l′(b

q−jcal
′
) = σ1,q−1,0(b

q−jcal) = bjcal,

σ−1,1,l+l′(b
q−jcal) = σ−1,q−1,l+l′(b

jcal) = σ1,q−1,0(b
jcal

′
) = bq−jcal

′
,

σ−1,1,l+l′(b
q−jcal

′
) = σ−1,q−1,l+l′(b

jcal
′
) = σ1,q−1,0(b

jcal) = bq−jcal.

This shows that σ−1,1,l+l′(S) = σ−1,q−1,l+l′(S) = σ1,q−1,0(S) = S. Thus, Aut(G3, S) acts transitively on

S. Apply Theorem 1.1(3) and Theorem 1.1(5) to deduce that Γ is normal edge−transitive and normal

arc−transitive Cayley graph of degree 4. Therefore, Γ is not normal 1
2−arc−transitive.

Proposition 2.4. The connected Cayley graph Γ = Cay(G3, S) is normal edge−transitive if and only

if G3 =< S >, |S| > 2 is an even integer and S ⊆ {cbjai | 0 ≤ i ≤ p− 1 & 1 ≤ j ≤ q − 1 }, where S is

an orbit of Aut(G3, S).

Proof. Since G3
∼= Zq ×D2p, H = {cai | 0 ≤ i ≤ p− 1} is the set of all elements of G3 of order 2. Thus,

b ̸∈ ⟨H⟩ and so G3 ̸= ⟨H⟩. Apply Theorem 1.1(4) to deduce that |S| is an even integer > 2. Consider

the automorphisms σ−1,j−1j′,l+l′ , 0 ≤ i ≤ p − 1 & 1 ≤ j ≤ q − 1 and 0 ≤ l, l′ ≤ p − 1. Then, one can

easily see that σ−1,j−1j′,l+l′(S) = S and so Aut(G3, S) acts transitively on S. Therefore, Γ is normal

edge− and arc−transitive. □
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Table 1. Element Orders of G3, G4, G5 and G6.

Elements G3 G4 G5 G6

ai p p p p

c 2 2 2 2

bjak

{
q k = 0

pq k ̸= 0

{
q k = 0

pq k ̸= 0
q q

cbjak 2q

{
2 k = 0

2p k ̸= 0
2q 2q

cai 2 2p 2p 2

Corollary 2.5. The connected Cayley graph Γ = Cay(G3, S) is not normal 1
2−arc−transitive.

Example 2.6. Suppose S = {bjcai, bq−jcai, bjcap−i, bq−jcap−i}, j ̸= 0, 1 ≤ i ≤ p − 1 and Γ =

Cay(G4, S). Then we can see that, (bjcai)−1 = bq−jcap−i, (bq−jcai)−1 = bjcap−i and S is a gen-

erating set for G4. This shows that Cay(G4, S) is connected. We now consider the automorphisms

σ1,j−1(q−j),0, σi−1(p−i),1,0 and σi−1(p−i),j−1(q−j),0 that introduced in the proof of Lemma 2.2(2). A simple

calculation implies that

σ1,j−1(q−j),0(b
jcai) = σi−1(p−i),1,0(b

q−jcap−i) = σi−1(p−i),j−1(q−j),0(b
jcap−i) = bq−jcai,

σ1,j−1(q−j),0(b
q−jcai) = σi−1(p−i),1,0(b

jcap−i) = σi−1(p−i),j−1(q−j),0(b
q−jcap−i) = bjcai,

σ1,j−1(q−j),0(b
jcap−i) = σi−1(p−i),1,0(b

q−jcai) = σi−1(p−i),j−1(q−j),0(b
jcai) = bq−jcap−i,

σ1,j−1(q−j),0(b
q−jcap−i) = σi−1(p−i),1,0(b

jcai) = σi−1(p−i),j−1(q−j),0(b
q−jcai) = bjcap−i.

Therefore, σ1,j−1(q−j),0(S) = σi−1(p−i),1,0(S) = σi−1(p−i),j−1(q−j),0(S) = S and Aut(G4, S) acts transi-

tively on S. We now apply Theorem 1.1(3) and Theorem 1.1(5) to deduce that Γ is normal edge−transitive

and normal arc−transitive Cayley graph of degree 4. Therefore, Γ is not normal 1
2−arc−transitive.

Proposition 2.7. The connected Cayley graph Γ = Cay(G4, S) is normal edge−transitive if and only

if G4 =< S >, |S| > 2 is an even integer and S ⊆ {cbjai | 1 ≤ i ≤ p− 1 & 0 ≤ j ≤ q − 1 }, where S is

an orbit of Aut(G4, S).

Proof. We first notice that G4
∼= Zp ×D2q. Then H = {cbj | 0 ≤ j ≤ q− 1} is the set of all elements of

G4 of order 2. Since a ̸∈ ⟨H⟩, G4 ̸= ⟨H⟩. Apply Theorem 1.1(4) to deduce that |S| is an even integer

> 2. Consider the automorphisms σi−1i′,−1,j+j′ , where 1 ≤ i, i′ ≤ p− 1 and 0 ≤ j, j′ ≤ q− 1. Then, it is

easy to see that σi−1i′,−1,j+j′(S) = S, for all i and j. So, Aut(G4, S) acts transitively on S. Therefore,

Γ is normal edge− and arc−transitive. □
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Table 2. The Orbits of Aut(Gi) on Gi under Natural Group Action, 3 ≤ i ≤ 6.

Ω3
1 = Ω4

1 = Ω5
1 = Ω6

1 = {1},

Ω3
2 = Ω4

2 = {ai | 1 ≤ i ≤ p− 1},

Ω3
3 = {cai | 0 ≤ i ≤ p− 1}, Ω4

3 = {cbj | 0 ≤ j ≤ q − 1},

Ω3
4 = {bjai | 1 ≤ i ≤ p− 1, 1 ≤ j ≤ q − 1}, Ω4

4 = Ω3
6 = {bj | 1 ≤ j ≤ q − 1},

Ω3
5 = {cbjai | 0 ≤ i ≤ p− 1, 1 ≤ j ≤ q − 1}, Ω4

5 = {cbjak | 1 ≤ k ≤ p− 1, 0 ≤ j ≤ q − 1},

Ω4
6 = {bjak | 1 ≤ j ≤ q − 1, 1 ≤ k ≤ p− 1},

Ω5
2 = {c}, Ω5

3 = {ai | 1 ≤ i ≤ p− 1}, Ω5
4 = {cai | 1 ≤ i ≤ p− 1},

Ω5
5 = {bai | 0 ≤ i ≤ p− 1}, Ω5

6 = {b2ai | 0 ≤ i ≤ p− 1},
... · · ·

Ω5
q+2 = {bq−2ai | 0 ≤ i ≤ p− 1}, Ω5

q+3 = {bq−1ai | 0 ≤ i ≤ p− 1},

Ω5
q+4 = {cbai | 0 ≤ i ≤ p− 1}, Ω5

q+5 = {cb2ai | 0 ≤ i ≤ p− 1},
... · · ·

Ω5
2q+1 = {cbq−2ai | 0 ≤ i ≤ p− 1}, Ω5

2q+2 = {cbq−1ai | 0 ≤ i ≤ p− 1},

Ω6
2 = {ai | 1 ≤ i ≤ p− 1}, Ω6

3 = {cai | 0 ≤ i ≤ p− 1},

Ω6
4 = {bai | 0 ≤ i ≤ p− 1}, Ω6

5 = {b2ai | 0 ≤ i ≤ p− 1},
... · · ·

Ω6
q+1 = {bq−2ai | 0 ≤ i ≤ p− 1}, Ω6

q+2 = {bq−1ai | 0 ≤ i ≤ p− 1},

Ω6
q+3 = {cbai | 0 ≤ i ≤ p− 1}, Ω6

q+4 = {cb2ai | 0 ≤ i ≤ p− 1},
... · · ·

Ω6
2q = {cbq−2ai | 0 ≤ i ≤ p− 1}, Ω6

2q+1 = {cbq−1ai | 0 ≤ i ≤ p− 1}.

Example 2.8. If S = {cbak, cbal, (cbak)−1, (cbal)−1}, l ̸= k and Γ = Cay(G5, S). It is clear that S is

a generating set for G5 and so Cay(G5, S) is connected. Also, (cbak)−1 = cbq−1a−rq−1k and (cbal)−1 =

cbq−1a−rq−1l. Set T = {cbal, cbak}. Thus, T−1 = {cbq−1a−rq−1k, cbq−1a−rq−1l} and S = T
∪

T−1.

We now prove that T and T−1 are orbits of Aut(G5, S) under natural action. Suppose σ−1,l+k ∈
Aut(G5). Then σ−1,l+k(cba

l) = cbak, σ−1,l+k(cba
k) = cbal, σ−1,l+k(cb

q−1a−rq−1k) = cbq−1a−rq−1l and

σ−1,l+k(cb
q−1a−rq−1l) = cbq−1a−rq−1k. This shows that σ−1,l+k ∈ Aut(G5, S) and so T and T−1 are

orbits of Aut(G5, S). Therefore, Γ = Cay(G5, S) is connected normal edge−transitive Cayley graph of

degree 4 which is not normal arc−transitive. Therefore, by Theorems 1.1(3) and 1.1(5), Γ is normal
1
2−arc−transitive.
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Proposition 2.9. The connected Cayley graph Γ = Cay(G5, S) is 1
2−arc−transitive if and only if

G5 =< S >, |S| > 2 is an even integer and S = T ∪ T−1, where T ⊆ {cbjai|0 ≤ i ≤ p − 1} and

1 ≤ j ≤ q − 1 is an orbit of Aut(G5, S).

Proof. Since c is the unique involution of G5, a, b ̸∈ ⟨c⟩, |S| is even. On the other hand, if T ⊆ {cbjai|0 ≤
i ≤ p − 1} then T−1 ⊆ {cbq−jai|0 ≤ i ≤ p − 1}. Set S = T ∪ T−1. Then S = S−1, σk−1l,0(cb

q−jal) =

(cbq−jak) and σk−1l,0(cb
q−jak) = (cbq−jal). Thus, σk−1l,0(T ) = T and σk−1l,0(T

−1) = T−1. Since S is a

union of two orbits, Γ is normal 1
2−arc−transitive, proving the result. □

Proposition 2.10. If S = {cbal, cbak, cbq−1a−rq−1l, cbq−1a−rq−1k}, l ̸= k, then Aut(G5, S) ∼= Z2.

Proof. Obviously, G5 = ⟨S⟩ and so Aut(G5, S) has a faithful action on S. This implies that Aut(G5, S)

is isomorphic to a subgroup of S4. We first prove that Aut(G5, S) does not have an element of order 3

and 4. If σ ∈ Aut(G5, S) has order 3, then the automorphism σ is fixed an element y ∈ S. This implies

that y−1 is another fixed element of σ, a contradiction. Next, we assume that σ ∈ Aut(G5, S) has order

4, x = cbal and y = cbak. Then σ has one of the forms g = (xyx−1y−1) or h = (xy−1x−1y).

On the other hand, σ ∈ Aut(G5, S) ≤ Aut(G5) and so there exist i, j, 1 ≤ i ≤ p−1 and 0 ≤ j ≤ p−1

such that σ = σi,j . It is clear that σi,j(cba
k) = cbajaki = cbaj+ki. If σ = g then σ(y) = x−1 which

implies that cbaj+ki = cbq−1a−rq−1l. So, aj+ki = bq−2a−rq−1l. If p|j + ki then aj+ki = e and so

bq−2a−rq−1l = e. On the other hand, o(bq−2) = 3, o(a−rq−1l) = p ̸= 3 and bq−2 = ar
q−1l, which is

impossible. If p ̸ |j + ki then o(aj+ki) = p and o(bq−2a−rq−1l) = q, p ̸= q, lead to another contradiction.

Thus σ ̸= g. A similar argument shows that σ ̸= h. Therefore, Aut(G5, S) does not have elements of

order 3 or 4. Since Aut(G) is isomorphic to a subgroup of the symmetric group S4 without elements

of order 3 and 4, it is enough to prove that Aut(G) has a unique element of order 2. It is easy to see

that o(σ−1,l+k) = 2 and σ−1,l+k ∈ Aut(G5, S). Suppose σi,j ∈ Aut(G,S), σi,j(cba
l) = cbaj+li = cbak

and σi,j(cba
k) = cbaj+ki = cbal. Then

j + li ≡ k ( mod p) and j + ki ≡ l ( mod p). (1)

On the other hand,

σi,j(cb
q−1a−rq−1l) = cbq−1aj(r

q−2+...+r+1)−irq−1l = cbq−1a−rq−1k,

σi,j(cb
q−1a−rq−1k) = cbq−1aj(r

q−2+...+r+1)−irq−1k = cbq−1a−rq−1l.

Hence, j(rq−2 + ...+ r + 1) ≡ (il − k)rq−1 ( mod p) and j(rq−2 + ...+ r + 1) ≡ (ik − l)rq−1 (mod p).

These congruences imply that (il − k)rq−1 ≡ (ik − l)rq−1 (mod p) and so i(l − k) ≡ −(l − k) (mod p).

Since l ̸= k, i ≡ −1 (mod p) and by Eq (1) j − k ≡ l (mod p) which implies that j ≡ l + k (mod p).

Therefore, Aut(G5, S) = ⟨σ−1,l+k⟩. This completes the proof. □

Example 2.11. Set S = {cbja, cbjap−1, cbq−jar
q−j

, cbq−jar
q−j(p−1)} and Γ = Cay(G6, S). It is clear

that S is a generating set for G6 and so Cay(G6, S) is connected. Set T = {cbja, cbjap−1}. Thus,

T−1 = {cbq−jar
q−j

, cbq−jar
q−j(p−1)} and S = T

∪
T−1. To prove T and T−1 are orbits of Aut(G6, S)

under natural action, we assume that σ−1,0 ∈ Aut(G6). Then σ−1,0(cb
ja) = cbjap−1, σ−1,0(cb

jap−1) =

cbja, σ−1,0(cb
q−jar

q−j
) = cbq−jar

q−j(p−1) and σ−1,0(cb
q−jar

q−j(p−1)) = cbq−jar
q−j

. This shows that
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σ−1,0 ∈ Aut(G6, S) and so T and T−1 are orbits of Aut(G6, S). Therefore, Γ = Cay(G6, S) is a

connected normal edge−transitive Cayley graph of degree 4 which is not normal arc−transitive, i.e. by

Theorems 1.1(3) and 1.1(5), Γ is normal 1
2−arc−transitive.

Proposition 2.12. The connected Cayley graph Γ = Cay(G6, S) is normal 1
2−arc−transitive if and

only if G6 =< S >, |S| > 2 is an even integer and S = T ∪ T−1, where T ⊆ {cbjai|0 ≤ i ≤ p − 1} is

an orbit of Aut(G6, S), 1 ≤ j ≤ q − 1.

Proof. The proof is similar to Proposition 2.9, and so it is omitted. □
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