The prolongation of central extensions

Document Type: Research Paper

Authors

1 136 Xuanthuy Street, Cau Giay district

2 Department of Mathematics and Applications, Saigon University

3 Natural Science Department, Hongduc University, Thanhhoa, Vietnam

Abstract

The aim of this paper is to study the $(\alpha‎, ‎\gamma)$-prolongation of central extensions‎. ‎We obtain the obstruction theory for $(\alpha‎, ‎\gamma)$-prolongations and classify $(\alpha‎, ‎\gamma)$-prolongations thanks to low-dimensional cohomology groups of groups‎.

Keywords

Main Subjects


R. Brown and O. Mucuk (1994). Covering groups of nonconnected topological groups revisited. Math. Proc. Cambridge Philos. Soc.. 115 (1), 97-110
C. Cotter and I. Szczyrba (1993). On realizations of representations for group extensions. Rep. Math. Phys.. 32 (3), 355-366
G. Hochschild and J.-P. Serre (1953). Cohomology of group extensions. Trans. Amer. Math. Soc.. 74, 110-134
S. Mac Lane (1988). Group extensions for 45 years. Math. Intelligencer. 10 (2), 29-35
S. Mac Lane (1963). Homology. Springer-Verlag, New York.
G. K. Pedersen (1999). Pullback and pushout constructions in $Csp *$-algebra theory. 167 (2), 243-344
H. Sahleh (2007). On the pull-back of metabelian topological groups. Int. J. Contemp. Math. Sci.. 2 (26), 1271-1278
E. Weiss (1969). Cohomology of groups. Pure and Applied Mathematics, Academic Press, New York-London. 34
J. H. C. Whitehead (1949). Combinatorial homotopy II. Bull. Amer. Math. Soc. 55, 453-496