Groups of infinite rank with a normalizer condition on subgroups

Document Type: Ischia Group Theory 2014

Authors

1 Dipartimento di Matematica e Applicazioni "Renato Caccioppoli"- Università degli Studi di Napoli "Federico II"

2 Dipartimento di Matematica e applicazioni "R. Caccioppoli"-Università Federico II

Abstract

‎Groups of infinite rank in which every subgroup is either normal or self-normalizing are characterized in terms of their subgroups of infinite rank‎.

Keywords

Main Subjects


R. Baer and H. Heineken (1972). Radical groups of finite abelian subgroup rank. Illinois J. Math.. 16, 533-580
N. S. Chernikov (1990). A theorem on groups of finite special rank. Ukrainian Mat. J.. 42, 855-861
G. Cutolo (1989). A normalizer condition on systems of subgroups. Boll. Un. Mat. Ital. A (7). 3, 215-223
M. De Falco, F. de Giovanni and C. Musella (2013). Groups whose proper subgroups of infinite rank have a transitive normality relation. Mediterr. J. Math.. 10, 1999-2006
M. De Falco, F. de Giovanni, C. Musella and Y. P. Sysak (2014). Groups of infinite rank in which normality is a transitive relation. Glasg. Math. J.. 56, 387-393
M. De Falco, F. de Giovanni, C. Musella and Y. P. Sysak (2014). On metahamiltonian groups of infinite rank. J. Algebra. 407, 135-148
M. De Falco, F. de Giovanni, C. Musella and N. Trabelsi (2014). Groups with restrictions on subgroups of infinite rank. Rev. Mat. Iberoam.. 30, 535-548
M. R. Dixon, M. J. Evans and H. Smith (1996). Locally (soluble--by--finite) groups of finite rank. J. Algebra. 182, 756-769
M. R. Dixon, M. J. Evans and H. Smith (1999). Locally (soluble-by-finite) groups with all proper non-nilpotent subgroups of finite rank. J. Pure Appl. Algebra. 135, 33-43
M. R. Dixon and Y. Karatas (2012). Groups with all subgroups permutable or of finite rank. Cent. Eur. J. Math.. 10, 950-957
M. J. Evans and Y. Kim (2004). On groups in which every subgroup of infinite rank is subnormal of bounded defect. Comm. Algebra. 32, 2547-2557
W. Gaschutz (1957). Gruppen in denen das Normalteilersein transitiv ist. J. Reine Angew. Math.. 198, 87-92
G. Giordano (1971). Gruppi con normalizzatori estremali. Matematiche (Catania). 26, 291-296
P. B. Kleidman and R. A. Wilson (1987). A characterization of some locally finite simple groups of Lie type. Arch. Math. (Basel). 48, 10-14
A. I. Mal’cev (1956). On some classes of infinite soluble groups. On some classes of infinite soluble groups, Mat. Sbornik N. S., 28 (1951) 567–-588; Amer. Math. Soc. Transl. Ser.. 2, 1-21
J. Otal and J. M. Pena (1988). Infinite locally finite groups of type ${rm PSL}(2,K)$ or ${rm Sz}(K)$ are not minimal under certain conditions. Publ. Mat.. 32, 43-47
D. J. S. Robinson (1964). Groups in which normality is a transitive relation. Proc. Cambridge Philos. Soc.. 60, 21-38
D. J. S. Robinson (1972). Finiteness Conditions and Generalized Soluble Groups. Ergebisse der Mathematik und ihrer Grenzgebiete, Springer, Berlin.
D. J. S. Robinson (1996). A Course in the Theory of Groups. Ergebisse der Mathematik und ihrer Grenzgebiete, Springer, Berlin.
V. P. Sunkov (1971). Locally finite groups of finite rank. Algebra i Logika, 10 (1971) 199--225; English Transl., Algebra and Logic. 10, 127-142