On a group of the form $3^{7}{:}Sp(6,2)$

Document Type: Research Paper

Authors

North-West University (Mafikeng Campus)

Abstract

‎The purpose of this paper is the determination of the inertia‎ ‎factors‎, ‎the computations of the Fischer matrices and the ordinary‎ ‎character table of the split extension $\overline{G}=‎ ‎3^{7}{:}Sp(6,2)$ by means of Clifford-Fischer Theory‎. ‎We firstly‎ ‎determine the conjugacy classes of $\overline{G}$ using the coset‎ ‎analysis method‎. ‎The determination of the inertia factor groups of‎ ‎this extension involved looking at some maximal subgroups of the‎ ‎maximal subgroups of $Sp(6,2).$ The Fischer matrices of‎ ‎$\overline{G}$ are all listed in this paper and their sizes range‎ ‎between 2 and 10‎. ‎The character table of $\overline{G},$ which is a‎ ‎$118\times 118\ \mathbb{C}$-valued matrix‎, ‎is available in the PhD‎ ‎thesis of the first author‎, ‎which could be accessed online‎.

Keywords

Main Subjects


[1] A. B. M. Basheer, Clifford-Fischer Theory Applied to Certain Groups Associated with Symplectic, Unitary and
Thompson Groups, Ph.D Thesis, University of KwaZulu-Natal, Pietermaitzburg, 2012.

[2] A. B. M. Basheer and J. Mo ori, Fischer matrices of Dempwolff group $2^{5}{^{cdot}}GL(5,2)$, Int. J. Group Theory, 1 no. 4 (2012) 43-63.

[3] A. B. M. Basheer and J. Mo ori, On the non-split extension group $2^{6}{^{cdot}}Sp(6,2)$, Bul l. Iranian Math. Soc., 39 (2013) 1189-1212.

[4] A. B. M. Basheer and J. Moori, A survey on Clifford-Fischer Theory, London Mathematical Society Lecture Note Series, Groups St. Andrews 2013, Cambridge University Press, 422 (2015) 160-172.

[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford University Press, Eynsham, 1985.

[6] A. H. Clifford, Representations induced in an invariant subgroup, Ann. of Math. (2), 38 (1937) 533-550.

[7] B. Fischer, Clifford matrizen, manuscript, 1982.

[8] B. Fischer, Unpublished manuscript, 1985.

[9] B. Fischer, Clifford matrices, Representation theory of nite groups and nite-dimensional Lie algebras (eds G. O. Michler and C. M. Ringel; Birkhauser, Basel, (1991), 1-16.

[10] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.4.10; 2007. http://www.gap- system.org

[11] Maxima, A Computer Algebra System, Version 5.18.1; 2009. http://maxima.sourceforge.net

[12] J‎. ‎Moori‎, On the Groups $G^{+}$ and $overline{G}$ of the form $2^{10}{:}M_{22}$ and $2^{10}{:}overline{M}_{22}$‎, ‎PhD Thesis‎, ‎University of Birmingham‎, ‎1975‎.

[13] J. Mo ori, On certain groups asso ciated with the smallest Fischer group, J. London Math. Soc., 2 (1981) 61-67.

[14] Z. E. Mp ono, Fischer Clifford Theory and Character Tables of Group Extensions , PhD Thesis, University of Natal, Pietermaritzburg, 1998.

[15] U. Schiffer, Cliffordmatrizen, Diplomarb eit, Lehrstul D Fur Matematik, RWTH, Aachen, 1995.

[16] R. A. Wilson et al., Atlas of nite group representations, http://brauer.maths.qmul.ac.uk/Atlas/v3/ .