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Abstract. In this paper we study some relations between the power and quotient power graph of a

finite group. These interesting relations motivate us to find some graph theoretical properties of the

quotient power graph and the proper quotient power graph of a finite group G. In addition, we classify

those groups whose quotient (proper quotient) power graphs are isomorphic to trees or paths.

1. Introduction

There is a large literature which is devoted to studying the ways of associating a graph to a group

for the purpose of investigating the algebraic structure using properties of the associated graph (see for

example [2, 3, 11, 16, 15, 17]). The investigation of graphs related to groups as well as other algebraic

structures is very important, because such graphs have valuable applications (see [18]) and are related

to automata theory (see [12, 13]). Kelarev and Quinn [14] defined the (directed) power graph G (S)

of a semigroup S as a (directed) graph in which the set of vertices is S and for x, y ∈ S, there is an

arc from x to y if and only if x ̸= y and y = xm, for some positive integer m. The power graph G (S)

of a semigroup S was defined by Chakrabarty et al. [8] as a graph with vertex set S and two distinct

vertices x and y joined if one is a power of the other. They proved that for a finite group G, the power

graph G (G) is complete if and only if G is a cyclic group of order 1 or pm, for some prime number p

and some positive integer m. In [6, 7], Cameron and Ghosh obtained interesting results about power

graphs of finite groups. In addition, Mirzargar et al. [19], considered some graph theoretical properties

of the power graph G (G) that can be related to the group theoretical properties of G, such as clique

number, independence number and chromatic number. A recent survey [1], has collected the main and
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beautiful results of the theory of power graphs, which seems to be a very interesting idea for future

research.

If G is a finite group, then it can be easily shown that the power graph G (G) is connected of

diameter 2, because the identity element 1G is adjacent to every element of G. Hence in [4, 5], it

is focused on the 2-connectivity of G (G). The 2-connectivity of G (G) can be studied by the proper

power graph G ∗(G), that is the 1-cut subgraph of G (G), which is obtained by omitting the vertex 1G

and all its incident edges. Actually, it is easy to check that G (G) is 2-connected if and only if G ∗(G)

is connected. In [4], we calculated the number of connected components of Sn and showed that G (Sn)

is 2-connected if and only if n = 2 or both n, n− 1 are not prime.

The complexity of a graph is reduced considerably when its quotient graph is considered instead.

The possible equivalence relations imply very different levels of simplification and, as a consequence,

have different impact on the properties of the graph. In [4], the quotient power graph, G̃ (G), and proper

quotient power graph, G̃ ∗(G), as quotient graphs of G (G) and G ∗(G) respectively, are considered. Here,

the elements of G which generate the same cyclic subgroup are identified in a unique vertex.

In this paper, we focus on the investigation of (proper) quotient power graphs of finite groups. We

study some graph theoretical properties of the (proper) quotient power graphs of a finite group G. In

addition, groups whose (proper) quotient power graphs are isomorphic to trees or paths are classified.

The following three theorems are the main theorems of this paper.

Theorem A. Let G be a finite group and F(G) be the Fitting subgroup of G. Then G̃ (G) is isomorphic

to a tree if and only if G is one of the following groups:

Case 1) G is a p-group of exponent p, p is a prime.

Case 2) G is a group of order pmq as follows; where p and q are primes.

(i) |G| = pmq, where 3 ≤ p < q,m ≥ 3, |F(G)| = pm−1 and |G : G′| = p.

(ii) |G| = pmq, where 3 ≤ q < p,m ≥ 1 and |F(G)| = |G′| = pm.

(iii) |G| = 2mp, where p ≥ 3,m ≥ 2 and |F(G)| = |G′| = 2m.

(iv) |G| = 2pm, where p ≥ 3,m ≥ 1, |F(G)| = |G′| = pm and F(G) is elementary abelian.

Case 3) G ∼= A5.

Theorem B. Let G be a finite group. Then G̃ ∗(G) is a path if and only if G is isomorphic to one of

the groups Zp,Zp2 and Zpq, where p, q are prime numbers.

Theorem C. Let G be a finite group. Then G̃ ∗(G) is a bipartite graph if and only if G̃ ∗(G) is

connected and the order of each non-trivial element of G is a prime or a product of two primes (not

necessary distinct).

2. Definitions and preliminaries

All groups and graphs in this paper are assumed to be finite. Throughout the paper by a graph we

mean a simple graphs which has no multiple edges or loops. We follow the terminology and notation

of [21], for groups and [1], for (quotient) power graphs. All other notations for graphs are from [22].
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Let Γ = (V,E) be a graph and a, b ∈ V . The distance dΓ(a, b), between a and b in Γ is defined as

the length of the shortest path connecting them. The girth of Γ, g(Γ), is the length of shortest cycle

within the graph. Let x ∈ V be a fixed vertex in the graph Γ. The x-cut subgraph of Γ is given by

Γ− x = (V \ {x}, Ex), where Ex = E \ {e ∈ E : e is incident to x}. A graph is called 2-connected if,

for each x ∈ V , the graph Γ− x is connected. Suppose that
−→
Γ is a directed graph. The outdegree of

a vertex a is the number of arcs which get out from a and is denoted by d+(a). Also, the indegree of

a is the number of arcs entering to a denoted by d−(a). We use a → b, to show an arc from a to b.

2.1. The power graphs. Let G be a finite group, with identity element 1G and put G0 = G \ {1G}.
The power graph G (G) = (V,E), of G is a graph with V = G and for x, y ∈ G, with x ̸= y, {x, y} ∈ E

if there exists m ∈ N such that x = ym or y = xm. Since the cut graphs G (G) − x, for x ∈ G0, are

trivially connected, then G (G) is 2-connected if and only if the proper power graph, defined as the

cut graph G ∗(G) = G (G)− 1G is connected.

2.2. The quotient graphs. Let Γ = (V,E) be a graph. Assume that an equivalence relation, say ∼,

is defined on the set V . Consider the quotient set [V ] = V/ ∼ and denote its elements with [x], for

x ∈ V. We say that there is an edge {[x], [y]} ∈ [E] between [x] ∈ [V ] and [y] ∈ [V ] if [x] ̸= [y] and there

exist x′, y′ ∈ V such that x′ ∼ x, y′ ∼ y and {x′, y′} ∈ E. This defines the graph Γ/ ∼= ([V ], [E]),

called the quotient graph of Γ with respect to ∼ .

2.3. The quotient power graphs. To deal with the graphs G (G) and G ∗(G) and simplify their

complexity, we consider two quotient graphs in which the elements of G, generating the same cyclic

subgroup, are identified in a unique vertex.

Define the relation ∼ on G as follows: if x, y ∈ G, then x ∼ y if and only if ⟨x⟩ = ⟨y⟩. It is immediate

to check that ∼ is an equivalence relation and that [x] = {xm : 1 ≤ m ≤ o(x), (m, o(x)) = 1} is of size

ϕ(o(x)), where ϕ denotes the Euler’s totient function. We define the order of [x] ∈ [G] as the order of

x : this definition is well posed because if ⟨x⟩ = ⟨y⟩, then o(x) = o(y). The quotient graph G (G)/ ∼
will be denoted by G̃ (G) and is called the quotient power graph. Its vertex set is [G] = G/ ∼ and its

edge set [E]. By the definition of quotient graph, there is an edge between two distinct vertices [x]

and [y] if and only if there exists x′ ∈ [x] and y′ ∈ [y] such that {x′, y′} ∈ E, that is, x′, y′ are, in a

suitable order, one the positive power of the other.

Remark 2.1. [4, Remark 1] For each x, y ∈ G, such that [x] ̸= [y], {[x], [y]} ∈ [E] if and only if

{x, y} ∈ E.

Since [x] = [1G] if and only if x = 1G, G0 is a union of equivalence classes. Thus it is possible to

define the quotient graph G ∗(G)/ ∼, called the proper quotient power graph and denoted by G̃ ∗(G).

Note that G̃ ∗(G) may be viewed also as the cut graph G̃ (G) − [1G]. In particular its edge set is

[E]0 = [E][1G].

In this paper we set G (G) = (V,E), G̃ (G) = ([V ], [E]),G ∗(G) = (V0, E0) and G̃ ∗(G) = ([V ]0, [E]0).

We use the following lemma in the next sections.
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Lemma 2.2. [4, Lemma 4.1] Let c0(G), c̃0(G), be the number of connected components of G ∗(G), G̃ ∗(G)

respectively. Then c0(G) = c̃0(G).

3. Relations between G (G) and G̃ (G)

In this section we present some relations between G (G) and G̃ (G). These relations motivate us to

investigate the quotient power graphs and the proper quotient power graphs of finite groups. Also we

discuss the quotient power graphs of finite groups.

Definition 3.1. Let Γ = (V,E) be a graph and ∼ be an equivalence relation on V . We say that

∼ is strong-tame if for each x, y ∈ V , with x ̸= y, if x ∼ y then {x, y} ∈ E. Moreover we say that

[Γ] = Γ/ ∼ is a strong-tame quotient of Γ, with respect to ∼, if ∼ is strong-tame. By Remark 2.1,

G̃ (G) is strong-tame quotient of G (G).

Theorem 3.2. Let [Γ] be a strong-tame quotient of Γ.

(i) Let x, y ∈ V and [x] ̸= [y]. Then d[Γ]([x], [y]) = dΓ(x, y).

(ii) Let d be the length of a longest path in Γ. Then d = −1+
∑

[a]∈[P ] o([a]), where [P ] is a longest

path in [Γ].

(iii) Let [Γ] be a Hamiltonian graph. Then Γ is also Hamiltonian.

Proof. Suppose dG (G)(x, y) = t and P : x = v0, v1, . . . , vt−1, vt = y is a shortest path between x

and y in Γ. Consider the sequence [P ] : [x] = [v0], [v1], . . . , [vt−1], [vt] = [y] in [Γ]. Suppose that

[vj ] = [vk], where 0 ≤ j < k ≤ t. Then {vj , vk} ∈ E. If j ̸= k − 1 then the path P0 : x =

v0, v1, . . . , vj , vk, . . . , vt−1, vt = y is a path between x and y which is shorter than P , a contradiction.

Now suppose that j = k − 1. If j = 0 then there exists an edge between vj and vk+1. Thus the path

P1 : x = vj , vk+1, . . . , vt−1, vt = y is a shorter path between x and y, which is another contradiction.

If j > 0 then it is easy to see that there exist an edges between vj−1 and vk. So we may consider the

path P2 : x = v0, v1, . . . , vj−1, vk, . . . , vt−1, vt = y, of smaller length between x and y, a contradiction.

Hence for every 0 ≤ j ̸= k ≤ t, [vj ] ̸= [vk] and so the sequence [P ] : [x], [v1], . . . , [vt−1], [y] is a shortest

path between [x] and [y] in [Γ]. Therefore d[Γ]([x], [y]) = t.

Conversely suppose d[Γ]([x], [y]) = t and [Q] : [x], [v1], . . . , [vt−1], [y] is a path of minimum length in

[Γ]. By a similar argument as in the previous paragraph we may find the path Q : x, v1, . . . , vt−1, y

between x and y in Γ of minimum length. Therefore dΓ(x, y) = t. This proves (i).

For proving (ii), suppose that [P ] : [v0], [v1], . . . , [vd′ ], [vd′ ]. For every integer 0 ≤ i ≤ d′, [vi] contain

o([vi]) vertices of Γ. Since [Γ] is strong-tame then these vertices form a subgraph of Γ isomorphic to

Ko([vi]). For every integer 0 ≤ i ≤ d′, we consider the path vi1 = vi, vi2 , . . . , vio([vi])−1
of length o([vi])−1

which is a longest path in this subgraph. Now by adding these paths to the path [P ], we obtain a longest

path in Γ. Hence d = d′ +
∑

[a]∈[P ](o([a])− 1) = d′ − (d′ + 1) +
∑

[a]∈[P ] o([a]) = −1 +
∑

[a]∈[P ] o([a]).

Finally for item (iii), let [Γ] be Hamiltonian. Since [Γ] is Hamiltonian, we can find a Hamiltonian

cycle, say [C] : [v0], [v1], . . . , [vd′ ], [vd′ ], [v0]. Let [P ] = [v0], [v1], . . . , [vd′ ], [vd′ ]. By a similar method

used in (ii), we obtain the corresponding path to [P ] in Γ, say P . Suppose that the length of P is d.
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By (ii), d = −1+
∑

[a]∈[P ] o([a]) = |V |−1. This implies that P is a Hamiltonian path in Γ. Now since

{[vd′ ], [v0]} ∈ [E] and [Γ] is strong-tame, then we have {vio([vd′ ])−1
, v0} ∈ E. By adding this edge to P ,

we obtain a Hamiltonian cycle in Γ. So Γ is a Hamiltonian graph. □

Corollary 3.3. (i) Let x, y ∈ V and [x] ̸= [y]. Then

d
G̃ (G)

([x], [y]) = dG (G)(x, y).

(ii) Let d be the length of a longest path in G (G). Then

d = −1 +
∑

[a]∈[P ]

ϕ(o(a)),

where [P ] is a longest path in G̃ (G). (iii) Let G̃ (G) be a Hamiltonian graph. Then G (G) is also

Hamiltonian.

Proof. These are immediate consequence of the fact that G̃ (G) is strong-tame quotient of G (G) and

for every [a] ∈ [G], o([a]) = ϕ(o(a)). □

In [8], authors showed that the number of edges e of G (G) is given by 2e =
∑

a∈G{2o(a)−ϕ(o(a))−1}.
Now we calculate, [e], the number of edges in G̃ (G).

Theorem 3.4. Suppose ϕ is the Euler’s totient function. Then:

(i) |V | =
∑

[a]∈[V ] ϕ(o(a)) and |[V ]| =
∑

a∈V
1

ϕ(o(a))
.

(ii) [e] =
∑

a∈G
1

ϕ(o(a))
(−1 +

∑o(a)
i=1

1

ϕ(o(ai))
), where o(ai) =

o(a)

(o(a), i)
, for every element a ∈ G.

Proof. (i) Let [a] be the class of a under relation “ ∼ ”. Then o([a]) = ϕ(o(a)). Hence |V | =∑
[a]∈[V ] ϕ(o(a)). Since o([a]) = ϕ(o(a)), we have

∑
b∈[a]

1

ϕ(o(a))
= 1. Hence |[V ]| =

∑
a∈V

1

ϕ(o(a))
.

(ii) In
−−−→
G̃ (G), if there exist two arcs [a] → [b] and [b] → [a], then a = bn and b = am, for some positive

integers n and m, respectively. This implies that [a] = [b]. Thus there are no bidirected arcs in
−−−→
G̃ (G).

So the number of edges in G̃ (G) is equal to the number of arcs in
−−−→
G̃ (G). Hence instead of calculating

the number of edges in G̃ (G), we calculate the number of arcs in
−−−→
G̃ (G). Suppose [−→e ] is the number

of arcs in
−−−→
G̃ (G). Since [−→e ] =

∑
[a]∈[G] d

+([a]), then for obtaining [−→e ], it is enough to calculate the

outdegree d+([a]), for every [a] ∈ [G]. For this purpose, we construct the graph
−−−→
G̃ (G) from the graph

−−−→
G (G) by considering the equivalence relation “ ∼ ”. Let ta = d+(a)− d+([a]). Since d+(a) = o(a)− 1,

for calculating d+([a]), it is enough to obtain ta. Suppose that S = {a, a2, a3, . . . , ao(a)} and [ai1 ] =

[a], [ai2 ], . . . , [aik ] be distinct classes of relation “ ∼ ” on the set S. For every integer 1 ≤ j ≤ k, all

vertices of the set [aij ] are coincide with one vertex [aij ] in
−−−→
G̃ (G) and ϕ(o(aij ))−1 arcs are omitted from

−−−→
G (G) to obtain

−−−→
G̃ (G). (Note that for [ai1 ] = [a], there exist ϕ(o(a))−1 arcs from a to all vertices in [a],

which are omitted in
−−−→
G̃ (G).) Thus ta =

∑k
j=1 ϕ(o(a

ij ))−1. Since o([aij ]) = ϕ(o(aij )) and for every at ∈

[aij ], ϕ(o(at)) = ϕ(o(aij )), then ta =
∑k

j=1

∑
at∈[aij ]

ϕ(o(at))− 1

ϕ(o(at))
. Hence ta =

∑o(a)
t=1

ϕ(o(at))− 1

ϕ(o(at))
=
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t=1 (1 − 1

ϕ(o(at))
) = o(a) −

∑o(a)
t=1

1

ϕ(o(at))
. Since d+(a) = o(a) − 1, then d+([a]) = d+(a) − ta =

−1 +
∑o(a)

t=1

1

ϕ(o(at))
. Therefore [−→e ] =

∑
[a]∈[G] d

+([a]) =
∑

[a]∈[G] (−1 +
∑o(a)

t=1

1

ϕ(o(at))
). By the fact

that o([a]) = ϕ(o(a)), we have [e] = [−→e ] =
∑

a∈G
1

ϕ(o(a))
(−1 +

∑o(a)
t=1

1

ϕ(o(at))
). □

In[20], authors showed that for a finite group G,G (G) is a tree if and only if G is an elementary

abelian 2-group. In the following, we characterize finite groups G, which G̃ (G) are isomorphic to trees.

Let P be the class of the finite groups having all (nontrivial) elements of prime order. Deaconescu

in [9], proved the following theorem.

Theorem 3.5. [9, Main Theorem] Let G be a P-group. Then one the following cases occurs:

I. G is a p-group of exponent p, p is a prime.

II. G is a group of order pmq as follows; where p and q are primes.

(i) |G| = pmq, where 3 ≤ p < q,m ≥ 3, |F(G)| = pm−1 and |G : G′| = p.

(ii) |G| = pmq, where 3 ≤ q < p,m ≥ 1 and |F(G)| = |G′| = pm.

(iii) |G| = 2mp, where p ≥ 3,m ≥ 2 and |F(G)| = |G′| = 2m.

(iv) |G| = 2pm, where p ≥ 3,m ≥ 1, |F(G)| = |G′| = pm and F(G) is elementary abelian.

III. G ∼= A5.

Now we prove the following theorem.

Theorem 3.6. Let G be a finite group. Then G̃ (G) is isomorphic to a tree if and only if G is one of

the following groups:

Case 1) G is a p-group of exponent p, p is a prime.

Case 2) G is a group of order pmq as follows; where p and q are primes.

(i) |G| = pmq, where 3 ≤ p < q,m ≥ 3, |F(G)| = pm−1 and |G : G′| = p.

(ii) |G| = pmq, where 3 ≤ q < p,m ≥ 1 and |F(G)| = |G′| = pm.

(iii) |G| = 2mp, where p ≥ 3,m ≥ 2 and |F(G)| = |G′| = 2m.

(iv) |G| = 2pm, where p ≥ 3,m ≥ 1, |F(G)| = |G′| = pm and F(G) is elementary abelian.

Case 3) G ∼= A5.

Proof. Let G̃ (G) be a tree. Suppose that there exists an element a ∈ G such that pq divides o(a), where

p and q are prime numbers (not necessarily distinct). Then there exists the cycle: [1G], [a], [a
p], [1G]

in G̃ (G). Thus g(G̃ (G)) = 3 and so G̃ (G) is not a tree, which is a contradiction. Hence all non-trivial

elements of G must be of prime order.

Conversely suppose that all non-trivial elements of G are of prime order. If G̃ (G) is not a tree then

there exists a cycle in G̃ (G) say [1G], [a1], [a2], . . . , [ak],

[1G]. Since {[a1], [a2]} ∈ [E] we may assume, without loss of generality, that a2 = a1
m for some

positive integer m > 1. Since o(a1) is a prime number, then [a1] = [a2], which is a contradiction.

Hence G̃ (G) is a tree.

Now by using Theorem 3.5, the proof is complete. □
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Corollary 3.7. Let G be a finite group. Then G̃ (G) is a tree if and only if G̃ (G) is a (|[V ]| − 1)-star.

Proof. Let G̃ (G) be a tree. In the proof of Theorem 3.6, we show that all non-trivial elements of G

are of prime order. Now since [1G] is adjacent with all other elements of [G], then the assertion is

established.

The converse is straightforward. □

Suppose Γ = (V,E) is a graph. A non-empty subset X ⊆ V is called a clique if the induced

subgraph on X is a complete graph. The maximum size of a clique in Γ is called clique number of Γ

and denoted by ω(Γ). The chromatic number of Γ is the smallest number of colors needed to color the

vertices of Γ so that no two adjacent vertices share the same color. This number is denoted by χ(Γ).

A graph Γ is perfect if for every induced subgraph Λ of Γ, the chromatic number of Λ is equal to

the size of the largest clique of Λ.

Theorem 3.8. [10, Theorem 3.1] The power graph of a group is perfect.

By a similar argument to [10, Theorem 3.1], we immediately conclude the following theorem.

Theorem 3.9. Suppose G is a finite group. Then the power graph G̃ (G) is perfect and so ω(G̃ (G)) =

χ(G̃ (G)).

In [8], Chakrabarty et al. proved that for a finite group G, the power graph G (G) is complete if

and only if G is a cyclic group of order 1 or pm, for some prime number p and some positive integer

m. There exist a similar result for quotient power graphs.

Theorem 3.10. Let G be a finite group. Then G̃ (G) is complete if and only if G is of order 1 or pm

for some positive integer m.

Proof. Since for every element x ∈ G, the induced subgraph of the set [x] of P (G) is complete, then

P (G) is complete if and only if G̃ (G) is complete. By [8, Theorem 2.12], the proof is complete. □

Mirzargar et al. [19], considered some graph theoretical properties of the power graph G (G) that

can be related to the group theoretical properties of G, such as clique number, independence number

and chromatic number. Now we consider the quotient power graph G̃ (G) and obtain similar results

for G̃ (G).

Suppose D(n) denotes the set of all positive divisors of n. It is well-known that (D(n), |) is a

distributive lattice. In the following we apply the structure of this lattice to compute the clique and

chromatic number of G̃ (Zn).

Lemma 3.11. Suppose G is a group and A ⊆ [G]. The vertices of A constitute a complete subgraph

in G̃ (G) if and only if {< x > |x ∈ A} is a chain.

Proof. By Theorem 3.10, C is a clique in P (G) if and only if [C] is a clique in G̃ (G), where [C] is the

corresponding subgraph to C in G̃ (G). Now by a similar argument to [19, Lemma 1], the sentence is

established. □
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Theorem 3.12. Suppose n = p1
α1p2

α2 · · · prαr , where p1 < p2 < · · · < pr are prime numbers. Then

ω(G (Zn)) = χ(G (Zn)) = 1 + Σr
i=1αi.

Proof. The proof is similar to [19, Theorem 2]. □

The exponent of a finite group G is defined as the least common multiple of all elements of G,

denoted by Exp(G). If G has an element a such that o(a) = Exp(G), then G is called full exponent.

It is easy to see that the nilpotent groups are full exponent.

Theorem 3.13. Let G be a full exponent group and n = Exp(G) = p1
β1p2

β2 · · · prβr , where p1 < p2 <

· · · < pr are prime numbers. If x be an element of order n then

ω(G (Zn)) = χ(G (Zn)) = 1 + Σr
i=1βi.

Proof. The proof is similar to the proof of [19, Theorem 3]. □

Corollary 3.14. Let G be a finite group. Then the quotient power graph G̃ (G) is planar if and only

if πe(G) ⊆ {1, p, p2, p3, pq, p2q}, where p, q are distinct prime numbers.

Proof. Suppose that G̃ (G) is planar and [x] ∈ Ṽ . Then G̃ (G) does not have the complete graph K5

as its induced subgraph and so by Theorem 3.13, o(x) ∈ {1, p, p2, p3, pq, p2q, pqr}, where p, q, r are

distinct prime numbers. Suppose that o(x) = pqr and G̃ (< x >) = ([V ], [E]). Then |[V ]| = 8 and

|[E]| = 19. By [22, 6.1.23.Theorem], G̃ (< x >) is not planar and so G̃ (G) is not planar. But it is easy

to check that in other cases G̃ (G) is planar. □

4. The proper quotient power graphs of finite groups

By considering G̃ ∗(G), we can obtain some information about G̃ (G). So in this section we discuss

the proper quotient power graphs of finite groups. We classify all groups G where G̃ ∗(G) is isomorphic

to one of trees, paths or bipartite graphs.

Lemma 4.1. Let G be a finite group and G̃ ∗(G) be a path. Then all non-trivial elements of G are of

order p, p2 or pq, for distinct prime numbers p and q.

Proof. Let G̃ ∗(G) be a path and [1G] ̸= [x] ∈ [G]. Suppose that d+([x]) ≥ 1 and d−([x]) ≥ 1. Then

there exist two arcs [y] → [x] and [x] → [z] in
−−−−→
G̃ ∗(G), where [y], [z] ∈ [G]\ [1G]. So x = ym and z = xn,

for some positive integers m and n. Thus z = ymn and so we have an arc from [y] to [z]. Hence G̃ ∗(G)

has a cycle of length three which is a contradiction. Therefore we may distinguish the following cases:

Case 1) d+([x]) = 0 and d−([x]) = 0, 1 or 2. Since d+([x]) = 0, then the order of x must be a prime

number.

Case 2) d+([x]) = 1 and d−([x]) = 0. Since d+([x]) = 1, we have o(x) = p2, for some prime number p.

Case 3) d+([x]) = 2 and d−([x]) = 0. Since d+([x]) = 2, then we conclude that o(x) = pq, where p and

q are prime numbers. Hence the order of each element of G is a prime number or the product of two

prime numbers. Suppose that there exist three elements x′, y′, z′ ∈ G such that o(x′) = p, o(y′) = q and
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o(z′) = r, where p, q and r are distinct prime numbers. Then we have o(x′y′z′) = pqr, a contradiction.

Also if there exist two elements g, h ∈ G such that o(g) = p2 and o(h) = q2, where p and q are distinct

prime numbers, then we have o(gh) = p2q2, a contradiction. Hence all non-trivial elements of G are

of order p, p2 or pq. □

Theorem 4.2. Let G be a finite group. Then G̃ ∗(G) is a path if and only if G is isomorphic to one

of the groups Zp,Zp2 and Zpq, where p, q are prime numbers.

Proof. Let G̃ ∗(G) be a path. Then by Lemma 4.1, all elements of G has order p, p2 or pq, for some

prime numbers p and q. Suppose that the vertices [a1] and [ak] are the ends of this path. If [a1] = [ak]

then o(a1) = p and so G ∼= Zp. Suppose that [a1] ̸= [ak]. We consider the following cases:

Case 1) d+([a1]) = 0, d−([a1]) = 1, d+([ak]) = 1 and d−([ak]) = 0. So
−→
G̃ ∗(G) is the following path: If

k = 2, then o(a1) = p, o(a2) = p2 and a1 = a2
p. Thus G ∼=< a2 >∼= Zp2 and so G̃ ∗(G) ∼= K2. Suppose

that k = 3. Since d−([a1]) = d+([ak]) = 1 then we have two arcs a2 → a1 and a3 → a2. So there exist

an arc from a3 to a1 and we may consider a cycle [a1], [a2], [a3], [a1] in G̃ ∗(G), which contradicts the

assumption that G̃ ∗(G) is a path. Suppose that k ≥ 4. Then o(a2) = pq and o(ak) = p2 or q2. Thus

p2q divides o(a2ak) or q
2p divides o(a2ak). By Lemma 4.1, this is a contradiction.

Case 2) d+([a1]) = 1, d−([a1]) = 0, d+([ak]) = 0 and d−([ak]) = 1. So
−→
G̃ ∗(G) is the following path: By

rearranging the indices, we obtain the Case 1).

Case 3) d+([a1]) = 1, d−([a1]) = 0, d+([ak]) = 1 and d−([ak]) = 0. So
−→
G̃ ∗(G) is the following path:

Suppose that k = 2. Then d+([a1]) = d+([a2]) = 1 implies that [a1] = [a2], a contradiction. If k = 3,

then o(a1) = o(a3) = p2 and o(a2) = p. Then < a1 > and < a3 > are the only Sylow p-subgroups

of G. So the number of Sylow p-subgroups is not of the form 1 + tp, for some integer t. This is a

contradiction. Suppose that k = 4. Since d+([a1]) = d+([a4]) = 1 then we have two arcs a1 → a2

and a4 → a3. On the other hand there exists an arc from a2 to a3 or an arc from a3 to a2. In first

case we have the cycle [a1], [a2], [a3], [a1] and in second case we have the cycle [a4], [a3], [a2], [a4] in
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G̃ ∗(G). Since G̃ ∗(G) is a path, this is a contradiction. Now suppose that k ≥ 5, then o(a1) = p2 and

o(ak−2) = pq. Thus p2q divides o(a1ak−2), which is, by Lemma 4.1, a contradiction.

Case 4) d+([a1]) = 0, d−([a1]) = 1, d+([ak]) = 0 and d−([ak]) = 1. So
−→
G̃ ∗(G) is the following path:

Suppose that k = 2. Then d−([a1]) = d−([a2]) = 1 implies that [a1] = [a2], a contradiction. If k = 3,

then o(a1) = p, o(a2) = pq and o(a3) = q. Also we have a1 = aq2 and a3 = ap2. Thus G
∼=< a2 >∼= Zpq.

In this case G̃ ∗(G) is a path of length two. Suppose that k = 4. Since d−([a1]) = d−([a4]) = 1, we

have two arcs a2 → a1 and a3 → a4. On the other hand there exists either an arc from a2 to a3 or an

arc from a3 to a2. In the first case we have the cycle [a2], [a3], [a4], [a2] and in the second case we have

the cycle [a1], [a2], [a3], [a1] in G̃ ∗(G). Since G̃ ∗(G) is a path, this is a contradiction. Now suppose that

k ≥ 5. Then o(a1) = p and o(ak−1) = pq. Since < a1 > ∩ < ak−1 >= 1G, we have o(a1ak−1) = p2q.

This contradicts to Lemma 4.1.

Conversely it is easy to check that the graphs G̃ ∗(Zp), G̃ ∗(Zp2) and G̃ ∗(Zpq), where p and q are

prime numbers, are paths of length 0, 1 and 2, respectively. □

Theorem 4.3. Let G be a finite group. Then G̃ ∗(G) is a bipartite graph if and only if G̃ ∗(G) is

connected and the order of each non-trivial element of G is a prime or a product of two primes (not

necessary distinct).

Proof. Let G̃ ∗(G) be a bipartite graph with two part Γ1 and Γ2. We consider the directed power

graph
−−−−→
G̃ ∗(G). If there exist arcs [b] → [a] and [a] → [c], then there exist the arc [b] → [c]. This implies

that {[b], [c]} ∈ [E0], which is a contradiction. Hence we may assume that all arcs are from Γ1 to Γ2.

Hence all elements in Γ2 are of prime order. Let [a] ∈ Γ1. If o(a) = pqm, where m ̸= 1 is a positive

number and p and q are prime numbers (not necessary distinct), then we have {[a], [ap]} ∈ [E0] and

{[a], [apq]} ∈ [E0]. Thus [ap], [apq] ∈ Γ2. But {[ap], [apq]} ∈ [E0], a contradiction. Hence all elements

of Γ1 must be of order p or pq, for some prime numbers p and q, which are not necessary distinct.

Conversely Suppose that P̃0(G) is connected and all elements of G are of order p, p2 and pq, for

some prime numbers p and q. Then all elements of prime order are in one part of G̃ ∗(G) and the other

are in the other part. □

Theorem 4.4. (i) Suppose G is a p-group. Then G̃ ∗(G) is bipartite if and only if G is a cyclic or a

generalized quaternion group.

(ii) Suppose G is a nilpotent group which is satisfy in the Case 2) of Theorem 3.6. Then G̃ ∗(G) is

bipartite.

Proof. (i) Suppose that G is a p-group. By [20, Theorem 7], G ∗(G) is connected if and only if G

is cyclic or a generalized quaternion group. By Lemma 2.2, the number of connected components
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of G ∗(G) is equal to the number of connected components of G̃ ∗(G). Thus by Theorem 4.3, the

conclusion is established.

(ii) Suppose G is a nilpotent group which is satisfy in Case 2) of Theorem 3.6. Then by [20, Theorem

10], G ∗(G) is connected and so by Lemma 2.2, G̃ ∗(G) is connected. Also by [9], all non-trivial elements

of G are of prime order. Hence by Theorem 4.3, G̃ ∗(G) is bipartite. □

Theorem 4.5. Let G be a finite group. Then g(G̃ ∗(G)) = 3 if and only if there exist an element

a ∈ G such that pqr divides o(a), where p, q and r are prime numbers (not necessary distinct).

Proof. Let g(G̃ ∗(G)) = 3. Then there exists a cycle of length three in G̃ ∗(G), say [a], [b], [c], [a]. We

can assume that b = am and c = bn, for some positive integers m and n. Thus we have c = amn.

Hence this cycle is a subgraph of G̃ ∗(< a >) and |V (G̃ ∗(< a >))| ≥ 3. If o(a) = p or o(a) = p2, for

a prime number p, then V (G̃ ∗(< a >)) = {[a]} or V (G̃ ∗(< a >)) = {[a], [ap]}, respectively. This is a

contradiction to |V (G̃ ∗(< a >))| ≥ 3. If o(a) = pq, for some prime numbers p and q, then G̃ ∗(< a >)

is a path of length two, a contradiction. Hence pqr divides o(a), where p, q and r are prime numbers.

Conversely let a ∈ G. Suppose that pqr divides o(a), where p, q and r are prime numbers. Then

there exists the cycle [a], [ap], [apq], [a] in G̃ ∗(G). Therefore g(G̃ ∗(G)) = 3. □

Suppose that G̃ (G) is a Hamiltonian graph, with the Hamiltonian cycle C. Obviously the path

P = C \ {[1G]} is a Hamiltonian path in G̃ ∗(G). Suppose P is a Hamiltonian path in G̃ ∗(G). Since

[1G] is adjacent to other vertices in G̃ (G) then C = P ∪ {[1G]} is a Hamiltonian cycle in G̃ (G). Thus

we have the following proposition.

Proposition 4.6. Let G be a finite group. Then G̃ (G) is a Hamiltonian graph if and only if G̃ ∗(G)

has a Hamiltonian path.

Proposition 4.7. Let G be a finite group. Suppose that [e0] be the number of edges of G̃ ∗(G). Then

[e0] =
∑

a∈G
1

ϕ(o(a))
(−2 +

∑o(a)
i=1

1

ϕ(o(ai))
) + 1.

Proof. It follows immediately from Theorem 3.4. □

Proposition 4.8. Suppose G is a finite group. Then ω(G ∗(G)) = ω(G (G)) − 1G and ω(G̃ ∗(G)) =

ω(G̃ (G))− 1G.

Proof. Since 1G([1G]) is adjacent to other vertices, the conclusion is established. □
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