In this paper, we will give necessary and sufficient conditions for certain HNN extensions of subgroup separable groups with normal associated subgroup to be conjugacy separable. In fact, we will show that these HNN extensions are conjugacy separable if and only if the normalizer of one of its associated subgroup is conjugacy separable..

[1] R. B. J. T. Allenby, Polygonal pro ducts of p olycyclic by nite groups, Bul l. Austral. Math. Soc., 54 (1996) 369-372.

[2] R. B. J. T. Allenby, G. Kim and C. Y. Tang, Residual niteness of outer automorphism groups of certain pinched 1-relator groups, J. Algebra, 246 (2001) 849-858.

[3] R. B. J. T. Allenby, G. Kim and C. Y. Tang, Residual niteness of outer automorphism groups of nitely generated non-triangle Fuchsian groups, Internat. J. Algebra Comput., 15 (2005) 59-72.

[4] G. Baumslag and D. Solitar, Some two-generator one-relator non-Hopan groups, Bul l. Amer. Math. Soc., 68 (1962) 199-201.

[5] N. Blackburn, Conjugacy in nilp otent groups, Proc. Amer. Math. Soc., 16 (1965) 143-148.

[6] D. J. Collins, Recursively enumerable degrees and the conjugacy problem, Acta. Math., 122 (1969) 115-160.

[7] Y. D. Chai, Y. Choi, G. Kim and C. Y. Tang, Outer automorphism groups of certain tree pro ducts of ab elian groups, Bul l. Aust. Math. Soc., 77 (2008) 9-20.

[8] J. L. Dyer, Separating conjugates in amalgamated free pro ducts and HNN-extensions, J. Austral. Math. Soc. Ser. A, 29 (1980) 35-51.

[9] B. Fine and G. Rosenb erger, Conjugacy separability of Fuchsian groups and related questions, Contemp. Math., Amer. Math. Soc., 109 (1990) 11-18.

[10] E. Formanek, Conjugate separability in p olycylic groups, J. Algebra, 42 (1976) 1-10.

[11] E. K. Grossman, On the residual niteness of certain mapping class groups, J. London Math. Soc. (2), 9 (1974) 160-164.

[12] M. Jr. Hall , Coset representations in free groups, Trans. Amer. Math. Soc., 67 (1949) 421-432.

[13] G. Kim, On p olygonal pro ducts of nitely generated ab elian groups, Bul l. Austral. Math. Soc., 45 (1992) 453-462.

[14] G. Kim, Cyclic subgroup separability of generalized free pro ducts, Canad. Math. Bul l., 36 (1993) 296-302.

[15] G. Kim, Cyclic subgroup separability of HNN extensions, Bul l. Korean Math. Soc., 30 (1993) 285-293.

[16] G. Kim, Outer automorphism groups of certain p olygonal pro ducts of groups, Bul l. Korean Math. Soc., 45 (2008) 45-52.

[17] G. Kim and C. Y. Tang, A criterion for the conjugacy separability of amalgamated free pro ducts of conjugacy separable groups, J. Algebra, 184 (1996) 1052-1072.

[18] G. Kim and C. Y. Tang, Conjugacy separability of HNN-extensions of ab elian groups, Arch. Math. (Basel), 67 (1996) 353-359.

[19] G. Kim and C. Y. Tang, Conjugacy separability of generalized free products of nite extension of residual ly nilpotent groups, Group theory (Beijing, 1996), Springer, Singap ore, 1998 10-24.

[20] G. Kim and C. Y. Tang, A criterion for the conjugacy separability of certain HNN-extensions of groups, J. Algebra, 222 (1999) 574-594.

[21] G. Kim and C. Y. Tang, Cyclic subgroup separability of HNN-extensions with cyclic asso ciated subgroups, Canad. Math. Bul l., 42 (1999) 335-343.

[22] G. Kim and C. Y. Tang, Outer automorphism groups of p olygonal pro ducts of certain conjugacy separable groups, J. Korean Math. Soc., 45 (2008) 1741-1752.

[23] G. Kim and C. Y. Tang, Conjugacy separability of certain generalized free pro ducts of nilp otent groups, J. Korean Math. Soc., 50 (2013) 813-828.

[24] R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Reprint of the 1977 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

[25] A. I. Mal'cev, On homomorphisms onto nite groups, Ivanov. Gos Ped. Inst. Ucen. Zap., 18 (1958) 49-60.

[26] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Presentations of groups in terms of generators and relations, Reprint of the 1976 second edition, Dover Publications, Inc., Mineola, NY, 2004.

[27] V. Metaftsis and E. Raptis, Subgroup separability of HNN extensions with ab elian base groups, J. Algebra, 245 (2001) 42-49.

[28] E. Raptis, O. Talelli and D. Varsos, On the conjugacy separability of certain graphs of groups, J. Algebra, 199 (1998) 327-336.

[29] V. N. Remeslennikov, Groups that are residually nite with resp ect to conjugacy, Siberian Math. J., 12 (1971) 783-792.

[30] P. Steb e, Residual niteness of a class of knot groups, Comm. Pure Appl. Math., 21 (1968) 563-583.

[31] C. Y. Tang, Conjugacy separability of generalized free pro ducts of certain conjugacy separable groups, Canad. Math. Bul l., 38 (1995) 120-127.

[32] C. Y. Tang, Conjugacy separability of generalized free pro ducts of surface groups, J. Pure Appl. Algebra, 120 (1997) 187-194.

[33] K. B. Wong and P. C. Wong, Polygonal pro ducts of residually nite groups, Bul l. Korean Math. Soc., 44 (2007) 61-71.

[34] K. B. Wong and P. C. Wong, Conjugacy separability and outer automorphism groups of certain HNN extensions, J. Algebra, 334 (2011) 74-83.

[35] K. B. Wong and P. C. Wong, Residual niteness, Subgroup separability and Conjugacy separability of certain HNN extensions, Math. Slovaca, 62 (2012) 875-884.

[36] K. B. Wong and P. C. Wong, Cyclic subgroup separability of certain graph pro ducts of subgroup separable groups, Bul l. Korean Math. Soc. , 50 (2013) 1753-1763.

[37] P. C. Wong and K. B. Wong, The cyclic subgroup separability of certain HNN extensions, Bul l. Malays. Math. Sci. Soc. (2), 29 (2006) 111-117.

[38] P. C. Wong and K. B. Wong, Residual niteness of outer automorphism groups of certain tree pro ducts, J. Group Theory, 10 (2007) 389-400.

[39] P. C. Wong and K. B. Wong, Subgroup separability and conjugacy separability of certain HNN extensions, Bul l. Malays. Math. Sci. Soc. (2), 31 (2008) 25-33.

[40] W. Zhou and G. Kim, Class-preserving automorphisms and inner automorphisms of certain tree pro ducts of groups, J. Algebra, 341 (2011) 198-208.

[41] W. Zhou and G. Kim, Class-preserving automorphisms of generalized free pro ducts amalgamating a cyclic normal subgroup, Bul l. Korean Math. Soc., 49 (2012) 949-959.