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Abstract. For a composition λ of n our aim is to obtain reduced forms for all the elements in the

Kazhdan-Lusztig (right) cell containing wJ(λ), the longest element of the standard parabolic subgroup

of Sn corresponding to λ. We investigate how far this is possible to achieve by looking at elements of the

form wJ(λ)d, where d is a prefix of an element of minimum length in a (WJ(λ), B) double coset with the

trivial intersection property, B being a parabolic subgroup of Sn whose type is ‘dual’ to that of WJ(λ).

1. Introduction

In [13], when investigating the representations of a Coxeter group and its associated Hecke algebra,

Kazhdan and Lusztig introduced three partitionings of the Coxeter group, the parts of which they

called left cells, right cells and two-sided cells. There is a very simple connection between the left

cells and the right cells; namely, the mapping x 7→ x−1 maps a left cell to a right cell and vice-versa.

In the case of the symmetric group Sn, they showed that the equivalence relation whose equivalence

classes are the left cells is essentially the same as an equivalence relation defined by Knuth in [14].

The cell to which an element of Sn belongs can be determined by examining the tableaux resulting

from an application of the Robinson-Schensted process to that element. Also, the elements of a cell

can be computed by applying the reverse of the Robinson-Schensted process to a suitable selection of

tableaux pairs.

The Robinson-Schensted process however, does not provide a straightforward way of obtaining

reduced forms for the elements of these cells. This paper is mainly concerned with the problem of
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finding a direct way to describe reduced forms for the elements in certain cells, namely the (right) cells

for which the unique involution they contain is in fact an element of longest length in some standard

parabolic subgroup of Sn. (It is easy to observe from the Robinson-Schensted process that each right

cell in Sn contains a unique involution.)

Let us introduce some notation at this point. For a composition λ of n, let WJ(λ) be the standard

parabolic subgroup of Sn corresponding to λ and let wJ(λ) be the longest element of WJ(λ). Also let

XJ(λ) be a complete set of distinguished right coset representatives of WJ(λ) in Sn. It is well known

that the right cell containing wJ(λ) has form wJ(λ)Z(λ) for some subset Z(λ) of XJ(λ).

In the special case that λ is a partition the elements of Z(λ) are precisely the prefixes of the element

of minimum length in the unique (WJ(λ),WJ(λ′)) double coset with the trivial intersection property

(see for example [18, Lemma 3.3]).

Below let λ be an arbitrary composition of n. In the present paper we observe that every element of

XJ(λ) occurs as the element of minimum length in a (WJ(λ), B) double coset with the trivial intersection

property for some standard parabolic subgroup B of Sn. Moreover, we generalize our algorithm in [19]

so that it gives a reduced form for the element of minimum length (and its prefixes) in an (A,B)

double coset with the trivial intersection property where now A and B are arbitrary standard parabolic

subgroups of Sn. For the investigations of the present paper we concentrate in the special case A and

B are of ‘dual’ type, that is, they correspond respectively to compositions λ, µ such that the conjugate

composition λ′ is a rearrangement of µ. Setting Ẑ(λ) = {u ∈ XJ(λ) : there exists µ ⊨ n with µ′′ = λ′

such that u is a prefix of the element of minimum length in the unique (WJ(λ),WJ(µ)) double coset

with the trivial intersection property}, it is then easy to observe that Ẑ(λ) ⊆ Z(λ).

In Propositions 5.2 and 5.3 we give some examples of compositions λ for which Ẑ(λ) = Z(λ). How-

ever there are examples of compositions for which Ẑ(λ) is properly contained in Z(λ). We investigate

how far these examples can be dealt with by looking at (WJ(λ), e
−1WJ(λ′)e) double cosets with the

trivial intersection property, where e ∈ Sn. (Recall that subgroups WJ(µ) and WJ(λ′) are conjugate

in Sn whenever µ′′ = λ′.) In Theorem 5.4 we show that any element of minimum length in such a

double coset (and hence each of its prefixes) belongs to Z(λ). For various examples of λ this allows

us to obtain reduced forms for the elements of a subset of Z(λ) which properly contains Ẑ(λ).

Finally, in Theorems 5.6 and 5.8 (which are generalizations of Theorem 5.4), we obtain sufficient

conditions for the element d ∈ XJ(λ) to belong to Z(λ) which now depend on double cosets with the

trivial intersection property of the form WJ(λ)w(e
−1WJ(λ′)e) where e ∈ Sn and w ∈ XJ(λ) with w ≤ d

in the strong Bruhat order.

2. Preliminaries and generalities

Let (W,S) be a Coxeter system corresponding to a Weyl group W and let l be the associated length

function. We recall some basic notions concerning Weyl groups and the associated Hecke algebras.

Where appropriate, we will give references to these notions in [11] or [13]. Every result involving a

‘left-oriented’ object connected with a Weyl group or Hecke algebra, e.g. a left transversal, a relation
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defined in terms of multiplication on the left or a left module, has an analogous result involving the

corresponding ‘right-oriented’ object. We shall freely translate results from the literature involving

one orientation to results involving the other.

For each element w ∈ W , the left descent set, L(w), and the right descent set, R(w), are defined

by L(w) := {s ∈ S : l(sw) < l(w)} and R(w) := {s ∈ S : l(ws) < l(w)}. For each subset J ⊆ S,

the subgroup WJ generated by J is called a standard parabolic subgroup of W . It has a Coxeter

system (WJ , J). Its length function lJ is that induced from l. It has a unique longest element wJ . By

tradition, w0 is written for wS . Let x, y ∈ W . We say that x is a prefix of y if y = s1s2 · · · sp where

si ∈ S for i = 1, . . . , p, p = l(y) and x = s1s2 · · · sr, for some r ≤ p. The prefix relation corresponds to

the weak Bruhat order in [8]. We use ≤ to denote the strong Bruhat order on W and we write x < y

if x ≤ y and x ̸= y.

Result 1 ([11, Propositions 2.1.1 and 2.1.7 and Lemma 2.2.1]). (i) There is a special set of right

coset representatives XJ associated with each parabolic subgroup WJ . An element of XJ is the unique

element of minimum length in its coset. Moreover, if w = vx where v ∈ WJ and x ∈ XJ then

l(w) = l(v) + l(x). Also, XJ = {w ∈ W : L(w) ⊆ S − J} and, if dJ denotes the longest element in XJ ,

then XJ is the set of prefixes of dJ .

(ii) If J,K ⊆ S and XJ,K is defined to be {d ∈ XJ : d
−1 ∈ XK}, then XJ,K is a complete set of

representatives of the (WJ ,WK) double cosets in W and, for any w ∈ W , there are u ∈ WJ and

v ∈ WK , and a unique d ∈ XJ,K such that w = udv and l(w) = l(u) + l(d) + l(v).

The Hecke algebra H corresponding to (W,S) and defined over the ring A = Z[q
1
2 , q−

1
2 ], where q is

an indeterminate, has a free A-basis {Tw : w ∈ W} and multiplication defined by the rules

(2.1)
(i) TwTw′ = Tww′ if l(ww′) = l(w) + l(w′) and

(ii) (Ts + 1)(Ts − q) = 0 if s ∈ S.

The basis {Tw : w ∈ W} is called the T -basis of H. (See [13]).

Result 2 ([13, Theorem 1.1]). H has a basis {Cw : w ∈ W}, the C-basis, whose terms have the form

Cy =
∑
x≤y

(−1)l(y)−l(x)q
1
2
l(y)−l(x)Px,y(q

−1)Tx, where Px,y(q) is a polynomial in q with integer coefficients

of degree ≤ 1
2 (l(y)− l(x)− 1) if x < y and Py,y = 1.

If the degree of Px,y(q) is exactly 1
2 (l(y)− l(x)− 1), we write µ(x, y), and µ(y, x), for its leading

coefficient, which is a nonzero integer. For all other pairs x, y ∈ W , we set µ(x, y) = 0.

There is an automorphism ȷ of H defined by
(∑

y∈W ayTy

)
ȷ =

∑
y∈W ay

(
−q−1

)l(y)
Ty, where a 7→ a

is the automorphism of A defined by q
1
2 7→ q−

1
2 (see [13, p.166]). This automorphism is used to relate

the C-basis of H to another basis {C ′
w : w ∈ W} known as the C ′-basis, which may be defined by

C ′
w = (−1)l(w)Cwȷ.

The multiplication of C-basis elements by Ts, s ∈ S, is described in [13] and is as follows,
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Result 3 ([13, 2.3ac]).

sx < x ⇒ TsCx = −Cx and x < sx ⇒ TsCx = qCx + q
1
2Csx +

∑
z<x, sz<z

µ(z, x)Cz.

xs < x ⇒ CxTs = −Cx and x < xs ⇒ CxTs = qCx + q
1
2Cxs +

∑
z<x, zs<z

µ(x, z)Cz.

There are two reflexive transitive relations (preorders), ≤L and ≤R, defined on W using the C-

basis. The preorder ≤L is generated by all statements of the form: x ≤L y if Cx occurs with nonzero

coefficient in the expression of TsCy in the C-basis, for some s ∈ S. The preorder ≤R is defined

similarly, taking CyTs instead of TsCy in the preceding sentence.

A third preorder ≤LR is defined using the previous two preorders: x ≤LR y if there is a sequence of

elements x0 = x, x1,. . . , xr = y of W such that for each integer i, 0 ≤ i ≤ r − 1, either xi ≤L xi+1 or

xi ≤R xi+1.

∼L, ∼R and ∼LR are the equivalence relations generated by ≤L, ≤R and ≤LR, respectively. Their

equivalence classes are called left cells, right cells and two-sided cells, respectively. It is immediate

that two-sided cells are unions of left-cells which are also unions of right cells.

We write x <L y if x ≤L y and x ̸∼L y. The relations <R and <LR are defined similarly. (See [13]).

Result 4 ([16, 5.26.1]). Let YJ = wJXJ . If x ∈ W and x ≤R y for some y ∈ YJ then x ∈ YJ .

Moreover, YJ = {w ∈ W : w ≤R wJ} is a union of right cells.

For any subset J ⊆ S, let HJ denote the Hecke algebra corresponding to (WJ , J). From [13,

Theorem 1.1 and Lemma 2.6(vi)], we see that CwJ =
(
−q

1
2

)l(wJ )∑
y≤wJ

(−q)−l(y)Ty. The right HJ -

module CwJHJ has rank 1, since CwJTs = −CwJ for all s ∈ J . The corresponding representation is

described as the alternating representation in [8, §3] and as the sign representation in [5, §67]. The

right H-module CwJH is isomorphic to the module induced from CwJHJ . We refer to any H-module

of the form CwJH, and any module arising from it by extending the scalars, as a monomial module.

Note that in [4, page 314] an induced monomial representation for a group is defined as any induced

representation from a one-dimensional representation of a subgroup.

It is clear that CwJH is spanned by elements of the form CwJTd, d ∈ XJ over A. Since their ‘leading

terms’ in the T -basis of H have the form adTwJd, where ad is invertible in A, they are independent

over A. Thus,

Result 5. The module CwJH has an A-basis {CwJTd : d ∈ XJ} and the module C ′
wJ

H has an A-basis

{C ′
wJ

Td : d ∈ XJ}.

The second part comes from applying the automorphism ȷ. We will refer to the first of these bases

as the T -basis of CwJH and the second as the T -basis of C ′
wJ

H.

In [22, Corollary 1.19], Xi obtains an A-basis for a module similar to the monomial module CwJH.

His result is contained in the following result—though the reader should note that Xi uses the term

C-basis for a basis which is different from the Kazhdan-Lusztig C-basis in [13]. The second part arises

from the first by applying the automorphism ȷ.
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Result 6 ([18, Lemma 2.11]). The module CwJH has an A-basis {Cy : y ≤R wJ} = {CwJd : d ∈ XJ}.
Similarly, the module C ′

wJ
H has an A-basis {C ′

y : y ≤R wJ} = {C ′
wJd

: d ∈ XJ}.

We will refer to the first of these bases as the C-basis of CwJH and the second as the C ′-basis of

C ′
wJ

H. Morever, if x ≤L wJ , then C ′
x ∈ HC ′

wJ
so C ′

xH is a homomorphic image of C ′
wJ

H, a fact that

we will need later on.

We now see that the change-of-basis matrix associated with the transition from the C-basis of CwJH
to the T -basis is, for a suitable ordering of the elements of the basis, a triangular matrix over A which

is invertible over A. The polynomials gJe,d, which appear in the proof below, first appeared in work of

Deodhar [6]. See in particular [6, Proposition 3.4]. The following result is a small extension of [18,

Proposition 2.13].

Result 7 ([18, Proposition 2.13]). For each e ∈ XJ ,

(2.2) CwJTe =
∑

d∈XJ , d≤e

gJe,dCwJd,

where gJe,d denotes an element of A and gJe,e is a power of q
1
2 , and

(2.3) CwJe =
∑

d∈XJ , d≤e

ĝJe,dCwJTd,

where ĝJe,d denotes an element of A and ĝJe,e is a power of q
1
2 .

In fact, ĝJe,d = (−1)l(e)−l(d)q
1
2
l(e)−l(d)PwJd,wJe(q

−1), if d ≤ e. So, ĝJe,e = q−
1
2
l(e) since PwJe,wJe(q

−1) =

1. Also, gJe,e = q
1
2
l(e).

Applying ȷ to the equations (2.3) and (2.2) in Result 7 and simplifying, we get the following:

Result 8. For each e ∈ XJ ,

(2.4) C ′
wJe

=
∑

d∈XJ , d≤e

(−1)l(d)ĝJe,dC
′
wJ

Td,

where ĝJe,d denotes an element of A and ĝJe,e is a power of q
1
2 , and

(2.5) C ′
wJ

Te =
∑

d∈XJ , d≤e

(−1)l(d)gJe,dC
′
wJd

,

where gJe,d denotes an element of A and gJe,e is a power of q
1
2 .

Of course, the preceding results could be stated slightly differently using the fact that {w : w ≤R

wJ} = {wJd : d ∈ XJ}.
For w ∈ W , let Mw and M̂w denote the H-modules with A-bases {Cy : y ≤R w} and {Cy : y <R w},

respectively, and let Sw = Mw/M̂w. Then Sw is a Kazhdan-Lusztig cell module and affords the cell

representation corresponding to the right cell containing w. If C denotes the cell containing w, we also

write SC for Sw. Note that CwH is a submodule of Mw. We see from Result 6 that, if w = wJ for

some J ⊆ S, then CwH = Mw. In this case, we say call the cell module a parabolic cell module and,

if λ = λ(J) we write C(λ) for the cell (see Section 3 for the definition of λ(J)).
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Next, we establish that certain pairs of the H-modules Mw are isomorphic. We say that two subsets

J and K of S are in the same Coxeter class if K = w−1Jw for some w ∈ W .

Proposition 2.1. Let J and K be subsets of S. If J and K are in the same Coxeter class then (i)

wJ and wK are in the same two-sided cell of W and (ii) MwJ
∼= MwK as H-modules.

Proof. Of all elements w satisfying w−1Jw = K, choose one d of minimum length. Then d ∈ XJ,K

and d−1WJd = WK . Let u ∈ WJ and v ∈ WK satisfy ud = dv. By Result 1, l(u) + l(d) = l(ud) =

l(dv) = l(v) + l(d). So l(u) = l(v). Hence, CwJTd = TdCwK . Statement (i) follows immediately from

this.

We know that MwJ = CwJH and MwK = CwKH. Hence, we may define a mapping θ : MwJ → MwK

by (CwJh)θ = T−1
d CwJh for all h ∈ H. This is clearly aH-module isomorphism and establishes (ii). □

Now clearly M̂wȷ is an H-submodule of Mwȷ. Define S•
w=Mwȷ/M̂wȷ. Then S•

w has A-basis {C ′
z +

M̂wȷ : z ∼R w}. As above, we also write S•
C for S•

w if w is in the right cell C.

It will be convenient on occasion to extend the scalars of the algebras under consideration. Let R

be any commutative ring with 1 and let A → R be a ring homomorphism. With each A-module L, we

have an associated R-module R⊗A L, which we will denote briefly as LR. In particular, we obtain an

R-algebra HR, and HR-modules MR,w = R⊗Mw, M̂R,w = R⊗M̂w, and Kazhdan-Lusztig cell modules

SR,w = MR,w/M̂R,w
∼= R ⊗ Sw. Since ȷ can be extended easily and uniquely to an automorphism of

HR, we see that the HR-module S•
R,w is isomorphic to MR,wȷ/M̂R,wȷ. In particular, we will use F

to denote any field containing the field of fractions Q
(
q

1
2

)
of A, and assume that the homomorphism

A → F is inclusion. The module SF,w has an F -basis {Cz + M̂F,w : z ∼R w} and the module S•
F,w

has F -basis {C ′
z + M̂F,wȷ : z ∼R w}. Also, C ′

wHF is a submodule of MF,wȷ, C
′
wJ

HF = MF,wJ
ȷ, and if

w′ <R w then C ′
w′HF is a submodule of M̂F,wȷ.

Result 9 ([18, Proposition 2.15]). For each w ∈ W , S•
F,w and SF,w0w are isomorphic HF -modules.

We conclude this section with an elementary proposition concerning homomorphisms between prin-

cipal ideals in the Hecke algebra HF of an arbitrary finite Coxeter group.

Proposition 2.2. Let e, f ∈ HF where e2 = ke for some k ∈ F \ {0}. Then

HomHF
(eHF , fHF ) ∼= fHF e as F -spaces.

Proof. For h ∈ HF , let φh ∈ HomHF
(eHF , fHF ) be the map given by left multiplication with fhe.

The required isomorphism is given by θ : fHF e → HomHF
(eHF , fHF ): fhe 7→ φh (h ∈ HF ). □

3. Basic combinatorics of the symmetric group

In this section, we collect various basic definitions and results concerning Sn, considering it both as

a permutation group in its natural form and as a Coxeter group. We refer to James and Kerber [12],

Sagan [20], Dipper and James [8], and Geck and Pfeiffer [11] for the basic theory.
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The symmetric group Sn is a Coxeter group with Coxeter system (W,S) where W = Sn, S =

{s1, . . . , sn−1}, and si is the transposition (i, i+ 1). We will describe an element w of W in different

forms: as a word in the generators s1,. . . , sn−1, as products of disjoint cycles on 1, . . . , n, and in

row-form [w1, . . . , wn] where wi = iw for i = 1, . . . , n. The Coxeter length l(w) of the element

w ∈ W , that is the shortest length of a word in the elements of S representing w, has an easy

combinatorial description; l(w) is the number of pairs (wi, wj) with i < j and wi > wj . If x, y ∈ W

and l(x−1y) = l(y) − l(x), then x is a prefix of y; in this case, y has a reduced form, that is a word

in the elements of S representing it of length l(y), beginning with a reduced form for x followed by a

reduced form for x−1y.

In the case of a symmetric group, a standard parabolic subgroup is also known as a Young subgroup.

The longest element w0 in W is the permutation defined by i 7→ n+ 1− i.

If λ = (λ1, . . . , λr) is a composition of n with r parts, that is, λ1,. . . , λr are non-negative integers

whose sum is n, we define the subset J(λ) of S to be S\{sλ1 , sλ1+λ2 , . . . , sλ1+...+λr−1}. Moreover, for

every subset J of S, there is a composition λ ( = λ(J)) such that J = J(λ). Thus, corresponding to

each composition λ, there is a standard parabolic subgroup of W whose Coxeter generator set is J(λ).

The longest element wJ(λ) of WJ(λ), if λ is a composition with r parts, can be described in row-form

by concatenating the sequences (λ̂i+1, . . . , λ̂i + 1) for i = 0, . . . , r − 1, where λ̂0 = 0, λ̂r = n, and

λ̂i+1 = λi+1 + λ̂i.

A partition is a compositon whose terms are non-increasing. A composition or partition is improper

if some of its parts are 0, and is otherwise proper. Unless otherwise stated explicitly, we will use the

terms composition and partition to mean proper composition and proper partition, respectively. We

use the notation λ ⊨ n (respectively, λ ⊢ n) to say that λ is a composition (respectively, partition) of n.

Let r′ be the maximum part of the composition λ. Recall that the conjugate composition λ′ =

(λ′
1, . . . , λ

′
r′) of λ is defined by λ′

i = |{j : 1 ≤ j ≤ r and i ≤ λj}| for 1 ≤ i ≤ r′. It is immediate that λ′

is a partition of n with r′ parts.

If λ and µ are compositions of n, write λ ⊴ µ if, for all k,
∑

1≤i≤k λi ≤
∑

1≤i≤k µi. In this case, we

say that λ is dominated by µ, or µ dominates λ. This differs from the definition of domination in [8],

though both definitions coincide if λ and µ are partitions. If λ ⊴ µ and λ ̸= µ, we write λ ◁ µ.

A diagram D is a finite subset Z2. A row index of D is an element i ∈ Z, such that for some j ∈ Z,
(i, j) ∈ D. A column index of D is defined analogously. Let R(D) and C(D) denote the sets of row

indices and column indices of D, respectively, and let rD = |R(D)| and cD = |C(D)|. The size of the

diagram D is |D|. The elements of D are the nodes of the diagram. The diagram D will be called

principal if for any i with minR(D) ≤ i ≤ maxR(D) there is some j with (i, j) ∈ D and for any j

with min C(D) ≤ j ≤ max C(D) there is some i with (i, j) ∈ D. A principal diagram may be loosely

described as one without empty rows or columns.

We say that two diagrams D1 and D2 are equivalent if there are order-preserving bijections

θ : R(D1) → R(D2) and φ : C(D1) → C(D2) such that (i, j) ∈ D1 if, and only if, (iθ, jφ) ∈ D2.

Every equivalence class of diagrams has a principal diagram which is unique up to translations in Z2.
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We will usually assume without comment that a principal diagram has row indices {1, . . . , rD} and

column indices {1, . . . , cD}.
Let R(D) = {i1, i2, . . . , irD} and C(D) = {j1, j2, . . . , jcD}, where i1 < i2 < · · · < irD and j1 <

j2 < · · · < jcD . There are two compositions which are naturally associated with a diagram D, the

row-composition λD and the column-composition µD defined by λD,k = |{(i, j) ∈ D : i = ik}| for
k = 1, . . . , rD and µD,k = |{(i, j) ∈ D : j = jk}| for k = 1, . . . , cD. We write J(D) = J(λD) and

J ′(D) = J(µD), thereby associating two standard parabolic subgroups of W with the diagram D.

Let λ and µ be compositions. A diagram D with λD = λ and µD = µ will be called a (λ, µ)-diagram.

We will write D(λ,µ) for the set of principal (λ, µ)-diagrams. We denote by D(λ) the set
∪

µ⊨nD(λ,µ)

of principal diagrams with λD = λ .

It is easily seen D((2,1),(3)) = ∅. We have, however, the following criterion for D(λ,µ) ̸= ∅.

Result 10 (Gale-Ryser). (See [12, Theorem 1.4.17].) Let λ, µ ⊨ n. There is a diagram D with λD = λ

and µD = µ if, and only if, λ′′ ⊴ µ′ (or, equivalently, µ′′ ⊴ λ′).

A Young diagram is a diagram D for which λD is a partition and µD = λ′
D and its shape, which is

denoted by sh (D), is defined to be λD. A special diagram is a diagram obtained from a Young diagram

by permuting the rows and columns. We characterize special diagrams in the following proposition.

Proposition 3.1. (Compare [7, Lemma 5.2]) Let D be a diagram. The following statements are

equivalent. (i) D is special; (ii) λ′′
D = µ′

D; (iii) for every pair of nodes (i, j), (i′, j′) of D with i ̸= i′

and j ̸= j′, at least one of (i′, j) and (i, j′) is also a node of D.

Proof. (i) ⇒ (ii): Let E be the Young diagram corresponding to D. Then λE and µE are partitions,

µE = λ′
E , and λD and µD are compositions which are rearrangements of λE and µE , respectively.

Hence, λ′′
D = λE and µ′′

D = µE . So, λ
′′
D = µ′

E = µ′′′
D = µ′

D.

(ii) ⇒ (i), (iii): Let E be obtained from D by rearranging the rows and columns so that λE = λ′′
D

and µE = µ′′
D. Since µ′

E = µ′
D = λ′′

D = λE , E is a Young diagram. Hence, D is special.

Now suppose that (i, j) and (i′, j′) are nodes of D and in the rearrangement of D into E, the

quadruple (i, j), (i′, j′), (i, j′), (i′, j) maps to the quadruple (i, j), (i
′
, j

′
), (i, j

′
) and (i

′
, j). Then (i, j)

and (i
′
, j

′
) are nodes of E. If i < i

′
then (i, j

′
) is a node of E and if i

′
< i then (i

′
, j) is a node of E.

Hence, at least one of (i′, j) and (i, j′) is a node of D.

(iii) ⇒ (i): Construct diagram E from D as above. Then E clearly satisfies property (iii). Hence,

the nodes on any row (respectively, column) of E are in the same columns (respectively, rows) as the

nodes on the preceding row (respectively, column). So, E is a Young diagram and D is special. □

Since it is immediate that D(λ,λ′) consists of a single diagram if λ is a partition, it follows easily

that D(λ,µ) consists of a single special diagram if λ and µ are compositions with λ′′ = µ′.

A D-tableau is a bijection t : D → {1, . . . , |D|}. We refer to (i, j)t, where (i, j) ∈ D, as the (i, j)-

entry of t. In the case that the underlying diagram is a Young diagram, the tableau t is called a Young

tableau and its shape sh (t) is the shape of the underlying diagram.
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Now let D be a general diagram and let t be a D-tableau. The k-th row of t is the image of the

k-th row of D and the ℓ-th column of t is the image of the ℓ-th column of D. We denote by tk the

set of elements on the k-th row of t. We say t is row-standard if it is increasing on rows, that is, if

(i, j′), (i, j′′) ∈ D and j′ < j′′ then (i, j′)t < (i, j′′)t. Similarly, we say t is column-standard if it is

increasing on columns, that is, if (i′, j), (i′′, j) ∈ D and i′ < i′′ then (i′, j)t < (i′′, j)t. We say that

t is standard if (i′, j′)t < (i′′, j′′)t for any (i′, j′), (i′′, j′′) ∈ D with i′ ≤ i′′ and j′ ≤ j′′. Note that a

standard D-tableau is row-standard and column-standard, but the converse is not true, in general.

We illustrate these concepts with an example. The diagram {(1, 2), (1, 4), (3, 2), (4, 1), (4, 4), (4, 5),
(5, 0), (5, 1), (5, 4)} is equivalent to the principal diagram D = {(1, 3), (1, 4), (2, 3), (3, 2), (3, 4), (3, 5),
(4, 1), (4, 2), (4, 4)}. λD = (2, 1, 3, 3), µD = (1, 2, 2, 3, 1). A sketch of diagram D and three D-tableaux

t1, t2 and t3 are given in Table 1. The sketch of D is a pattern of ×’s describing to the relative

positions of its entries. The tableau t1 is row-standard but not column-standard, the tableau t2 is

row-standard and column-standard but not standard, and the tableau t3 is standard.

××
×

× ××
×× ×

4 9
7

3 5 6
1 2 8

3 5
9

1 6 7
2 4 8

2 4
6

1 7 8
3 5 9

D t1 t2 t3

Table 1. A diagram D with some D-tableaux

In the special case that λD = λ and µD = λ′, then D is a λ-diagram and any D-tableau is a

λ-tableau in the sense of [19].

The group W acts on the set of D-tableaux in the obvious way—if w ∈ W , an entry i is replaced

by iw and tw denotes the tableau resulting from the action of w on the tableau t. This action on

D-tableaux corresponds to the action by letter permutations of Dipper and James [8, p.21]. There are

two subgroups of W associated with a D-tableau t, the row group Rt consisting of those permutations

which map each row of t into itself, and the column group Ct which behaves similarly on columns.

We construct two special D-tableaux tD and tD. Let t
D be obtained by filling D with 1, . . . , |D| by

rows, filling rows from top to bottom and filling each row from left to right, and let tD be obtained

by filling D-diagram with 1, . . . , |D| by columns, filling columns from left to right and filling each

column from top to bottom. Both tD and tD are standard D-tableaux. Moreover, RtD = WJ(D) and

CtD = WJ ′(D). For each D-tableau t, we define an element wt ∈ W by tDwt = t. The row-form of wt

is obtained by concatenating the rows of t beginning at the top. In particular, we write wD for wtD ,

so that tDwD = tD.

For diagram D in Table 1, we have tD =

1 2
3

4 5 6
7 8 9

, tD =

4 6
5

2 7 9
1 3 8

and

wD = (1, 4, 2, 6, 9, 8, 3, 5, 7) and wD has row-form [4, 6, 5, 2, 7, 9, 1, 3, 8].
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Translating from [12] into the present context, we have the following more explicit characterization

of all the elements of XJ(D).

Result 11 ([8, Lemma 1.1]). Let D be a diagram. Then XJ(D) = {w ∈ W : tDw is row-standard}.

Lemma 3.2. If λ, µ ⊨ n and the diagrams D1, D2 ∈ D(λ,µ) are different then wD1 ̸= wD2.

Proof. From the hypothesis, D1 has a node (i, j) which is not a node of D2. Suppose tD1(i, j) = r.

Since µD1 = µD2 , r = tD2(i
′, j) for some i′ ̸= i. It follows that rw−1

D1
and rw−1

D2
are on the i-th and

i′-th rows of tD1 and tD2 , respectively. Since λD1 = λD2 , t
D1 and tD2 contain exactly the same entries

on corresponding rows. Hence, rw−1
D1

̸= rw−1
D2

. So, wD1 ̸= wD2 . □

If P , Q are subgroups of a group G and d ∈ G, the double coset PdQ is said to have the trivial

intersection property if d−1Pd ∩Q = {1} or, equivalently, every element of the double coset PdQ has

a unique representation of the form udv with u ∈ P and v ∈ Q.

Lemma 3.3. Let D be any diagram.

(i) The double coset WJ(λD)wDWJ(µD) has the trivial intersection property;

(ii) wD ∈ XJ(λD),J(µD);

(iii) wD is the unique element of minimum length in WJ(λD)wDWJ(µD);

(iv) l(uwDv) = l(u) + l(wD) + l(v) for all u ∈ WJ(λD) and v ∈ WJ(µD);

Proof. Since WJ(µD) is the column-group of tD and w−1
D WJ(λD)wD is the row-group of tD, (i) follows

immediately. From Result 11, wD ∈ XJ(λD). If D
′ denotes the diagram obtained from D by transpo-

sition, the equation tDwD = tD leads to tD′wD = tD
′
. So, w−1

D = wD′ ∈ XJ(µ), completing (ii). Using

Result 1, (iii) and (iv) follow. □

James and Kerber [12] associate with each double coset of a pair of Young subgroups a certain matrix

over the integers which is a (0, 1)-matrix if, and only if, the double coset has the trivial intersection

property by establishing the following two results.

Result 12 ([12, Lemma 1.3.8]). Let J,K ⊆ S, let λ, µ ⊨ n satisfy J(λ) = J and J(µ) = K, let

E ∈ D(λ) and F ∈ D(µ). and let g, h ∈ W . Then g ∈ WJhWK if, and only if, |tEi g ∩ tFk | = |tEi h ∩ tFk |
for all i and k, where ti denotes the set of entries in the ith row of a tableau t.

From Result 12, we see that the double cosetWJhWK is characterized by the matrix ZJ,K(h) = [zi,k],

where zi,k = |tEi h ∩ tFk | for all i and k. An immediate consequence is that each g ∈ WJhWK has

exactly
∏

i,k zi,k! expressions of the form g = uhv with u ∈ WJ and v ∈ WK and |WJhWK | =

(
∏

i λi!
∏

k µk!) /
(∏

i,k zi,k!
)
. So, WJhWK has the trivial intersection property if, and only if, Zλ,µ(h)

is a (0, 1)-matrix, and such a (0, 1)-matrix corresponds in an obvious way with a diagram D ∈ D(λ,µ)

whose nodes correspond to the positions of the 1’s in the matrix.

Result 13 ([12, Theorem 1.3.10 and Corollary 1.3.13]). With the notation of the preceding paragraph

and Result 12, the mapping WJhWK 7→ ZJ,K(h) establishes a bijection between the set of (WJ ,WK)
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double cosets in W and the set of n×n matrices with non-negative integer entries satisfying
∑

j zj,k =

µk and
∑

j zi,j = λi for all i and k.

Consequently, the number of (WJ ,WK) double cosets in W with the trivial intersection property

is equal to the number of (0, 1) matrices with whose i-th row-sum is λi and whose k-th column-sum

is µk for all i and k. Moreover, the double cosets WJwDWK , D ∈ D(λ,µ), are precisely the distinct

(WJ ,WK) double cosets with the trivial intersection property.

Let YJ(D) be the set of prefixes of wD. We show that this set is related to the set of standard

D-tableaux in an analagous way to the corresponding result when D is the diagram of a partition

which has been established in [8, Lemma 1.5]. We first need a technical lemma.

It will be convenient to say that a node (i′, j′) of a diagram is north-east of a node (i, j) if i′ < i

and j′ > j; we extend this notion to a tableau t by saying that an entry k′ is north-east of an entry k

if the node at which k′ occurs in t is north-east of the node at which k occurs. It is easy to see that

if t = tDw and k + 1 is north-east of k in t then l(wsk) < l(w).

Lemma 3.4. Let D be a diagram of size n, 1 ≤ k < n, and w ∈ W be such that tDw is a standard

D-tableau. Then l(wsk) < l(w) if, and only if, k+ 1 is north-east of k in tDw. In this case, tDwsk is

also a standard D-tableau.

Proof. First, suppose that l(wsk) < l(w). So, (k + 1)w−1 < kw−1. Let k and k + 1 occur in tDw at

the nodes (ak, bk) and (ak+1, bk+1), respectively.

Since tDw is standard, ak+1 < ak or bk+1 < bk. Since (k + 1)w−1 and kw−1 occur at the nodes

(ak+1, bk+1) and (ak, bk), respectively, of t
D, either ak+1 = ak and bk+1 < bk or ak+1 < ak. Hence,

ak+1 < ak and bk+1 > bk; that is, the node of k + 1 in tDw is north-east of the node of k.

The converse follows from the remarks preceding the lemma. It is immediate that tDwsk is also

standard in this case. □

Proposition 3.5 (Compare [8, Lemma 1.5]). Let D be a diagram. Then the mapping u 7→ tDu is a

bijection of the set YJ(D) of prefixes of wD to the set of standard D-tableaux.

Proof. If u is a proper prefix of wD, then us is a prefix of wD for some s ∈ S with l(us) = l(u) + 1.

Note first that tDwD is standard. By induction, tDus is standard. Hence, by Lemma 3.4, tDu is

standard.

Now, let u ∈ W be such that tDu is standard. Let (al, bl) be the node containing l, for l = 1, . . . , |D|.
Let Nu = {(l,m) : 1 ≤ l < m ≤ |D| and bl > bm} and nu = |Nu|. We argue, by induction on nu,

that u is a prefix of wD. If nu = 0 then, since tDu is standard, it must be tD. Hence, u = wD. Now

suppose nu > 0. Then, for some k with 1 ≤ k < |D|, bk > bk+1; for example, let k be the maximum

first coordinate of an element of Nu. Since tDu is standard, ak < ak+1. Hence, k + 1 is north-east of

k in tDusk. Thus, t
Dusk is standard and, by Lemma 3.4, l(usk) > l(u). So, u is a prefix of usk. Also,

Nusk ⊆ Nu and (k, k+1) ∈ Nu\Nusk . So, nusk < nu. By induction, usk is a prefix of wD. Hence, u is

a prefix of wD. □
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We now develop a simple algorithm for finding a reduced form for an element of YJ(D). This

algorithm is a special case of Algorithm A of [11], and it is a generalization of the algorithm given in

[19, Proposition 2.10].

Algorithm 1. Let w be a prefix of wD, where D is a principal diagram, let n = |D| and let t = tDw.

Then t is a standard D-tableau.

1. Let t0 = tD.

2. For i from 1 to n do the following:

2a. Let k(i) be the entry at the node of ti−1 which is occupied by i in t.

2b. Let gi = sk(i)−1 · · · si.
2c. Form ti from ti−1 by replacing each j satisfying i ≤ j ≤ k(i) − 1 by j + 1 and

replacing k(i) by i.

3. Note that tn = tn−1 = t and g1 · · · gn gives a reduced form for w if non-trivial factors

are replaced by the corresponding expressions in 2b and trivial factors are ignored.

We find a reduced form for w = [2, 4, 6, 1, 7, 8, 3, 5, 9] using Algorithm 1.

If D =

× ×
×

× × ×
× × ×

, then t = tDw is standard.

1 2
3

4 5 6
7 8 9

2 3
4

1 5 6
7 8 9

2 4
5

1 6 7
3 8 9

2 4
6

1 7 8
3 5 9

t0 t1 = t2 t3 = t4 t5 = t6 = t7 = t8 = t9 = t
We get g1 = s3s2s1, g2 = 1, g3 = s6s5s4s3, g4 = 1, g5 = s7s6s5, g6 = 1, g7 = 1, g8 = 1, g9 = 1, and

w = s3s2s1s6s5s4s3s7s6s5. The bold entry in each tableau indicates the next position to be ’correctly’

filled.

It is clear that other diagrams such as
× × ×

× × ×
× × ×

or
× × ×

× × ×
× × ×

could have been used in this case.

For all such diagrams, Algorithm 1 will find the same reduced form for w.

Proposition 3.6. Let D be a diagram of size n, let w be a prefix of wD and let t = tDw. Let g1, . . . , gn

be the elements defined by the preceding algorithm, where gi = sk(i)−1 · · · si. Then l(gi) = k(i)− i for

i = 1, . . . , n, and g1, . . . , gn gives a reduced form for w of length
∑n

i=1(k(i) − i) if factors which are

trivial are ignored.

Proof. By Proposition 3.5, t is a standard D-tableau. For i = 0, . . . , n, let t′i be the D-tableau formed

by placing 1, . . . , i at the same nodes as they occupy in t (their ‘ final’ positions) and by filling the

remaining nodes with i + 1, . . . , n, filling the currently unoccupied nodes on each row from left to

right and filling the rows from top to bottom, and define hi ∈ W by tDhi = t′i. Each t′i is a standard

D-tableau. We will show that t′i = ti for all i. Clearly, t
′
0 = tD = t0 and t′n−1 = t′n = t.

Suppose that i ≥ 1 and t′i−1 = ti−1. Thus, 1, . . . , i− 1 are in their final positions in ti−1. If i is not

in its final position, then that position is occupied by some k(i) > i. Only numbers from {1, . . . , i−1}
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occupy nodes west, north-west or north of that position. Hence, i, i + 1, . . . , k(i) − 1 are north-east

of k(i) in ti−1. Define the D-tableaux t
(j)
i−1 for j = k(i), . . . , i by t

(k(i))
i−1 = ti−1 and t

(j−1)
i−1 = t

(j)
i−1sj−1

for j ≥ i + 1, and define h
(j)
i−1 ∈ W by tDh

(j)
i−1 = t

(j)
i−1 for i ≤ j ≤ k(i). In particular, h

(k(i))
i−1 = hi−1.

As t
(j−1)
i−1 is obtained from t

(j)
i−1 by exchanging j with j − 1, which is on a higher row of t

(j)
i−1, we get

l(h
(j−1)
i−1 ) = l(h

(j)
i−1) + 1.

Moreover, ti = t
(i)
i−1 and this is clearly t′i. This completes the induction showing that ti = t′i. Thus,

hi = h
(i)
i−1 = h

(k(i))
i−1 sk(i)−1 · · · si = hi−1gi and l(hi) = l(hi−1) + k(i) − i. So, w = hn = g1 · · · gn since

h0 = 1 and l(w) =
∑n

i=1 k(i) − i and the expression for w given by g1 · · · gn with trivial gi’s ignored

and non-trivial gi’s replaced by the corresponding words sk(i)−1 · · · si is necessarily reduced. □

We make some observations about the elements wD ∈ W , where D is a diagram of size n. Our first

lemma shows that every element in XJ(λ), where λ is a composition, has this form. Since XJ((1n)) = W ,

every element of W has this form. In general, an element of W will have an expression of the form

wD for many different diagrams D of size n.

Recall that we denote by D(λ) the set of principal diagrams with λD = λ.

Proposition 3.7. Let λ ⊨ n and let d ∈ XJ(λ). Then d = wD for some diagram D ∈ D(λ).

Proof. We need to show that there is a diagram D ∈ D(λ) such that tDd = tD. To construct such a

D, start with any diagram D̃ such that λD̃ = λ and form the tableau tD̃d. Suppose that symbol i

appears in row ri of t
D̃d. For each symbol i, i = 1, . . . , n we introduce in that order, a corresponding

node of D at position (ai, bi), where ai = ri (in particular ai = aj if ri = rj) as follows: The node

of D corresponding to symbol 1 is at position (r1, 1). Suppose that 1 ≤ k < n and that we have

already introduced nodes of D at positions (a1, b1),. . . , (ak, bk) corresponding to the symbols 1, . . . , k.

If rk+1 > rk then introduce the node of D corresponding to symbol k + 1 at position (rk+1, bk),

otherwise introduce the node of D corresponding to symbol k + 1 at position (rk+1, bk + 1). The fact

that tD̃d is row-standard, ensures that in the above construction, for each j ≥ 1 the jth row of tD̃d

not only contains exactly the same entries as the jth row of tDd but also that these entries appear in

precisely the same order. Consequently, tDd = tD and d = wD. □

For d ∈ XJ(λ), denote by D(d, λ) the diagram D satisfying λD = λ and d = wD constructed in the

proof of Proposition 3.7. Also, let D(λ)
d be the set of principal diagrams D ∈ D(λ) for which wD = d.

We will see in Proposition 3.8 that D(d, λ) is an optimal diagram in this set.

Proposition 3.8. Let λ ⊨ n, let d ∈ XJ(λ), let D = D(d, λ) and let E ∈ D(λ)
d . Then the set of columns

of E may be partitioned into sets of consecutive columns so that, for j ≥ 1,

(i) for any two columns in the j-th set, the nodes in the column with lesser column index

have row indices which are less than all the indices of the nodes in the column with

greater column index;

(ii) the row indices of the nodes occurring in columns of the j-th set are precisely the row

indices of the nodes in the j-th column of D.

In particular, D is the unique diagram in D(λ)
d with the minimum number of columns.
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Proof. Since wE = d = wD and D,E ∈ D(λ), the tableaux tE and tD have the same entries on each

row. Clearly, 1 is the leading entry in the first column in both tD and tE . Let j ≥ 1 and let k be the

leading entry in the j-th column of tD and let l be the final entry of that column. Let i and i′ be the

row indices of k and l, respectively, in tD. If k > 1, then k− 1 appears on the (i− 1)-th column of tD

and its row index is at least i, by the construction of D. Hence, k is the leading entry in the column

containing it in tE . Let this column be the j′-th column. Again from the construction of D, if l < n

then l+ 1 is on the (j + 1)-th column of tD and its row index is at most i′. Hence, l is the final entry

in the column containing it in tE . Let this column be the j′′-th column.

In the construction of wE from E, the numbers k,. . . , l have increasing row indices and non-

decreasing column indices. The association of the j-th column of D and the consecutive columns of

E from the j′-th to the j′′-th has the properties described in the statement of the lemma. □

4. Hecke algebra module homomorphisms

For the rest of the paper we takeW to be the symmetric group Sn and S = {(i, i+1): i = 1, . . . , n−1}
and consider Sn to act on the right of the set {1, . . . , n}.

If λ ⊢ n, let T(λ) be the set of standard λ-tableaux. We recall the Robinson-Schensted bijection

(see, for example Sagan [20]) which is a bijection from the set of pairs of standard tableaux of the same

shape to the set of elements of the symmetric group. Following Geck [10], we write πλ(P,Q) for the

element of W corresponding to the tableaux pair (P,Q) where P,Q ∈ T(λ). If w = πλ(P,Q), we say

that λ is the shape of w and denote it by sh (w). As, unlike Geck, our action of W on {1, . . . , n} is on

the right, his explicit description of left and right cells of W becomes our description of right and left

cells, respectively. Geck in [10] gives an algebraic proof for the description of Kazhdan-Lusztig cells

in Weyl groups of type A, which was sketched by Kazhdan and Lusztig in [13] and proved completely

by Ariki in [1] using the methods of [13]. The description in [10, Corollary 5.6] is that a right cell of

W is the set of elements πλ(P,Q) with Q fixed, a left cell of W is the set of elements πλ(P,Q) with

P fixed, and a two-sided cell of W is the set of elements πλ(P,Q) with λ fixed—the latter is denoted

by R(λ′).

In the course of his proof, Geck also gives an algebraic proof of the fact (see [10, Theorem 5.3]) that

if two elements of the symmetric group are in the same two-sided cell and comparable in the right

preorder ≤R then they are in the same right cell. This was first proved by Lusztig in [15] using the

deep connection between cells and primitive ideals in universal enveloping algebras and later extended

by him in [17] to finite and affine Weyl groups using a geometric interpretation of the Kazhdan-Lusztig

basis. Moreover, in [13, §5] it is proved that, if C, C1 are two right cells contained in the same R(λ)

then the H-modules SC and SC1 are isomorphic (see also [10, Corollary 5.8]).

Now, recall the definitions of xλ, yλ in [8, p.29] where λ ⊨ n and J(λ) is the subset of S corresponding

to λ, and some easy consequences obtained using the multiplication rules (2.1).

(4.1) xλ =
∑

w∈WJ(λ)

Tw; yλ =
∑

w∈WJ(λ)

(−q)−l(w)Tw;
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and

(4.2) Tsxλ = qxλ = xλTs; Tsyλ = −yλ = yλTs; y2λ = yλ
∑

w∈WJ(λ)

q−l(w).

if λ ̸= (1n) and s ∈ J(λ). If λ = (1n), then J(λ) = ∅, WJ(λ) = 1 and xλ = yλ = T1. The H-modules

xλH and yλH are free right H-modules.

In the notation of [18, Section 3],

(4.3) xλ = q(1/2)l(wJ(λ))C ′
wJ(λ)

and yλ =
(
−q−1/2

)l(wJ(λ))
CwJ(λ)

Theorem 4.1 (Compare [8, Theorem 3.3]). Let λ, µ ⊨ n and let D ∈ D(λ,µ). Then

(4.4) xλTwDyµ =
∑

u∈WJ(λ)

∑
v∈WJ(µ)

(−q)−l(v)TuwDv.

Also, the set {xλTwDyµ : D ∈ D(λ,µ)} is F -linearly independent in H of size |D(λ,µ)|.

Proof. For each u ∈ WJ(λ) and v ∈ WJ(µ), TuTwDTv = TuwDv since l(uwDv) = l(u) + l(wD) + l(v) by

Lemma 3.3 (iii). Equation (4.4) follows immediately.

If D1, D2 ∈ D(λ,µ) and D1 ̸= D2 then WJ(λ)wD1WJ(µ) ̸= WJ(λ)wD2WJ(µ) by Lemmas 3.2 and

3.3 (ii). Hence, WJ(λ)wD1WJ(µ) ∩WJ(λ)wD2WJ(µ) = ∅. So, the sets of T -basis elements occurring in

xλTwD1
yµ and xλTwD2

yµ with non-zero coefficients are disjoint. Hence, the set {xλTwDyµ : D ∈ D(λ,µ)}
is F -linearly independent in H and has |D(λ,µ)| elements. □

In the context of Proposition 2.2, we may take e = yµ, f = xλ and k =
∑

w∈WJ(µ)
q−l(w). Then

k ̸= 0 and φh ∈ HomHF
(yµHF , xλHF ) is now the homomorphism given by left multiplication by

xλhyµ. In the particular case that h = TwD , we will write φD for φh.

Theorem 4.2 (Compare [8, Theorem 3.4]). Let λ, µ ⊨ n. Then {φD : D ∈ D(λ,µ)} is an F -basis of

HomHF
(yµHF , xλHF ) and {xλTwDyµ : D ∈ D(λ,µ)} is an F -basis of xλHF yµ.

Proof. By [8, Theorem 3.3 (ii)], dimF HomHF
(yµHF , xλHF ) is the number of (WJ(λ),WJ(µ)) double

cosets with the trivial intersection property (recall that our q here is an indeterminate), and this is

|D(λ,µ)| by Result 13. It suffices to show that {φD : D ∈ D(λ,µ)} is linearly independent. Suppose now

that D(λ,µ) = {D1, . . . , Dr} and that α1φD1 + · · ·+ αrφDr = 0 (αi ∈ F ). Then 0 = yµ(α1φD1 + · · ·+
αrφDr) = α1xλTwD1

yµ + · · ·+ αrxλTwDr
yµ. By Theorem 4.1, α1 = · · · = αr = 0. This establishes the

first basis.

By Proposition 2.2 and its proof, the mapping θ : xλHF yµ → HomHF
(yµHF , xλHF ) given by

xλhyµ 7→ φh, h ∈ HF , is an isomorphism of F -spaces. Since xλTwDyµθ = φD for D ∈ D(λ,µ),

the second basis is established. □

Combining Result 10 (Gale-Ryser) with Theorem 4.2 we get the following corollary.

Corollary 4.3 (Compare [8, Lemma 4.1]). Let λ, µ ⊨ n. Then
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(i) xλHF yµ ̸= 0 if, and only if, λ′′ ⊴ µ′;

(ii) If, in addition, λ′′ = µ′ and w ∈ W satisfies xλTwyµ ̸= 0, then xλTwyµ =

±qixλTwDyµ ̸= 0 for some non-negative integer i and some uniquely determined

diagram D with λD = λ and µD = µ and w ∈ WJ(λ)wDWJ(µ).

Proof. (i) From Theorem 4.2, xλHF yµ ̸= 0 if, and only if, the set D(λ,µ) ̸= ∅. Result 10 now gives the

desired result.

(ii) Since µ′′ = λ′, there is a unique diagram D with λD = λ and µD = µ. By Theorem 4.1,

xλTwDyµ ̸= 0. By Theorem 4.2, {xλTwDyµ} is a basis of the 1-dimensional F -space xλHF yµ.

Using Result 1, there is a unique d ∈ XJ(λ),J(µ) which is in WJ(λ)wWJ(µ). Hence w = u′dv′ with

u′ ∈ WJ(λ) and v′ ∈ WJ(µ). Now, xλTwyµ = ±qixλTdyµ. Since xλTwyµ is a non-zero element of

xλHF yµ, it is a non-zero multiple of xλTwDyµ. So Td = TuwDv for some u ∈ WJ(λ) and v ∈ WJ(µ).

Hence, d = wD and the result follows. □

Remark 4.4. (i) From Result 13, we see that there is a natural bijection from D(λ,µ) to the set of

(WJ ,WK) double cosets with trivial intersection property, where J and K are the subsets of S with

λ(J) = λ and λ(K) = µ. So, dimF xλHF yµ is the number of such double cosets. In particular, if

λ, µ ⊨ n with λ′′ = µ′, we see that there exists a unique (WJ(λ),WJ(µ)) double coset with the trivial

intersection property.

(ii) Let ν = (ν1, . . . , νr) be an r-part composition of n and let µ be a composition of n which is a

rearrangement of ν. Let π be a permutation of {1, . . . , r} such that νi = µiπ for i = 1, . . . , r. Define

g ∈ W by g : ν1 + ν2 + · · ·+ νi−1 + j 7→ µ1 + µ2 + · · ·+ µiπ−1 + j, for 1 ≤ i ≤ r and 1 ≤ j ≤ νi. Then

g−1J(ν)g = J(µ), in particular we see that the subsets J(µ) and J(ν) of S are in the same Coxeter

class. It also follows easily that g−1WJ(ν)g = WJ(µ).

Following [8], we write Mλ
F = xλHF and Sλ

F = xλTwDyλ′HF , where D is the unique diagram in

D(λ,λ′), and recall that MF,wJ(λ)
= CwJ(λ)

HF = yλHF . The HF -module Sλ
F is a called a Specht module.

In view of the preceding corollary, Sλ
F is a non-zero HF -module and Sλ

F = xλHF yλ′HF also. Suppose

now that µ ⊨ n and µ is a rearrangement of λ′ and let E be the unique diagram in D(λ,µ). As in the

proof of [8, Lemma 4.3], there is an element d ∈ XJ(µ),J(λ′) with d−1WJ(µ)d = WJ(λ′) and, consequently,

T−1
d yµTd = yλ′ . So, xλTwEyµHF = xλHF yµHF = xλHF yλ′HF = Sλ

F . Since HF is semisimple by [9,

Theorem 4.3], it is then easy to see that Sλ
F is the unique common constituent of xλHF and yµHF .

The following lemma and theorem collect together certain useful relations between some of the HF -

modules mentioned above. They essentially extend [18, Lemma 3.4 and Theorem 3.5] to compositions.

Lemma 4.5. Let λ, µ ⊨ n with λ′′ = µ′. Then Sλ
F
∼= S•

F,wJ(λ)

∼= SF,wJ(µ)
as HF -modules. In particular

SF,wJ(µ)
is the unique common constituent of MF,wJ(µ)

and Mλ
F .

Proof. Using Sagan [20, Theorem 3.2.3] and [10, Corollary 5.6], we see that w0wJ(λ) ∼LR wJ(λ′). More-

over, in view of Remark 4.4(ii) and Proposition 2.1, we get wJ(λ) ∼LR wJ(µ). By [10, Corollary 5.8],

SF,w0wJ(λ)
∼= SF,wJ(λ′)

∼= SF,wJ(µ)
. Hence, S•

F,wJ(λ)

∼= SF,wJ(µ)
since SF,w0wJ(λ)

∼= S•
F,wJ(λ)

by Result 9. It
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follows that SF,wJ(µ)
is a composition factor of both yµHF (= MF,wJ(µ)

) and xλHF (= Mλ
F ). But, as we

have seen, Sλ
F is the unique common constituent of xλHF and yµHF . This completes the proof. □

Theorem 4.6. Let λ, µ ⊨ n and suppose that λ′′ = µ′. Let D be the unique diagram in D(λ,µ). Then

φD is an HF -module homomorphism with kerφD = M̂F,wJ(µ)
and induces a natural isomorphism

between SF,wJ(µ)
and Sλ

F . Moreover, the set {xλTwDCu : u ∈ C(µ)} is an F -basis for Sλ
F .

Proof. By Corollary 4.3, xλHF yµ ̸= 0. By definition, the image of φD is Sλ
F . Moreover, M̂F,wJ(µ)

⊆
kerφD, since otherwise M̂F,wJ(µ)

would have a composition factor isomorphic to Sλ
F contrary to

Lemma 4.5. Hence, {xλTwDCw : w ∼R wJ(µ)} is an F -spanning set for Sλ
F . Since dimF Sλ

F =

dimF SF,wJ(µ)
= |C(µ)|, this F -spanning set is an F -basis. Finally, considering dimensions, we ob-

tain M̂F,wJ(µ)
= kerφD as required. □

We close this section by establishing the following result which will turn out to be useful in the next

section.

Proposition 4.7. Let λ, µ ⊨ n with λ′′ = µ′ and let d ∈ XJ(λ). Then statements (i), (ii) and (iii)

below are equivalent to one another and any one of them implies statement (iv).

(i) C ′
wJ(λ)d

HF yµ ̸= 0;

(ii) (C ′
wJ(λ)d

HF yµ)HF = Sλ
F ;

(iii) Sλ
F ( ∼= S•

F,wJ(λ)

∼= SF,wJ(µ)
) is the unique common composition factor of C ′

wJ(λ)d
HF

and yµHF ;

(iv) wJ(λ)d ∼R wJ(λ).

Proof. (i)⇒(ii): From Result 8, C ′
wJ(λ)d

= C ′
wJ(λ)

h for some h ∈ HF . Hence, (i) implies that

(C ′
wJ(λ)d

HF yµ)HF is a non-zero HF -submodule of the irreducible HF -module (C ′
wJ(λ)

HF yµ)HF = Sλ
F .

Hence, (ii) follows.

(ii)⇒(iii): (ii) implies that Sλ
F is an HF -submodule of C ′

wJ(λ)d
HF ⊆ xλHF and a homomorphic

image of yµHF . Since HomHF
(yµHF , xλHF ) is 1-dimensional as an F -space by Theorem 4.2 and HF

is semisimple by [9, Theorem 4.3], (iii) follows.

(iii)⇒(i): Semisimplicity of HF together with (iii) imply that dimF HomHF
(yµHF ,

C ′
wJ(λ)d

HF ) ̸= 0. Now, (i) follows from Proposition 2.2, taking e = yµ and f = C ′
wJ(λ)d

.

(iii)⇒(iv): d ∈ XJ(λ) implies wJ(λ)d ≤R wJ(λ). Also, C
′
wJ(λ)d

HF ⊆ MF,wJ(λ)
ȷ. Since Sλ

F
∼= S•

F,wJ(λ)

∼=
MF,wJ(λ)

ȷ/M̂F,wJ(λ)
ȷ, (iii) implies that C ′

wJ(λ)d
̸∈ M̂F,wJ(λ)

j. Hence, wJ(λ)d ̸<R wJ(λ). So, (iv) follows.

□

5. Double cosets and elements of parabolic cells

In this section, we investigate how far the elements of minimum length in (WJ(λ), B) double cosets

with the trivial intersection property (where B is a subgroup of W conjugate to WJ(λ′)) can help us

to determine reduced forms for the elements in the parabolic cell C(λ), where λ ⊨ n. Recall from
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Result 4 that C(λ) ⊆ wJ(λ)XJ(λ). Also, if d ∈ XJ(λ) then d = wD for some diagram D with λD = λ,

by Proposition 3.7, and Algorithm 1 gives a method of obtaining a reduced form for d.

As in [19], we say that w ∈ W has a decreasing cover of type ν if ν ⊢ n and the row-form of w has

disjoint decreasing subsequences C1, C2, . . . such that (|C1|, |C2|, . . .) = ν. We define an increasing

cover of type ν in a similar manner.

From [20, Theorem 3.7.3], we see that if w ∈ W has an increasing cover of type ν and a decreasing

cover of type ν ′ for some ν ⊢ n, then sh (w) = ν.

Now suppose that D is a special diagram with λD = λ (and µ′′
D = λ′). Then it is easy to see

wJ(λ)wD has a decreasing cover of type λ′′ and an increasing cover of type λ′. So, sh (wJ(λ)wD) = λ′.

Hence, wJ(λ)wD ∈ R(λ′′). Since wJ(λ) ∈ R(λ′′) also, and wJ(λ)wD ≤R wJ(λ) from Result 4, we get

wJ(λ)wD ∼R wJ(λ) (see the discussion at the beginning of Section 4). Note that, by Lemma 3.2,

wD is the unique element of minimum length the double coset WJ(λ)wDWJ(µD), which has the trivial

intersection property, and WJ(µD) is standard parabolic and of type λ′, since µ′′
D = λ′. In particular,

WJ(µD) is conjugate in W to WJ(λ′).

Now let Z(λ) = {d ∈ XJ(λ) : wJ(λ)d ∈ C(λ)} and let Ẑ(λ) = {d ∈ W : d is a prefix of wD for

some special diagram D with λD = λ}. In the foregoing remarks, we have established the following

proposition.

Proposition 5.1. Let λ ⊨ n. Then Ẑ(λ) ⊆ Z(λ).

In the case that λ is a partition, Ẑ(λ) = Z(λ) by [18, Lemma 3.3(iv)]. We also get Ẑ(λ) = Z(λ) for

some other compositions in the next two propositions.

Proposition 5.2. Let λ ⊨ n and suppose that λ is a rearrangement of a hook partition. Then

Ẑ(λ) = Z(λ).

Proof. Assume the hypothesis. Suppose that λ has r parts and that all parts of λ, except possibly the

kth part, are equal to 1. Let d ∈ Z(λ). We will show that d ∈ Ẑ(λ) by constructing a special tableau

D′ with λD′ = λ such that d is a prefix of wD′ . Set D = D(d, λ).

Since wJ(λ)d ∼R wJ(λ), sh (wJ(λ)d) = sh (wJ(λ)) = λ′. By [20, Theorem 3.5.2], the row form of

wJ(λ)d, obtained by concatenating the rows of tDwJ(λ)d, has an increasing subsequence of length r.

Since a row in tDwJ(λ)d is strictly decreasing, an increasing subsequence of length r must contain one

entry from each row. Hence, there is a sequence (1, l1),. . . , (r, lr) of nodes of D, all but one uniquely

determined, so that the corresponding sequence of entries (i, li)tD (i = 1, . . . , r) of tD is increasing.

Since tD is a standard tableau the sequence li, (i = 1, . . . , r), is weakly increasing.

Form a new tableau t′ from tD by first moving the entry at the node (i, li) to the node (i, lk) for

1 ≤ i ≤ r and i ̸= k, and then removing any empty columns. Let D′ be the underlying diagram of t′.

Then D′ is a (principal) special diagram with λD′ = λ and t′ is a standard D′-tableau. As t′ = tD
′
d,

we conclude that d is a prefix of wD′ , as required. □

If D′ is as in the proof of Proposition 5.2, let l = lk; that is, the l-th column of D′ has r nodes, all

other columns have one node, the k-th row has n− r+1 nodes and all other rows have one node. Any
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standard D′ tableau necessarily has the entry k+ l−1 at the (k, l) node, and the entries 1, . . . , k+ l−2

at the nodes in the first k − 1 rows and those on the k-th row up to the (l − 1)-th column.

Now let w be a prefix of wD′ and let t = tD
′
w. Then t is standard. Let m1, . . . ,ml−1 denote the

entries in t at nodes (k, 1), . . . , (k, l − 1), respectively, and let m′
1, . . . ,m

′
r−k denote the entries in t at

nodes (k + 1, l), . . . , (r, l), respectively. Then i ≤ mi for 1 ≤ i ≤ l − 1 and k + l + i − 1 ≤ m′
i for

1 ≤ i ≤ k − r. Note that

s1 · · · sm1−1s2 · · · sm2−1 · · · sl−1 · · · sml−1−1sl+k · · · sm′
1−1sl+k+1 · · · sm′

2−1 · · · sl+r−1 · · · sm′
r−k−1

is a reduced form for w if trivial factors are removed (apply Algorithm 1).

Proposition 5.3. If λ = (r, t, s) with r ≥ s > t ≥ 1, then Ẑ(λ) = Z(λ).

Proof. Then λ′ = (3t, 2s−t, 1r−s). Let d ∈ Z(λ). Then sh (wJ(λ)d) = sh (wJ(λ)) = λ′. By repeated ap-

plication of [20, Theorem 3.7.3], we find that the row-form of wJ(λ)d has an increasing cover C1, . . . , Cr

be of type λ′. [First, it has an increasing subsequence of length 3; then it has a 2-increasing subsequence

of length 6 or 5 in which both subsequences have length at most 3; etc.]

Let D = D(d, λ). Since the rows of tD correspond to decreasing subsequences in the row-form of

wJ(λ)d, an increasing subsequence has elements from different rows and in columns which are non-

strictly increasing. Clearly, the elements on the second row appear in the t increasing subsequences

of length 3. Since the s − t increasing subsequences consist of an element on the first row and an

element on the third row, the r − s subsequences of length 1 involve only elements on the first row.

We may choose the cover described above so that C1, . . . , Cs are the subsequences of lengths at least

2 and their first row nodes (1, j1), . . . , (1, js) satisfy j1 < . . . < js. Moreover, replacing the cover by

another if necessary, we may assume that their third row nodes (3, j′1), . . . , (3, j
′
s) satisfy j′1 < · · · < j′s

and ji ≤ j′i for i = 1, . . . , s. Let Ck1 , . . . , Ckt be the subsequences of length 3. Again, replacing the

cover by another if necessary, we may assume that their second row nodes (3, j′′k1), . . . , (3, j
′′
kt
) satisfy

j′k1 < · · · < j′kt and jki ≤ j′′ki ≤ j′ki for i = 1, . . . , s.

If D′ denotes the diagram obtained from D by moving the nodes of Ck into the jk-th column, then

D′ is a special diagram with λD′ = λ and tD
′
d is a standard D′-tableau. So, d is a prefix of wD′ .

Thus, Z(λ) ⊆ Ẑ(λ) and the opposite inclusion is true by Proposition 5.1. □

However, there are compositions λ for which Ẑ(λ) ̸= Z(λ); for example, if λ = (2, 1, 1, 2) then

Z(λ) = {1, (2, 3), (4, 5), (2, 4, 3), (3, 4, 5), (2, 3)(4, 5), (2, 3, 4, 5), (2, 4, 5, 3), (2, 5, 4, 3)} and the two

special diagrams have corresponding wD which are (2, 5, 4, 3) and (2, 3, 4, 5) and whose non-trivial

prefixes are (2, 3), (2, 4, 3), (4, 5), and (3, 4, 5). Thus, Z(λ)\Ẑ(λ) = {(2, 3)(4, 5), (2, 4, 5, 3)}. Note also

that d = (2, 3)(4, 5) is the unique element of shortest length in the double coset WJ(λ)de
−1WJ(λ′)e,

where e = (3, 5)(4, 6), and this double coset has the trivial intersection property. But there is no

corresponding result for d = (2, 4, 5, 3).

One of our main aims in this section is to prove the following theorem which provides a subset of

Z(λ) which is often larger than Ẑ(λ) but may still be smaller than Z(λ). Before proving the theorem,

we need to establish a preliminary lemma.
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Theorem 5.4. Let d ∈ XJ(λ) where λ ⊨ n. Suppose further that there exists e ∈ W such that the

double coset WJ(λ)d(e
−1WJ(λ′)e) has the trivial intersection property and d is an element of minimum

length in this double coset. Then d ∈ Z(λ).

For the rest of the paper, let h 7→ h denote the specialization of HF determined by q
1
2 7→ 1. Then

HF is the group algebra FW and for w ∈ W we may write Tw as w. So, xλ =
∑

w∈WJ(λ)
w and yλ′

=
∑

w∈WJ(λ′)
(−1)−l(w)w.

Lemma 5.5. Let λ, µ ⊨ n with λ′′ = µ′, and let c, e ∈ W . Then

(i) There exists a unique (WJ(λ), e
−1WJ(µ)e) double coset with the trivial intersection

property.

(ii) The double coset WJ(λ)c(e
−1WJ(µ)e) has the trivial intersection property if, and only

if, x̄λc(e
−1ȳµe) ̸= 0.

Proof. (i) Since by Remark 4.4(i) there is a unique (WJ(λ),WJ(µ)) double coset with the trivial inter-

section property and the map w 7→ we maps the set of (WJ(λ),WJ(µ)) double cosets bijectively to the

set of (WJ(λ), e
−1WJ(µ)e) double cosets, mapping each double coset to one of the same size, there is a

unique (WJ(λ), e
−1WJ(µ)e) double coset with the trivial intersection property.

(ii) From the proof of (i), the double coset WJ(λ)c(e
−1WJ(µ)e) has the trivial intersection property

if, and only if, the double coset WJ(λ)(ce
−1)WJ(µ) has the trivial intersection property. Let D be the

unique diagram in D(λ,µ). Since WJ(λ)wDWJ(µ) is the unique (WJ(λ),WJ(µ)) double coset with the

trivial intersection property, we get that WJ(λ)(ce
−1)WJ(µ) has the trivial intersection property if, and

only if, WJ(λ)(ce
−1)WJ(µ) = WJ(λ)wDWJ(µ). That is, if, and only if, ce−1 = uwDv, for some u ∈ WJ(λ)

and v ∈ WJ(µ) (since clearly ce−1 ∈ WJ(λ)(ce
−1)WJ(µ)).

For any w ∈ W , T̄w = w. If ce−1 = uwDv, as above, then x̄λ(ce
−1)ȳµ = ±x̄λwDȳµ ̸= 0 from

equation (4.2). Hence, x̄λc(e
−1ȳµe) ̸= 0.

Conversely, suppose that x̄λc(e
−1ȳµe) ̸= 0. Then, x̄λ(ce

−1)ȳµ ̸= 0. So, xλTce−1yµ ̸= 0. Hence,

ce−1 ∈ WJ(λ)wDWJ(µ) from Corollary 4.3. This completes the proof of the lemma. □

Proof of Theorem 5.4. In view of Proposition 4.7 it suffices to show that C ′
wJ(λ)d

Te−1CwJ(λ′)

̸= 0. From Result 8, for any J ⊆ S, C ′
wJd

= C ′
wJ

∑
w∈XJ , w≤d(−1)l(w)awTw, where aw ∈ A for

w ≤ d, and ad is a power of q
1
2 . Let J = J(λ) and y = Te−1CwJ(λ′)Te. Then

(5.1) C ′
wJ(λ)d

Te−1CwJ(λ′)Te = (−1)l(d)adC
′
wJ(λ)

Tdy +
∑

w∈XJ(λ), w<d

(−1)l(w)awC
′
wJ(λ)

Twy

Since xλ and yλ′ are non-zero multiples of C ′
wJ(λ)

and CwJ(λ′) , respectively, by (4.3), the

righthand side of equation (5.1) becomes a non-zero multiple of (−1)l(d)xλdy +∑
w∈XJ , w<d(−1)l(w)aw xλwy, as ad = 1, and y is a non-zero multiple of e−1yλ′e.

Hence, in order to show that the right hand side of equation (5.1) is non-zero, it is enough to show

that x̄λdȳ ̸= 0 and x̄λwȳ = 0 whenever w ∈ XJ(λ) and w < d.

Set V = e−1WJ(λ′)e. By hypothesis, WJ(λ)dV has the trivial intersection property. Hence, xλdy ̸= 0

by Lemma 5.5(ii). However, for any w < d, since l(w) < l(d) and d has minimum length inWJ(λ)dV , we
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haveWJ(λ)wV ̸= WJ(λ)dV . By Lemma 5.5(i), WJ(λ)wV does not have the trivial intersection property.

Hence, xλwy = 0 by item (ii) of the same lemma. So, from equation (5.1), C ′
wJ(λ)d

Te−1CwJ(λ′)Te ̸= 0.

Hence, C ′
wJ(λ)d

Te−1CwJ(λ′)Te ̸= 0. So, C ′
wJ(λ)d

Te−1CwJ(λ′) ̸= 0. □

We illustrate Theorem 5.4 with the example λ = (2, 1r, 2), where r ≥ 2. First note that, by [10,

Corollary 5.6], |C(λ)| = (r + 1)(r + 4)/2. With d′ = wD′ and d′′ = wD′′ , where tD′ and tD′′ are the

tableaux described in Table 2, Proposition 5.1 shows that d′, d′′ and all their prefixes are in Z(λ).

Since each of d′ and d′′ have r+1 proper prefixes and they have one prefix in common, these elements

account for 2r + 3 elements of Z(λ).

1 r + 3

2
...

r + 1

r + 2 r + 4

1 3

4
...

r + 3

2 r + 4

1 i+ 2
...

i

i+ 3
...

i+ 1 r + 4

1 i+ 1
...
i

i+ 2
...

j − 2
j
...

j − 1 r + 4

tD′ tD′′ tDi tDi,j

Table 2. Tableaux relating to C((2, 1r, 2))

Now let di = wDi , 2 ≤ i ≤ r, and di,j = wDi,j , 2 ≤ i ≤ j − 3 ≤ r, where tDi and tDi,j are the

tableaux described in Table 2.

If e ∈ W satisfies {1, . . . , r + 2}e = {1, . . . , r + 4} \ {i + 1, j − 1} then it is easy to see, by con-

sidering the action on tDi,j , that di,j is the unique element of minimum length in the double coset

WJ(λ)di,j(e
−1WJ(λ′)e) and that di,j has a unique expression of the form udi,jv where u ∈ WJ(λ) and

v ∈ e−1WJ(λ′)e. Hence, this double coset has the trivial intersection property. By Theorem 5.4,

d ∈ Z(λ). This contributes a further r(r − 1)/2 elements to Z(λ). Nothing further is contributed by

their prefixes since each prefix of di,j is either di′,j′ for some i′ and j′ or is a prefix of d′ or d′′. Indeed,

an easy calculation shows that di,j+1 and di−1,j are prefixes of di,j .

The remaining elements of Z(λ) in this case are the elements di, 2 ≤ i ≤ r. None of these are of

minimum length in the double cosets of the form WJ(λ)di(e
−1WJ(λ′)e), e ∈ W , which have the trivial

intersection property. So, Theorem 5.4 does not apply to them.

Now let e ∈ W and let d ∈ XJ(λ) where λ ⊨ n. Also set T (d, e) = {c ∈ XJ(λ) : c ≤ d and

WJ(λ)c(e
−1WJ(λ′)e) has the trivial intersection property}. It is easy to see using Proposition 4.7

that C ′
wJ(λ)d

(e−1ȳλ′e) ̸= 0 implies that d ∈ Z(λ). This is because C ′
wJ(λ)d

(e−1ȳλ′e) ̸= 0 implies

C ′
wJ(λ)d

Te−1yλ′Te ̸= 0 which, in turn, implies that C ′
wJ(λ)d

Te−1yλ′ ̸= 0. Working as in the proof of
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Theorem 5.4, compare in particular with the discussion before equation (5.1), we can use Result 8

in order to express C ′
wJ(λ)d

(e−1ȳλ′e) as a sum
∑

c∈XJ(λ), c≤d ᾱcx̄λc(e
−1ȳλ′e) where αc ∈ A (note that

ᾱc = (−1)l(c)āc in the notation of the above proof). Invoking Lemma 5.5(ii), we see that this last sum

in fact equals
∑

c∈T (d,e) ᾱcx̄λc(e
−1ȳλ′e).

Observe that in the special case the double coset WJ(λ)d(e
−1WJ(λ′)e) has the trivial intersection

property and d is an element of minimum length in this double coset (that is, when the hypothesis of

the Theorem 5.4 is satisfied) we have T (d, e) = {d}. This is because for all c ∈ XJ(λ) with c < d we

have WJ(λ)c(e
−1WJ(λ′)e) ̸= WJ(λ)d(e

−1WJ(λ′)e). Recalling that ᾱd ̸= 0, we see that there is precisely

one non-zero term in the last sum mentioned above.

Next we consider more closely the situation when |T (d, e)| = 1, so T (d, e) = {x} for some x ∈ W

but now we allow for the possibility x ̸= d. Clearly the condition ᾱx ̸= 0 implies that again there is

precisely one non-zero term in the sum
∑

c∈T (d,e) ᾱcx̄λc(e
−1ȳλ′e) and this is sufficient for us in order

to conclude that d ∈ Z(λ).

In [21, Lemma 1.4.5 (ii), (iii)] it is shown that Pw,d = 1 whenever w < d and l(d) − l(w) ≤ 2.

Comparing also with Results 7 and 8 (see in particular the comment at the end of Result 7) we see

that ᾱc ̸= 0 whenever c ∈ XJ(λ), c ≤ d and l(d)− l(c) ≤ 2.

We thus get the following generalization of Theorem 5.4.

Theorem 5.6. Let d ∈ XJ(λ), where λ ⊨ n, and suppose that |T (d, e)| = 1 for some e ∈ W . Suppose

further that the unique element x ∈ T (d, e) satisfies l(d)− l(x) ≤ 2. Then d ∈ Z(λ).

Consider again the example λ = (2, 1r, 2) above with r ≥ 2 and 2 ≤ i ≤ r. Then di = [1, i +

2, 2, . . . , i, i + 3, . . . , r + 3, i + 1, r + 4] = sr+2sr+1 · · · si+2s2s3 · · · si+1. Let ci = [1, i, 2, . . . , i − 1, i +

2, . . . , r + 3, i+ 1, r + 4] = sr+2 · · · si+2s2 · · · si−1si+1, and ei = [1, . . . , i− 1, i+ 2, . . . , r + 4, i, i+ 1] =

sr+2 · · · sisr+3 · · · si+1. The forms above involving the Coxeter generators are reduced. Hence, ci ≤ di,

l(di) = r + 1 and l(ci) = r.

WJ(λ) = Sym({1, 2})× Sym({r+ 3, r+ 4}) and e−1
i WJ(λ′)ei = Sym({1, . . . , i− 1, i+ 2, . . . r+ 4})×

Sym({i, i + 1}), where Sym(X) denotes the symmetric group on the set X. The elements of the

(WJ(λ), e
−1
i WJ(λ′)ei) double coset containing ci are obtained from the row form of ci by permuting

the entries in the first two positions arbitrarily, and by permuting the entries in the last two positions

arbitrarily, and then by permuting the entries 1, . . . , i − 1, i + 2, . . . r + 4 arbitrarily and finally by

permuting the entries i and i+ 1 arbitrarily. Since the sets {1, . . . , i− 1, i+ 2, . . . r+ 4} and {i, i+ 1}
appear in their natural order in ci and this remains so if the first two positions or last positions are

interchanged, ci is the unique element of shortest length in the double coset.

Observe that each element of the double coset has one of the entries i or i + 1 in one of the first

two positions. Hence, di is not in the double coset and, by considering lengths, if an element c of the

double coset satisfies c ≤ di then c = ci.

The double coset has the trivial intersection property since an easy calculation shows cie
−1
i =

sr+3wD, where {D} = D(λ,λ′). Hence, T (di, ei) = {ci}. It now follows from Theorem 5.6 that

di ∈ Z(λ).
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Remark 5.7. In [13] it is conjectured that all Kazhdan–Lusztig polynomials have non-negative co-

efficients. Braden and MacPherson [3] have shown that for finite and affine Weyl groups a mono-

tonicity result concerning the coefficients of Kazhdan–Lusztig polynomials holds, which implies the

non-negativity conjecture (see [2, pages 171–172] for a discussion on the coefficients of Kazhdan–

Lusztig polynomials and relevant references).

Since the constant term of the Kazhdan–Lusztig polynomials is 1 (see for example [21, Lemma 1.4.5(i)]),

we get that all coefficients ᾱc in the sum
∑

c∈T (d,e) ᾱcx̄λc(e
−1ȳλ′e) considered above are non-zero in view

of the Braden–MacPherson result. From this we see that the additional hypothesis that l(x) ≥ l(d)− 2

for x ∈ T (d, e) in Theorem 5.6 is not actually needed. Thus, a sufficient condition for the element

d ∈ XJ(λ) to belong to Z(λ) is the existence of e ∈ W with |T (d, e)| = 1.

Finally, let us consider the situation when the composition λ has at least 2 parts and the el-

ement d ∈ XJ(λ) satisfies T (d, e) ̸= ∅ for some e ∈ W . Fix b ∈ T (d, e). Since there exists a

unique (WJ(λ), e
−1WJ(λ′)e) double coset with the trivial intersection property, we have T (d, e) ⊆

WJ(λ)b(e
−1WJ(λ′)e). Now let c ∈ T (d, e). It follows that c has a unique representation of the form c =

u(c, e, b)bv(c, e, b) where u(c, e, b) ∈ WJ(λ) and v(c, e, b) ∈ e−1WJ(λ′)e. Set α(e,b)(c) = (−1)l(v(c,e,b)) (=

sgnv(c, e, b)). The assumption that λ has at least 2 parts ensures that the even permutations inside

e−1WJ(λ′)e form a subgroup of this group of index 2. Moreover, when we express e−1ȳλ′e as a linear

combination of the usual basis consisting of the elements of W , the even permutations (resp. odd

permutations) in e−1WJ(λ′)e occur with coefficient +1 (resp. −1). It follows that v(c, e, b) e−1ȳλ′e =

α(e,b)(c) e
−1ȳλ′e and so x̄λc(e

−1ȳλ′e) = α(e,b)(c) x̄λb(e
−1ȳλ′e) as elements of the group algebra.

The next result gives another sufficient condition for the element d ∈ XJ(λ) to belong to Z(λ).

Theorem 5.8. Let d ∈ XJ(λ), where the composition λ has at least two parts, and suppose that there

exists e ∈ W with T (d, e) ̸= ∅ and l(c) ≥ l(d)− 2 for all c ∈ T (d, e). Suppose further that there exists

b ∈ T (d, e) such that
∑

c∈T (d,e)(−1)l(c)−l(b)α(e,b)(c) ̸= 0. Then d ∈ Z(λ).

Proof. As before, we express C ′
wJ(λ)d

(e−1ȳλ′e) as a sum
∑

c∈T (d,e) ᾱcx̄λc(e
−1ȳλ′e), where αc ∈ A and

it is enough to show that this sum is non-zero. The assumption that l(c) ≥ l(d)− 2 for all c ∈ T (d, e)

ensures that ᾱc = (−1)l(c)−l(b)ᾱb whenever c ∈ T (d, e) (see the comment below Result 7 and [21,

Lemma 1.4.5 (ii), (iii)]). Moreover, as we have already observed in the discussion immediately before

the statement of this theorem, for each c ∈ T (d, e) we have x̄λc(e
−1ȳλ′e) = α(e,b)(c) x̄λb(e

−1ȳλ′e). We

conclude that
∑

c∈T (d,e) ᾱcx̄λc(e
−1ȳλ′e) = x̄λb(e

−1ȳλ′e)
∑

c∈T (d,e)(−1)l(c)−l(b)α(e,b)(c), and the result

now follows easily. □
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