On bipartite divisor graph for character degrees

Document Type: Research Paper

Author

University of Qom

Abstract

‎‎The concept of the bipartite divisor graph for integer subsets has been considered in [M‎. ‎A‎. ‎Iranmanesh and C‎. ‎E‎. ‎Praeger‎, ‎Bipartite divisor graphs for integer subsets‎, Graphs Combin.‎,  26 (2010) 95--105.]‎. ‎In this paper‎, ‎we will consider this graph for the set of character degrees of a finite group $G$ and obtain some properties of this graph‎. ‎We show that if $G$ is a solvable group‎, ‎then the number of connected components of this graph is at most $2$ and if $G$ is a non-solvable group‎, ‎then it has at most $3$ connected components‎. ‎We also show that‎ ‎the diameter of a connected bipartite divisor graph is bounded by $7$ and obtain some properties of groups whose graphs are complete bipartite graphs‎.

Keywords

Main Subjects


[1] M. Bianchi, A. G. B. Mauri, M. Herzog, G. Qian and W. Shi, Characterization of non-nilp otent groups with two irreducible character degrees, J. Algebra284 (2005) 326-332.

[2] A. Heydari and B. Taeri, Onnite groups with two irreducible character degrees, Bul l. Iranian Math. Soc.34 (2008) 39-47.

[3] D. Bubb oloni, S. Dol, M. A. Iranmanesh and C. E. Praeger, On bipartite divisor graphs for group conjugacy class sizes, J. Pure Appl. Algebra213 (2009) 1722-1734.

[4] M. A. Iranmanesh and C. E. Praeger, Bipartite divisor graphs for integer subsets, Graphs Combin.26 (2010) 95-105.

[5] M. A. Iranmanesh, Bipartite divisor graph: A survey, Electron. Notes Discrete Math.45 (2014) 43-49.

[6] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, San Diego, California, 1976.

[7] M. L. Lewis, An overview of graphs asso ciated with character degrees and conjugacy class sizes innite groups, Rocky Mountain J. Math.38 (2008) 175-211.

[8] M. L. Lewis, Solvable groups whose degree graphs have two connected comp onents, J. Group Theory., 4 (2001) 255-275.

[9] M. L. Lewis, A solvable group whose character degree graph has diameter 3, Proc. Amer. Math. Soc.130 (2002) 625-630.